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Abstract: We aimed to develop a quantitative instrument to assist with the automatic evaluation
of the actionability of mental healthcare information. We collected and classified two large sets
of mental health information from certified mental health websites: generic and patient-specific
mental healthcare information. We compared the performance of the optimised classifier with
popular readability tools and non-optimised classifiers in predicting mental health information of
high actionability for people with mental disorders. sensitivity of the classifier using both semantic
and structural features as variables achieved statistically higher than that of the binary classifier
using either semantic (p < 0.001) or structural features (p = 0.0010). The specificity of the optimized
classifier was statistically higher than that of the classifier using structural variables (p = 0.002) and
the classifier using semantic variables (p = 0.001). Differences in specificity between the full-variable
classifier and the optimised classifier were statistically insignificant (p = 0.687). These findings suggest
the optimised classifier using as few as 19 semantic-structural variables was the best-performing
classifier. By combining insights of linguistics and statistical analyses, we effectively increased
the interpretability and the diagnostic utility of the binary classifiers to guide the development,
evaluation of the actionability and usability of mental healthcare information.

Keywords: mental healthcare; information quality assessment; actionability; binary classification;
natural language features

1. Introduction

Information readability and actionability form two key factors of the effectiveness
of patient-oriented healthcare information [1–5]. Many current online healthcare infor-
mation quality evaluations focus on readability assessment. This benefits from the long
tradition of quantitative readability evaluation in medical and health education using
readability instruments [6–10]. Even though the two concepts are distinct from each other
in both research and clinical practice, many current studies still confuse and conflate the
two distinct concepts into a single dimension of health information quality assessment.
Actionable content means information that can automatically prompt the best decisions
about care at the point in time when clinical decisions need to be made [11–13]. This
requires the design of health information that is based on the real-life circumstances of the
intended information users and best reflects their practical needs, varying health literacy
levels, cognitive abilities, socioeconomic circumstances, and other determinants [14–17].
Actionability assessment thus requires a distinct approach to readability or understand-
ability assessment. Actionability can have an important impact on the acceptability and
practical usability of the information for target readers [18,19]. Existing approaches to
the evaluation of health information actionability are often qualitative. Patient Education
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Materials Assessment Tool (PEMAT) is widely used by health and medical professionals
to evaluate the practical usability of printed or audio-visual materials [20,21]. However,
there is a lack of quantitative tools to assist health professionals with the evaluation of the
actionability of mental health resources.

Our study aimed to offer an automatic quantitative assessment of mental health
information actionability. This was based on two major types of online mental healthcare
information: generic and patient-specific. Generic mental health information is written for
the general public, with an accessible, understandable language, but without specifying the
intended patients or information users. This represents the mainstream health information
in many medical and health domains. Another major type of mental healthcare information
is patient-specific, using a similarly easy, plain, and understandable language but with
a focus on well-defined patients and reader groups. General mental health information
focuses on the explanation of symptoms, signs of prevalent mental disorder, wide-ranging
causes, and determinants, as well as generic treatment plans and interventions. By contrast,
patient-specific mental health information often adopts a narrative communication style,
discussing the diverse, complex yet recurrent practical needs of the intended readers,
recognising their potential for achieving better mental health and wellbeing, adapting
general treatment plans and interventions to suit their needs, and taking into consideration
likely barriers to external resources. An increasing number of not-for-profit organisations
in English-speaking countries are actively engaged in the development of patient-specific
mental health information for vulnerable people [22–24]. This increasing direction towards
personalised mental healthcare support through patient-tailored mental health information
provides valuable resources to the development of automatic assessment instruments,
which, in turn, will further advance research and improve clinical practice in patient-
centred mental healthcare.

2. Methods
2.1. Information Sources, and Search Strategies

We started the search for generic and patient-specific mental health resources on
Google. We limited the search to the 100 top websites on mental healthcare up to 1 July
2021. We used the label of HON.Net as a measure of health and medical content quality
control [25]. With the collection of generic mental healthcare information, 36 websites were
excluded for not having been certified by HON.Net, 22 websites were excluded for not
addressing general readers, and 6 were excluded for not being suitable for the automatic
statistical analysis based on natural language features, such as too short paragraphs,
sentences, or passages. With patient-specific mental healthcare information, 36 websites
were excluded for not having been certified by HON.Net, 42 websites were excluded for
not addressing general readers, and 4 were excluded for not being suitable for natural
language mining and subsequent quantitative assessments. In the final screened texts, we
randomly selected 70% from each text group to develop the training and testing dataset.
The final dataset of patient-specific information included mental health selfcare resources
for 4 population groups: teenagers (aged 11–18) (8.9%), young adults (aged 18–35) (87.5%),
people over 65 years (1.67%), women (1.17%), and men (0.76%).

The two sets of mental healthcare information collected, that is, generic (GEN) and
patient-specific (PAS), were fully annotated with two sets of natural language features using
Readability Studio (Oleander Software) [26,27] and the English semantic annotation system
(USAS) developed by the University of Lancaster, United Kingdom [28–30]. Readability
Studio annotated the health information with rich structural features to help us measure the
lexical, morphological, and syntactic complexity of the texts. Some of these features were
studied extensively in the field of readability assessment, such as the average number of
characters, average number of syllables, number of monosyllabic words, average number
of sentences per paragraph, average sentence length, whereas others were less studied.
Structural features added by Readability Studio were collectively labelled with TOF in the
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training and testing of machine learning classifiers. The automatic semantic annotation
with USAS added rich semantic information of the mental healthcare resources.

2.2. Semantic Feature Labelling Strategy

Semantic features were well studied in medical document classification and clinically
significant information retrieval. In our study, semantic features (labelled as SOF) refer
to health information contents. The semantic classification of USAS was loosely based
on Tom McArthur’s Longman Lexicon of Contemporary English, which broadly divided
the English lexicon into 22 large categories (Table 2) [31–33]. Semantic annotation has
wide applications in medical and health informatics, such as document classification
and information retrieval. In the clinic, the semantic annotation has been explored to
organise unstructured clinical information or data to support medical research or clinical
trials. It can aid in the automatic extraction of critical information from clinical texts
such as temporal information, symptoms, diseases to facilitate clinical decision making.
Compared to structural features, semantic features can help with more contextualised
analyses of health information, for example, in our study, this means how the use of certain
semantic classes (Table 2) such as medical and health terms (B), emotions (E), sports (K),
movement M), measurements (N), temporal expressions (T), psychological actions, states
and processes (X), science and technology (Y), and proper names (Z), may affect the levels
of the actionability of mental healthcare resources.

Since the USAS semantic annotation scheme was designed for general language
studies, we adapted the descriptive labels of some semantic categories (notably B, K, Z) to
reflect its application in the study of mental healthcare information. Subcategories of the
original 22 large semantic categories that occurred rarely in mental healthcare information
were trimmed. As a result, the adjusted descriptive labels indicated the largest and most
frequent subcategory within each large semantic category. For example, the original USAS
descriptive label for B was (Body and the Individual). In our study, it was found that most
of the subclasses of B belonged to B1 (Anatomy and physiology); B2 (Health and disease);
B3 (Medicines and medical treatment). There were large missing cases of B4 (Cleaning
and personal care) and B5 (Clothes and personal belongings). We, therefore, adapted B to
Medicine and Health terms in our study.

The original USAS descriptive label for K was Entertainment, which includes K1
(Entertainment generally), K2 (Music and related activities), K3 (Recorded sound), K4
(Drama, the theatre and show business), K5 (Sports and games generally) and K6 (Chil-
dren’s games). Similarly, the original descriptive label of category I was (Money), including
I1 (Money generally), I2 (Business), I3 (work and employment), and I4 (Industry). The
most frequent subcategory of mental healthcare resources was I3 on employment, so we
relabelled I as Work Employment. Most words of K belonged to K5 and K6; we, thus,
adjusted the descriptive label to reflect the most relevant subcategories of K in our study
on mental healthcare resources, especially for youth mental healthcare. Another example
is the semantic category Z, whose original USA descriptive label was Names (Z1–Z3) and
Grammar (Z4–Z9 plus Z99). To distinguish the effects of infrequent expressions, such as
medical jargon, we separated Z99 (out-of-dictionary expressions) from other Z subclasses:
Z1 (personal names); Z2 (geographical names); Z3 (other proper names), Z5 (grammatical
bins), Z6 (negative expressions), Z7 (if), Z8 (pronouns), and Z9 (trash can).

2.3. Statistics
2.3.1. Readability Assessment

Table 1 shows the statistical analysis (Mann–Whitney U test of 2 independent samples)
of the distribution of structural features (TOF) in general, non-specified and patient-specific
mental healthcare information. First, we calculated the overall difficulty of written mental
health information using validated readability assessment tools including Flesch Reading
Ease Score, FORCAST, Gunning Fog Index, SMOG Index. The mean Flesch Ease Reading
score of generic, non-specified mental healthcare information was 46.71 (SD = 11.92) and
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was statistically more difficult than that of patient-specific mental health information
(mean = 66.74, SD = 12.27, Mann–Whitney U test, p = 0.000). This suggests that generic
information with a mean of 46.61 was suitable for college students (Flesch Reading Ease
range: 50–30); and patient-tailored mental health information could be easily understood
by 13–15-year-old students or general readers with Year 9 education (Flesch Reading Ease
range: 70–60). The average Gunning Fog score of the generic mental health information
was 12.46 (SD = 2.03) and was statistically higher than that of patient-tailored mental health
information (mean = 9.02, SD = 1.93, p = 0.000). The difficulty of generic mental health
information measured by SMOG Index score was 12.50 (SD = 1.50) and was statistically
higher than patient-tailored resources (mean = 10.12, SD = 1.6, p = 0.000). Both results of
the Gunning Fog Index and the SMOG Index suggested that patient-tailored information
was suitable for readers with Year 9–10 education, and generic mental healthcare resources
required at least three more years of education. Both generic and patient-specific mental
healthcare information was above the Year 6–8 reading levels recommended by the World
Health Organisation.

2.3.2. Statistical Differences between Patient and Generic Health Information

Lexical complexity was measured by 10 structural features including medical jargons,
number of unique words, repeated words, article mismatches, redundant phrases, overused
words, wordy items, cliché, number of proper nouns and number of numerals. The mean
of 3 lexical features of generic mental healthcare information was statistically similar to
that of patient-specific information: repeated words (mean_GEN = 0.02, mean_ PAS = 0.02,
p = 0.732), redundant phrases (mean_GEN = 0.16, mean_ PAS = 0.15, p = 0.945), and cliches
(mean_GEN = 0.12, mean_ PAS = 0.12, p = 0.685). For the remaining 7 structural features
measuring lexical complexity, the mean of non-specified mental healthcare information
was statistically higher than that of patient-specific mental healthcare information: med-
ical jargons (mean_GEN = 11.25, mean_ PAS = 5.14, p = 0.000), number of unique words
(mean_GEN = 426.45, mean_ PAS = 329.19, p = 0.000), article mismatches (mean_GEN = 0.03,
mean_ PAS = 0.03, p = 0.000), overused words (mean_GEN = 16.49, mean_ PAS = 9.97,
p = 0.000), wordy items (mean_GEN = 42.24, mean_ PAS = 18.41, p = 0.000), number of
proper nouns (mean_GEN = 26.05, mean_ PAS = 16.74, p = 0.000), and number of numerals
(mean_GEN = 6.7, mean_ PAS = 6.05, p = 0.000).

In terms of morphological complexity, the mean of generic mental healthcare informa-
tion was statistically higher than that of patient-specific information in 7 categories: average
number of characters (mean_GEN = 5.16, mean_ PAS = 4.64, p = 0.000), average number of
syllables (mean_GEN = 1.73, mean_ PAS = 1.50, p = 0.000), number of monosyllabic words
(mean_GEN = 660.40, mean_ PAS = 620.35, p = 0.000), number of complex (3+ syllable) words
(mean_GEN = 218.95, mean_ PAS = 114.68, p = 0.000), number of unique 3+ syllable words
(mean_GEN = 127.2, mean_ PAS = 67.81, p = 0.000), number of long (6+ characters) words
(mean_GEN = 434.95, mean_ PAS = 283.58, p = 0.000), and number of unique long words
(mean_GEN = 245.87, mean_ PAS = 157.58, p = 0.000). The mean of the number of unique
monosyllabic words between two sets of mental healthcare information was statistically
similar (mean_GEN = 162.4, mean_ PAS = 157.86, p = 0.091).

Lastly, generic patient mental health information was syntactically more complex
than patient-specific mental healthcare information: number of difficult sentences (more
than 22 words) (mean_GEN = 14.69, mean_ PAS = 8.68, p = 0.000), average sentence length
(mean_GEN = 13.8, mean_ PAS = 12.73, p = 0.000), and passive voice (mean_GEN = 5.22,
mean_ PAS = 2.79, p = 0.000). Characteristics of syntactical structures of patient-specific
mental healthcare information included the use of more lengthy, descriptive paragraphs
compared to syntactic brevity of generic, non-specified mental health information: aver-
age number of sentences per paragraph (mean_GEN = 1.54, mean_ PAS = 2.58, p = 0.000);
stronger emphasis on logical coherence: sentences that begin with conjunctions (and, but,
though, while, even though, etc.) (mean_GEN = 1.11, mean_ PAS = 1.64, p = 0.000); and
the use of more interactive sentence structures: number of interrogative sentences (ques-
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tions) (mean_GEN = 2.81, mean_ PAS = 4.3, p = 0.000) and number of exclamatory sentences
(mean_GEN = 0.08, mean_ PAS = 1.35, p = 0.000).

Table 1. Mann–Whitney U test, Effect Sizes (dCoheN) and Common language effect sizes (CLES) of structural features (TOF).

Structural Language Features
(TOF)

PAS GEN Mann–Whitney U dCohen

CLES
Mean Std.

Deviation Mean Std.
Deviation Z P gHedges 95% C.I

Readability Measurements

Flesch Reading Ease 66.74 12.27 46.71 11.92 −27.94 0.000 −1.659 −1.766, −1.551 0.880

FORCAST 9.94 0.93 11.30 0.82 −26.705 0.000 1.562 1.456, 1.668 0.865

Gunning Fog Index 9.02 1.93 12.46 2.03 −28.708 0.000 1.732 1.623, 1.841 0.890

SMOG Index 10.12 1.60 12.50 1.50 −26.710 0.000 1.540 1.435, 1.646 0.862

Lexical Complexity

Medical jargons 5.14 7.84 11.25 12.12 −15.490 0.000 0.585 0.49, 0.68 0.661

Number of unique words 329.19 148.56 426.45 171.48 −13.374 0.000 0.601 0.506, 0.697 0.665

Repeated words 0.02 0.16 0.02 0.14 −0.342 0.732 0.000 −0.093, 0.093 0.500

Article mismatches 0.03 0.39 0.03 0.19 −2.278 0.023 0.000 −0.093, 0.093 0.500

Redundant phrases 0.15 0.44 0.16 0.59 −0.068 0.945 0.019 −0.074, 0.112 0.505

Overused words 9.97 11.03 16.49 12.56 −15.794 0.000 0.548 0.453, 0.642 0.651

Wordy items 18.41 17.82 42.24 27.64 −22.941 0.000 1.002 0.903, 1.101 0.761

Cliché 0.12 0.42 0.12 0.40 −0.405 0.685 0.000 −0.093, 0.093 0.500

Number of proper nouns 16.74 27.37 26.05 27.88 −11.990 0.000 0.337 0.243, 0.43 0.594

Number of numerals 6.05 12.22 6.70 12.07 −8.593 0.000 0.054 −0.039, 0.147 0.515

Morphological Complexity

Average number of characters 4.64 0.35 5.16 0.32 −27.139 0.000 1.558 1.452, 1.664 0.865

Average number of syllables 1.50 0.14 1.73 0.14 −27.329 0.000 1.643 1.536, 1.75 0.877

Number of monosyllabic words 620.35 419.24 660.40 382.71 −3.852 0.000 0.100 0.007, 0.193 0.528

Number of unique monosyllabic
words 157.86 56.43 162.40 58.75 −1.688 0.091 0.079 −0.014, 0.172 0.522

Number of complex (3+ syllable)
words 114.68 96.87 218.95 133.45 −20.794 0.000 0.879 0.782, 0.977 0.733

Number of unique 3+ syllable
words 67.81 46.31 127.20 61.92 −22.513 0.000 1.070 0.97, 1.169 0.775

Number of long (6+ characters)
words 283.58 210.03 434.95 251.32 −16.123 0.000 0.647 0.552, 0.743 0.676

Number of unique long words 157.58 90.18 245.87 111.59 −18.629 0.000 0.860 0.763, 0.957 0.729

Syntactic Complexity

Average number of sentences per
paragraph 2.58 8.09 1.54 0.36 −7.647 0.000 −0.193 −0.286, −0.099 0.554

Number of difficult sentences (more
than 22 words) 8.68 7.88 14.69 10.37 −14.847 0.000 0.643 0.548, 0.738 0.675

Average sentence length 12.73 2.82 13.80 2.93 −8.281 0.000 0.371 0.278, 0.465 0.604

Passive voice 2.79 3.85 5.22 4.84 −15.280 0.000 0.549 0.454, 0.644 0.651

Sentences that begin with
conjunctions 1.64 2.67 1.11 1.88 −4.817 0.000 −0.234 −0.327, −0.141 0.566

Number of interrogative sentences
(questions) 4.30 4.70 2.81 4.46 −10.005 0.000 −0.326 −0.42, −0.233 0.591

Number of exclamatory sentences 1.35 3.35 0.08 0.40 −15.709 0.000 −0.564 −0.658, −0.469 0.655

Table 2 shows that the mean of generic, non-specified mental healthcare information
was statistically higher than that of patient-specific mental healthcare information in seman-
tic categories of general and abstract terms (A) (mean_GEN = 236.46, mean_ PAS = 192.704,
p = 0.000), medical and health expressions (B) (mean_GEN = 83.122, mean_ PAS = 36.17,
p = 0.000), emotions (E) (mean_GEN = 40.559, mean_ PAS = 27.789, p = 0.000), food and beverage
(F) (mean_GEN = 8.794, mean_ PAS = 6.583, p = 0.004), government and politics (G) (mean_GEN
= 3.421, mean_ PAS = 3.313, p = 0.000), dwelling and housing (H) (mean_GEN = 3.479, mean_
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PAS = 3.071, p = 0.004), work and employment (I) (mean_GEN = 9.363, mean_ PAS = 8.121,
p = 0.000), sports and games (K) (mean_GEN = 4.9, mean_ PAS = 4.176, p = 0.002), living things
(L) (mean_GEN = 5.711, mean_ PAS = 4.389, p = 0.000), measurements (N) (mean_GEN = 62.396,
mean_ PAS = 44.089, p = 0.000), general substances (O) (mean_GEN = 16.960, mean_ PAS = 13.138,
p = 0.000), education (P) (mean_GEN = 4.614, mean_ PAS = 4.290, p = 0.000), social ac-
tions, states and processes (S) (mean_GEN = 73.062, mean_ PAS = 72.781, p = 0.026), tem-
poral expressions (T) (mean_GEN = 37.985, mean_ PAS = 34.453, p = 0.000), environment
(W) (mean_GEN = 1.879, mean_ PAS = 1.268, p = 0.000), psychological actions, states and pro-
cesses (X) (mean_GEN = 67.294, mean_ PAS = 62.999, p = 0.020), science and technology (Y)
(mean_GEN = 2.69, mean_ PAS = 2.59, p = 0.001), proper names and grammar (Z) (mean_GEN =
389/823, mean_ PAS = 359.010, p = 0.000) and out-of-dictionary expressions (Z99) (mean_GEN
= 33.909, mean_ PAS = 16.810, p = 0.000).

Table 2. Mann–Whitney U test, Effect Sizes (dCoheN) and CLES of semantic features (SOF).

Semantic
Language Features (SOF)

PAS GEN Mann–Whitney
U dCohen

CLES

Mean Std.
Deviation Mean Std.

Deviation Z P gHedges 95% C.I

A
General/abstract terms 192.704 136.215 236.460 137.767 −8.986 0.000 0.319 0.226, 0.413 0.589

B
Medicine/Health 36.170 48.766 83.122 70.517 −20.341 0.000 0.76 0.663, 0.856 0.704

C
Arts and Culture 1.086 2.177 0.834 1.892 −2.320 0.020 −0.125 −0.218, −0.031 0.535

E
Emotion 27.789 24.826 40.559 31.436 −10.517 0.000 0.445 0.351, 0.539 0.624

F
Food 6.583 17.441 8.794 22.006 −2.900 0.004 0.11 0.017, 0.203 0.531

G
Government 3.313 6.211 3.421 6.271 −2.986 0.003 0.017 −0.076, 0.11 0.505

H
Dwelling 3.071 4.797 3.479 5.305 −4.073 0.000 0.08 −0.013, 0.173 0.523

I
Employment 8.121 17.709 9.363 13.094 −8.108 0.000 0.081 −0.012, 0.174 0.523

K
Sports 4.176 6.593 4.900 7.616 −3.112 0.002 0.101 0.008, 0.194 0.528

L
Living Things 4.389 6.408 5.711 9.871 −5.967 0.000 0.155 0.062, 0.248 0.544

M
Locations 26.359 20.496 24.889 19.908 −2.136 0.033 −0.073 −0.166, 0.02 0.521

N
Measurements 44.089 33.885 62.396 41.667 −12.043 0.000 0.477 0.382, 0.571 0.632

O
General substances 13.138 12.475 16.960 17.421 −5.955 0.000 0.248 0.155, 0.341 0.57

P
Education 4.290 10.262 4.614 8.682 −4.674 0.000 0.034 −0.059, 0.127 0.51

Q
Speech Acts 28.168 25.288 24.310 18.601 −2.007 0.045 −0.177 −0.27, −0.084 0.55

S
Social Actions 72.781 59.737 73.062 52.393 −2.220 0.026 0.005 −0.088, 0.098 0.501

T
Time 34.453 28.926 37.985 28.055 −4.312 0.000 0.124 0.031, 0.217 0.535

W
Environment 1.268 3.327 1.879 4.366 −6.058 0.000 0.155 0.062, 0.248 0.544

X
Psychology 62.999 43.383 67.294 45.263 −2.335 0.020 0.097 0.004, 0.19 0.527



Int. J. Environ. Res. Public Health 2021, 18, 10743 7 of 15

Table 2. Cont.

Semantic
Language Features (SOF)

PAS GEN Mann–Whitney
U dCohen

CLES

Mean Std.
Deviation Mean Std.

Deviation Z P gHedges 95% C.I

Y
Science/Tech 2.590 6.086 2.690 4.975 −3.317 0.001 0.018 −0.075, 0.111 0.505

Z
Names/Grammar 359.010 247.561 389.823 222.817 −4.970 0.000 0.132 0.039, 0.225 0.537

Z99
Out of Dictionary 16.810 17.383 33.909 30.551 −16.818 0.000 0.669 0.574, 0.765 0.682

2.3.3. Feature Optimization Using Principal Component Analysis

We divided the entire dataset between 70% for constructing the binary classifier and
30% for validating the classifier. Table 3 shows the result of exploratory factor analysis
(EFA) used to reduce the dimensions of observed variables, i.e., the total 49 natural lan-
guage features. Within the two-dimensional instrument constructed, the first and second
dimensions accounted for 42.361% and 36.396% of the total variance in the 70% training
dataset, respectively. Figure 1 is the screen plot that visualised that increases in the amount
of variance explained by the instrument started to flatten after the second dimension, again
suggesting that the optimised dimension number be set at 2.

Table 3. Factor Analysis—Total Variance Explained.

Component Initial
Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of
Variance Cumulative % Total % of

Variance Cumulative % Total % of
Variance Cumulative %

1 237,794.144 87.165 87.165 13.060 68.736 68.736 8.049 42.361 42.361

2 24,898.123 9.127 96.291 1.904 10.022 78.758 6.915 36.397 78.758
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0.682). Four variables of large effect size (Hedges’g > 0.8) included: wordy items (Hedges’ 
g = 1.002, CLES = 0.761), number of complex (3+ syllable) words (Hedges’g = 0.879, CLES 
= 0.733), number of unique 3+ syllable words (Hedges’g = 0.97, CLES = 0.775), and number 
of unique long words (Hedges’g = 0.763, CLES = 0.729). The first dimension of variables 
summarised 10 variables measuring the morphological, lexical, syntactic complexity of 
mental healthcare resources, whereas the second dimension highlighted 9 out of the orig-
inal 22 semantic variables, which were correlated with each other in the distribution in the 
70% training data. 

Table 4. Factor Analysis—Rotated component loadings of variables. 

Variables 
Component 

1 2 
Number of complex (3+ syllable) words 0.922 0.331 

Number of unique 3+ syllable words 0.910 0.332 
Number of long (6+ characters) words 0.882 0.459 

Number of unique long words 0.880 0.433 

Figure 1. Factor Analysis Scree Plot.
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Table 4 exhibits the rotated loading (varimax rotation with Kaiser normalisation) of the ob-
served variables on the first two large dimensions. The first dimension or component of the in-
strument encompassed 9 structural features and 1 semantic feature (B medicine/health terms).
Seven variables had medium effect sizes (Hedges’g 0.5–0.8), which included: number
of unique words (Hedges’g = 0.601, CLES = 0.665), overused words (Hedges’g = 0.548,
CLES = 0.651), number of long (6+ characters) words (Hedges’g = 0.647, CLES = 0.676), num-
ber of difficult sentences (more than 22 words) (Hedges’g = 0.643, CLES = 0.675), passive
voice (Hedges’g = 0.549, CLES = 0.651), medicine/health B (Hedges’g = 0.76, CLES = 0.704),
and out of dictionary Z99 (Hedges’g = 0.669, CLES = 0.682). Four variables of large effect
size (Hedges’g > 0.8) included: wordy items (Hedges’ g = 1.002, CLES = 0.761), num-
ber of complex (3+ syllable) words (Hedges’g = 0.879, CLES = 0.733), number of unique
3+ syllable words (Hedges’g = 0.97, CLES = 0.775), and number of unique long words
(Hedges’g = 0.763, CLES = 0.729). The first dimension of variables summarised 10 variables
measuring the morphological, lexical, syntactic complexity of mental healthcare resources,
whereas the second dimension highlighted 9 out of the original 22 semantic variables,
which were correlated with each other in the distribution in the 70% training data.

Table 4. Factor Analysis—Rotated component loadings of variables.

Variables
Component

1 2

Number of complex (3+ syllable) words 0.922 0.331

Number of unique 3+ syllable words 0.910 0.332

Number of long (6+ characters) words 0.882 0.459

Number of unique long words 0.880 0.433

Wordy items 0.825 0.304

Number of unique words 0.815 0.519

Overused words (x sentence) 0.756 0.273

Number of difficult sentences (more than 22
words) 0.713 0.460

B Medicine/Health 0.686 0.250

Passive voice 0.663 0.211

Z Names/Grammar 0.431 0.901

Z99 Out of Dictionary words 0.465 0.884

X Psychology 0.351 0.820

A general/abstract term 0.524 0.816

Q Speech Acts 0.168 0.775

M Locations 0.192 0.756

S Social Actions 0.374 0.748

T Time 0.363 0.674

N measurements 0.588 0.653

3. Results

After exploratory factor analysis on the 70% training data, we validated the logistic
regression model on the remaining 30% dataset and compared the performance of the
optimised binary classifier with that of popular readability tools and binary classifiers with
original variables. The 4 binary classifiers were based on semantic variables (22), structural
variables (27), both semantic and structural features (49), and the optimised variables (19)
through exploratory factor analysis. Table 5 shows the paired-sample Wilcoxon signed-
rank test, which assessed whether the difference between the AUC of each classifier or
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readability tool and the reference 0.5 was statistically significant or not. A p smaller than
0.05 was considered statistically significant. It shows the AUC of readability tools and
binary classifiers using different variables was statistically higher than the reference AUC.

Table 5. Area under the receiver operator curve of readability formula and binary classifiers.

Test Result
Variable(s)

AUC Std. Error a Asymptotic
Sig. b

Asymptotic 95%
Confidence Interval

Lower
Bound

Upper
Bound

Gunning Fog 0.893 0.008 0.000 0.878 0.908

Flesch Reading Ease 0.882 0.008 0.000 0.866 0.898

SMOG 0.865 0.009 0.000 0.848 0.882

FORCAST 0.865 0.009 0.000 0.848 0.882

Structural Variables Only 0.807 0.009 0.000 0.788 0.825

Semantic Variables Only 0.785 0.010 0.000 0.766 0.804

All variables 0.872 0.008 0.000 0.857 0.888

Logistic Regression 0.863 0.008 0.000 0.847 0.879
a. Under the nonparametric assumption; b. Null hypothesis: true area = 0.5.

Table 6 shows the paired-sample t-test of the AUC of readability formula and binary
classifiers using different variables, with the adjusted Bonferroni significance at 0.00179.
p-values smaller than 0.00179 were considered statistically significant. It shows that among
the 4 readability formula, Gunning Fog Index (AUC = 0.893) and Flesch Reading Index
(p = 0.882) were the two top classifiers and the differences in their AUC was statistically
insignificant (p = 0.009852 > 0.00179). Among the four binary classifiers, the two top classi-
fiers were the one using all variables (49), including semantic and structural (AUC = 0.872)
and the one based on optimised variables (19 variables) (AUC = 0.863), and the difference
between the two was statistically insignificant (p = 0.2292). The AUC of Gunning Fog
Index was statistically higher than the binary classifier using 49 variables (p = 0.000168)
and the optimised binary classifier using 19 variables (p = 0.000462). The AUC of the
Flesch Reading Ease Index was statistically similar to that of the binary classifier using
49 variables (p = 0.02513) and the optimised binary classifier using 19 variables (p = 0.1837).

Table 6. Paired-sample t-test of differences in area under the ROC curves.

Pairs Test Result Pair(s)
Asymptotic

AUC
Difference

Std. Error
Difference b

Asymptotic 95%
Confidence Interval

z Sig. (2-Tail) a Lower
Bound

Upper
Bound

1 FORCAST vs. Gunning Fog −4.331 0.00001483 ** −0.0282 0.128 −0.041 −0.015

2 FORCAST vs. SMOG −0.021 0.98340065 −0.0001 0.132 −0.014 0.014

3 FORCAST vs. Structural Variables 8.320 0 0.0587 0.134 0.045 0.073

4 FORCAST vs. Factor Analysis −0.865 0.386964 −0.0071 0.129 −0.023 0.009

5 FORCAST vs. All Variables 0.214 0.83031832 0.0019 0.130 −0.016 0.020

6 FORCAST vs. Flesch Reading Ease −4.630 0.00000365 ** −0.017 0.130 −0.024 −0.010

7 FORCAST vs. Semantic Variables 6.994 0 ** 0.0803 0.136 0.058 0.103

8 Gunning Fog vs. SMOG 7.364 0 ** 0.028 0.128 0.021 0.036

9 Gunning Fog vs. Structural Variables 11.619 0 ** 0.0869 0.130 0.072 0.102

10 Gunning Fog vs. Factor Analysis 2.844 0.000446202 0.0211 0.125 0.007 0.036

11 Gunning Fog vs. All Variables 3.762 0.00016845 ** 0.0301 0.126 0.014 0.046
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Table 6. Cont.

Pairs Test Result Pair(s)
Asymptotic

AUC
Difference

Std. Error
Difference b

Asymptotic 95%
Confidence Interval

z Sig. (2-Tail) a Lower
Bound

Upper
Bound

12 Gunning Fog vs. Flesch Reading Ease 2.581 0.00985279 0.0112 0.126 0.003 0.020

13 Gunning Fog vs. Semantic Variables 9.640 0 ** 0.1085 0.132 0.086 0.131

14 SMOG vs. Structural Variables 7.736 0 ** 0.0589 0.134 0.044 0.074

15 SMOG vs. Factor Analysis −0.866 0.38625534 −0.0069 0.129 −0.023 0.009

16 SMOG vs. All Variables 0.244 0.8072572 0.0021 0.130 −0.015 0.019

17 SMOG vs. Flesch Reading Ease −3.750 0.0001769 ** −0.0168 0.130 −0.026 −0.008

18 SMOG vs. Semantic Variables 6.867 0 ** 0.0805 0.136 0.057 0.103

19 Structural Variables vs. Factor
Analysis −7.964 0 ** −0.0658 0.132 −0.082 −0.050

20 Structural Variables vs. All Variables −6.408 0 ** −0.0568 0.132 −0.074 −0.039

21 Structural Variables vs. Flesch
Reading Ease −11.563 0 ** −0.0757 0.132 −0.089 −0.063

22 Structural Variables vs. Semantic
Variables 1.831 0.06706809 0.0216 0.138 −0.002 0.045

23 Factor Analysis vs. All Variables 1.202 0.22921297 0.009 0.127 −0.006 0.024

24 Factor Analysis vs. Flesch Reading
Ease −1.330 0.18366955 −0.0099 0.127 −0.024 0.005

25 Factor Analysis vs. Semantic Variables 7.602 0 ** 0.0874 0.133 0.065 0.110

26 All Variables vs. Flesch Reading Ease −2.239 0.02512841 −0.0189 0.128 −0.035 −0.002

27 All Variables vs. Semantic Variables 7.342 0 ** 0.0784 0.134 0.057 0.099

28 Flesch Reading Ease vs. Semantic
Variables 8.548 0 ** 0.0973 0.134 0.075 0.120

a. Null hypothesis: true area difference = 0; b. Under the nonparametric assumption, ** P is significant at the adjusted Bonferroni
correction 0.00179.

Table 7 shows that despite the sensitivity and specificity pairs of the 2 top readability
formula-based classifiers: Gunning Fog Index and the Flesch Reading Ease Index. It shows
that under the different thresholds, sensitivity increases as specificity decreases. Table 8
shows the sensitivity and specificity of 4 binary classifiers using natural language features
as variables. When setting the specificity at 0.85, the binary classifier with all variables
(49) had the highest sensitivity (0.907), followed by the optimised classifier (19) using
exploratory factor analysis (0.890), Gunning Fog (0.769), and Flesch Reading Ease (0.729).
As a result, the two binary classifiers had achieved better sensitivity and specificity when
compared to the readability formula-based classifiers, which had much lower specificity.

Table 9 shows the paired-sample t-test of differences in sensitivity between 4 binary
classifiers using natural language features as independent variables. p-values are statisti-
cally significant when smaller than the Bonferroni correction (adjusted alpha = 0.00833). It
shows that sensitivity of the classifier using both semantic and structural features (49) as
variables achieved statistically higher than that of the binary classifier using either semantic
(22) (p = 0.000) or structural features (27) (p = 0.0010). Similarly, the sensitivity of the binary
classifier using optimised features (factor analysis) (19) was statistically higher than that of
the binary classifier using either semantic (p = 0.000) or structural features (p = 0.0020). The
difference in sensitivity between the binary classifier using full variable set (49) and the
optimised classifier (19) was statistically insignificant (p = 0.0398 > 0.00833).
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Table 7. Sensitivity and specificity of the readability formula under different thresholds.

Formula Thresholds Sensitivity Sensitivity Formula Thresholds Sensitivity Sensitivity

G
un

ni
ng

Fo
g

9.7500 0.919 0.685

Fl
es

ch
R

ea
di

ng
Ea

se

37.5000 0.906 0.690

9.8500 0.908 0.705 38.5000 0.889 0.713

9.9500 0.897 0.720 39.5000 0.868 0.744

10.0500 0.893 0.739 40.5000 0.851 0.764

10.1500 0.882 0.755 41.5000 0.828 0.788

10.2500 0.874 0.771 42.5000 0.807 0.811

10.3500 0.862 0.785 43.5000 0.779 0.825

10.4500 0.844 0.799 44.5000 0.763 0.845

10.5500 0.831 0.804 45.5000 0.729 0.856

10.6500 0.821 0.815 46.5000 0.700 0.871

10.7500 0.807 0.829 47.5000 0.675 0.879

10.8500 0.792 0.839 48.5000 0.643 0.891

10.9500 0.769 0.851 11.9500 0.644 0.866

11.0500 0.753 0.863 12.0500 0.612 0.881

Table 8. Mean and SD of Sensitivity and Specificity of Binary Classifiers.

Variables Sensitivity Mean (SD) Specificity Mean (SD)

Semantic Variables Only 0.795 (0.015) 0.762 (0.029)

Structural Features 0.843 (0.011) 0.776 (0.027)

All variables (49) 0.907 (0.012) 0.853 (0.034)

Factor Analysis (19) 0.890 (0.005) 0.860 (0.007)

Table 9. Paired-sample t-test of differences in sensitivity.

Pairs Variables
Mean

Difference S.D.
95% Confidence

Interval of Difference t
Sig.

(2-Tailed)
Lower Upper

Pair 1 Semantic Variables vs.
Structural Variables −0.0478 0.0153 −0.0668 −0.0288 −6.9770 0.0020 **

Pair 2 Semantic Variables vs.
Factor Analysis −0.0744 0.0134 −0.0911 −0.0577 −12.3730 0.0000 **

Pair 3 Semantic Variables vs.
All Variables −0.1116 0.0180 −0.1340 −0.0892 −13.8470 0.0000 **

Pair 4 Structural Variables vs.
Factor Analysis −0.0266 0.0085 −0.0372 −0.0160 −6.9950 0.0020 **

Pair 5 Structural Variables
vs.All Variables −0.0638 0.0182 −0.0864 −0.0412 −7.8450 0.0010 **

Pair 6 Factor Analysis vs.
All Variables −0.0170 0.007 −0.0011 −0.0329 −2.6154 0.0398

** P significant at adjusted Bonferroni 0.00833.

Table 10 shows the paired-sample t-test of differences in specificity between 4 binary
classifiers. It shows that the specificity of the classifier using full variables (49) was statistically
higher than that of the classifier based on structural variables (27) (p = 0.001) but statistically
similar to that of the classifier based on semantic variables (22) (p = 0.011 > 0.00833). The
specificity of the optimised classifier was statistically higher than that of the classifier using
structural variables (27) (p = 0.002) and the classifier using semantic variables (22) (p = 0.001).
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Differences in specificity between the full-variable classifier and the optimised classifier were
statistically insignificant (p = 0.687). These findings suggest that the optimised classifier using
as few as 19 semantic-structural variables was the best-performing classifier.

Table 10. Paired-sample t-test of differences in specificity.

Pairs Variables
Mean

Difference S.D.

95% Confidence
Interval

of Difference t
Sig.

(2-Tailed)

Lower Upper

Pair 1 Semantic Variables vs.
Structural Variables −0.014 0.047 −0.073 0.045 −0.664 0.543

Pair 2 Semantic Variables vs.
Factor Analysis −0.098 0.028 −0.132 −0.063 −7.890 0.001 **

Pair 3 Semantic Variables vs.
All Variables −0.091 0.045 −0.147 −0.035 −4.520 0.011

Pair 4 Structural Variables vs.
Factor Analysis −0.084 0.027 −0.117 −0.050 −6.927 0.002 **

Pair 5 Structural Variables vs.
All Variables −0.077 0.022 −0.104 −0.050 −7.915 0.001 **

Pair 6 Factor Analysis vs. All
Variables 0.007 0.034 −0.036 0.049 0.434 0.687

** P significant at adjusted Bonferroni 0.00833.

4. Discussions

Improving the quality and usability of current mental healthcare necessitates the
development of highly actionable and better-targeted resources for people with differ-
ent mental disorders or at high risks of developing mental diseases. This requires a
more personalised and patient-centred approach to mental health information evalua-
tion. The increasing amount of high-quality mental health information on the internet
provides valuable first-hand materials to develop new quantitative evaluation tools and
systems. Our study has made a useful attempt in this direction. In the development of
automatic tools for the evaluation of mental health information actionability, we found
that semantic features had an important role in actionability on mental health resources.
For example, there were three semantic categories in which the mean of patient-specific
mental healthcare information was statistically higher than that of generic mental health in-
formation: arts and cultures (C) (mean_GEN = 33.909, mean_ PAS = 16.810, p = 0.000);
locations (M) (mean_GEN = 33.909, mean_ PAS = 16.810, p = 0.000), and speech acts (Q)
(mean_GEN = 33.909, mean_ PAS = 16.810, p = 0.000). These contrast findings suggested
that generic information was richer and more varied compared to patient-specific mental
healthcare information. Discussions in generic mental healthcare covered a broad range of
risk factors causing mental disorders the public, such as social and political circumstances
(G, S), environmental stressors (W), household and living environments (H), employment
(I), nutrition (F), individual attributes (E), physical activities (K), science, technology, and
medicine (B, Y), and education (P). The wide range of topics in general mental healthcare
information, despite being more informative than patient-specific mental healthcare re-
sources, could significantly reduce the actionability of the health information. By contrast,
patient-specific mental healthcare information had stronger focuses on more concrete and
tangible approaches to mental healthcare such as artistic and creative activities, as typical
words in the semantic category C were artwork, caricature, carvings, crochet, D.I.Y. graph-
ics, knit, paintbrush, photos, and paintings. Patient-specific mental health information
also had a statistically higher (p = 0.045) use of speech acts expressions such as address,
(have) conversation (about your mental health), tell (their stories), (your) point of contact,
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question, speak (with your communities), (peer) mentoring (programmes), talk (about your
mental health openly), ask (what happened?), and talk (with a friend in need).

In our study, since most structural-semantic features had statistically significant differences
(p = 0.000) in the two sets of mental healthcare information, we computed the adjusted effect
size Hedges’g (for 2 independent samples of non-equal sizes) and common language effect
sizes (CLES) measures. The general rules of thumb described by Cohen suggest that an effect
size of 0.2 represents a “small” effect, an effect size of 0.5 represents a “medium” effect, and an
effect size of 0.8 represents a “large” effect. CLES ranges between 0 and 1 and has a positive
correlation with effect sizes. We found that an important shared property of structural features,
which were retained in the variable reduction process, were those with medium or large
effect sizes, suggesting that effect sizes can be a useful indicator of whether a certain observed
variable is suitable to discriminate binary-dependent variables. Specifically, structural-semantic
variables that had medium effect (Hedges’g 0.5–0.8) and eventually included in the optimised
classifier included medical jargon (Hedges’ g = 0.585, CLES = 0.661), number of unique words
(Hedges’g = 0.601, CLES = 0.665), overused words (Hedges’g = 0.548, CLES = 0.651), number
of long (6+ characters) words (Hedges’g = 0.647, CLES = 0.676), number of difficult sentences
(more than 22 words) (Hedges’g = 0.643, CLES = 0.675), passive voice (Hedges’g = 0.549,
CLES = 0.651), Medicine/Health (B) (Hedges’g = 0.76, CLES = 0.704), Out of Dictionary (Z99)
(Hedges’g = 0.669, CLES = 0.682). Variables of a large effect size (Hedges’g > 0.8) and included
in the optimised classifier were wordy items (Hedges’ g = 1.002, CLES = 0.761), number of
complex (3+ syllable) words (Hedges’g = 0.879, CLES = 0.733), number of unique 3+ syllable
words (Hedges’g = 0.97, CLES = 0.775), and number of unique long words (Hedges’g = 0.763,
CLES = 0.729). The linguistic meanings and the varying discriminating functionality of these
structural and semantic features as measured by their statistical significance (p < 0.05) and
effect sizes (Hedges’g > 0.5) were used to develop automatic binary classifiers to assess the
actionability of mental healthcare information.

Study Limitation: Mental health is highly complex. Patients with different demo-
graphic profiles and mental disorders need well-designed resources to better support them.
In our study, we divided mental health information into patient-oriented and generic men-
tal health information. However, within patient-oriented health information, our newly
developed quantitative tool could not assess whether a certain piece of mental health
information is more suitable for a particular social group, such as young people, elderly
people or adults, men, or women. There is space to develop evaluation tools to support
health information assessment for specific populations.

Future Work: Increasing the actionability of mental health information for needed
populations can significantly improve the quality of current mental health services in both
developed and developing countries. To achieve this goal, the development of quantitative
and machine learning-based evaluation tools and instruments will provide healthcare
providers with much-needed resources. In our study, we made a useful attempt towards
this goal. In future work, we aim to enrich the contents of the classifiers by testing different
sets of language features such as sentiment features [34,35]. We also aim to test our methods
with mental health resources in languages other than English to help better support mental
health organizations working with multicultural, multilingual populations. These useful
tools, such as the one we developed, do not assume any prior knowledge of the patients’
languages, which could effectively close the language gap between patients and health
professionals supporting them.

5. Conclusions

Our study developed a quantitative instrument to assist with the automatic evalua-
tion of the actionability of mental healthcare information. By combining the insights of
linguistics and statistical analyses, we effectively increased the interpretability and the
diagnostic utility of the binary classifiers to guide the development and evaluation of the
actionability and usability of mental healthcare information.
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