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Abstract: Multiple studies have shown the microbiota to be abnormal in patients with spondyloarthri-
tis (SpA). The purpose of this study was to explore the genetic contributions of these microbiota
abnormalities. We analyzed the impact of HLA-B27 on the microbiota of children at risk for SpA
and compared the microbiota of HLA-B27+ pediatric offspring of ankylosing spondylitis (AS) pa-
tients with that of HLA-B27+ children with SpA. Human DNA was obtained from the offspring for
determination of HLA-B27 status and polygenic risk score (PRS). Fecal specimens were collected
from both groups for sequencing of the V4 region of the 16S ribosomal RNA gene. Among the
offspring of AS patients, there was slight clustering by HLA-B27 status. After adjusting for multiple
comparisons, five operational taxonomic units (OTUs) representing three unique taxa distinguished
the HLA-B27+ from negative children: Blautia and Coprococcus were lower in the HLA-B27+ offspring,
while Faecalibacterium prausnitzii was higher. HLA-B27+ offspring without arthritis were compared
to children with treatment-naïve HLA-B27+ SpA. After adjustments, clustering by diagnosis was
present. A total of 21 OTUs were significantly associated with diagnosis state, including Bacteroides
(higher in SpA patients) and F. prausnitzii (higher in controls). Thus, our data confirmed associations
with B. fragilis and F. prausnitzii with juvenile SpA, and also suggest that the mechanism by which
HLA-B27 is associated with SpA may not involve alterations of the microbiota.
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1. Introduction

Spondyloarthritis (SpA) has a prevalence of about 1–2% of the adult population [1]
and can result in significant disability and reduced quality of life. The cause appears to
be multifactorial, with both genetic and environmental contributing factors. The best-
characterized genetic risk factor is the HLA-B27 allele, which is present in 80–95% of white
ankylosing spondylitis (AS) patients [2] and 38–68% of juvenile SpA patients [3] compared
to about 7.5% of the U.S. white population [4]. However, carriage of HLA-B27 is insufficient
by itself to cause AS, which develops in <5% of people with this allele [5]. While other
genetic factors are clearly involved [6], there has been substantial interest in environmental
factors, particularly the human intestinal microbiota. Specifically, multiple studies have
demonstrated alterations in the contents and function of the intestinal microbiota in patients
with pediatric and adult SpA [7–12].

It has been hypothesized that HLA-B27 itself mediates disease, at least in part, by
acting upon the microbiota [13]. To test this hypothesis, we recruited a cohort of pediatric
offspring of HLA-B27+ patients with AS. We compared the microbiota of the HLA-B27+
and HLA-B27- offspring and subsequently compared the microbiota of the HLA-B27+
offspring to that of treatment-naïve children with SpA. We hypothesized that the HLA-B27+
offspring, particularly those with a strong genetic burden for AS, would demonstrate an
arthritogenic microbiota, and that this microbiota would be recapitulated in the children
with SpA.

2. Materials and Methods
2.1. Overview

This was a cross-sectional study that first compared the contents of the fecal microbiota
among HLA-B27+ versus HLA-B27- offspring of patients with AS, and subsequently
compared the microbiota of treatment-naïve children with HLA-B27+ SpA with that of the
healthy HLA-B27+ offspring.

2.2. Subjects

Controls were a sample of children of patients with AS identified by a single rheuma-
tologist (LG) as per the modified New York criteria [14]. Children aged 5–17 years were
recruited into the study and examined by a Rheumatologist (KD) for evidence of SpA.
Subjects identified as having SpA were included in the SpA group.

Juvenile SpA subjects were either children with enthesitis-related arthritis as per
the International League of Associations for Rheumatology criteria [15] or who met the
Assessment of Spondyloarthritis International Society criteria for axial SpA [16] and were
HLA-B27 positive. They were a convenience sample enrolled from six sites across the
country who routinely see juvenile SpA patients (University of Alabama at Birmingham
(MLS), Children’s Hospital of Philadelphia (PFW), Boston Children’s Hospital (PAN),
University of Texas at Southwestern Medical Center (TW), University of Louisville (KS),
and Connecticut Children’s Medical Center (BE)), in addition to one subject diagnosed
with SpA as part of the assessment of the offspring of AS patients. Subjects with prior or
current exposure to disease-modifying antirheumatic drugs were excluded, as were those
with exposure to antibiotics within three months prior to the sample collection. All but
three of the subjects were included in previous publications [7,17].

2.3. Processing of Fecal Samples

This was conducted as previously reported [17]. Briefly, subjects collected the samples
at home and immediately placed them in a container filled with Cary-Blair media [18] and
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shipped them overnight to the Microbiota Core at UAB. Microbial DNA was isolated with
the Zymo MiniPrep kit (cat # D6010) as per the manufacturer’s instructions.

2.4. Sequencing and Analysis of 16S Ribosomal DNA from the Fecal Specimens

The purified DNA (~100 ng) underwent PCR amplification using primers designed to
amplify the conserved region flanking the V4 region from the 16S ribosomal RNA (rRNA)
gene, as described previously [7,17]. Resulting PCR fragments were run on the Illumina
MiSeq (San Diego, CA, USA) at a concentration of 12 pM; read lengths were approximately
250-bp paired-end reads. Following quality control steps, clustering was performed with
the Quantitative Insight into Microbial Ecology (QIIME) platform [19], using uclust [20]
as implemented by the pick_open_reference_otus.py script in QIIME. The resulting biom
table and phylogenetic tree files were imported into Phyloseq [21] for further analyses,
namely removal of rare operational taxonomic units (OTUs) and transformation. The
filtered dataset was used for assessment of beta diversity (dissimilarity between groups)
and to identify predictive microbial and clinical predictors of the structure of the microbiota.
Alpha diversity richness (distinct OTUs within a sample) was assessed with the Chao1 test,
while evenness (distribution of OTUs within a sample) was assessed with the Shannon and
inverse Simpson measures [22]. To evaluate whether the samples clustered based upon
either HLA-B27 status (for comparison of the offspring) or disease status (for comparison
of the HLA-B27+ offspring to diagnosed SpA patients), the permutational analysis of
variance (PERMANOVA) test was run against the distance matrix generated from the
Bray Curtis measure of dissimilarity [23]. The PERMANOVA test partitions a distance
matrix among sources of variation (e.g., presence versus absence of disease) in order
to quantitate the strength and significance a variable has in determining the variation
of distances [24]. Pairwise comparisons between the groups was performed with the
DeSeq2 test [25]. Although initially designed for analysis of RNAseq data, DeSeq2 is well-
suited to the analysis of microbiota data, which is also characterized by large numbers of
comparators, many of which are present at near-zero levels, thus imposing often impossibly
high barriers for corrected statistical significance. DeSeq2 normalizes for total read counts;
filters out very low abundant features, which have a very low a priori likelihood of being
informative; flags outliers based upon the Cook’s distance for either removal or imputation
depending on the group sample size; and calculates the log2 fold change between the two
groups, while correcting for multiple comparisons with the Benjamini–Hochberg false
discovery rate (FDR) test [26] with a corrected significance threshold of 0.05.

As a complementary tool to tease out which taxa were most essential in distinguishing
the two groups of subjects, we used the random forest algorithm [27], which is a form of
decision tree analysis suitable for the analysis of “outcome” (here, HLA-B27 positive versus
negative) of microbiota data. We incorporated both OTU-level information as well as basic
demographic features in the model.

Differences in total read counts and in alpha diversity were evaluated using the
Student’s t-test, with an alpha of 0.05. Differences in the PRS by HLA-B27 status were
assessed with the nonparametric Kruskal–Wallis test.

2.5. Genotyping and PRS Calculation

Calculation of the PRS was performed as recently described by our group [28], using
the PRS developed and validated for white European ancestry subjects. Briefly, samples
were genotyped using the Illumina Core-Exome SNP genotyping microarray per manufac-
turer’s instructions, with genotypes called using the Genome Studio V.2.0 software available
on Illumina.com. HLA-B27 imputation was performed with SNP2HLA [29] against the
Haplotype Reference Consortium panel [30].
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3. Results
3.1. Offspring of Ankylosing Spondylitis Patients

A total of 56 offspring of AS patients met inclusion criteria for the current study and
submitted a fecal specimen. The PRS was obtained on 55 of the offspring, although we
were still able to impute HLA-B27 status on the subject without a PRS. One of the subjects
was diagnosed with SpA at the research exam on the basis of arthritis, enthesitis, and
clinical sacroiliitis. That subject was found to be HLA-B27+ by genotyping, subsequently
confirmed through clinical testing, and was, therefore, included in the SpA group. Of the
56 offspring, 32 (57%) were found to be HLA-B27 positive. A description of the probands
with AS is included in Table 1, while a comparison of the clinical and demographic features
of the HLA-B27 positive and negative offspring is shown in Table 2.

Table 1. Clinical features of ankylosing spondylitis probands. Abbreviations: ASDAS-CRP, anky-
losing spondylitis disease activity score—C reactive protein; BASDAI, Bath ankylosing spondylitis
disease activity index; BASFI, Bath ankylosing spondylitis functional index; NSAIDs, nonsteroidal
anti-inflammatory drugs.

Feature Value

n 31
Demographics
Male Sex 23 (74.2%)
Age (years) 45.7 ± 7.1

Race
White 20 (64.5%)
Asian 8 (25.8%)
American Indian 1 (3.2%)
Multiracial 2 (6.5%)

Hispanic ethnicity 3 (9.7%)

Treatment
NSAIDs 18 (58.1%)
Methotrexate 1 (3.2%)
Etanercept 5 (16.1%)
TNFi mAb 11 (35.5%)
Secukinumab 1 (3.2%)

Body mass index (mg/kg2 ± SD) 25.5 ± 4.0
BASDAI 2.5 ± 2.3
BASFI 1.7 ± 2.4
ASDAS-CRP 1.8 ± 1.0

Table 2. Demographic and clinical variables of the study population. Abbreviations: NSAIDs,
nonsteroidal anti-inflammatory drugs.

Feature HLA-B27 Negative HLA-B27 Positive

n 24 32
Demographics
Male Sex 12 (50%) 12 (38%)
Age (years) 10.5 ± 4.0 10.7 ± 3.7

Race
White 11 (46%) 11 (34%)
Asian 4 (17%) 4 (12%)
American Indian 0 2 (6.2)
Multiracial 9 (38%) 15 (47%)

Hispanic ethnicity 6 [25] 5 (16%)
NSAID usage 2 (8.3%) 1 (3.1%)
Body mass index (mg/kg2 ± SD) 17.5 ± 3.2 18.0 ± 3.8
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There were no differences in alpha diversity of raw read counts between HLA-B27+
and HLA-B27- offspring (Figure 1). Ordination analysis demonstrated no visually evident
separation between the two groups of subjects (Figure 2), although the PERMANOVA
test did demonstrate slight clustering (F = 1.8, p = 0.022). There likewise was association
between the PRS and the structure of the microbiota (F = 1.8, p = 0.017). However, a major
driver of the PRS is HLA-B27 itself; the PRS of the HLA-B27- offspring was −0.25 (IQR
−0.30, −0.21), while that of HLA-B27+ offspring was 0.22 (IRQ 0.1, 0.41, p < 0.001). There
was no association between the PRS and the structure of the microbiota when the analyses
were performed separately on HLA-B27+ and HLA-B27- offspring. For HLA-B27+ subjects,
the F-score was 1.5 (p = 0.081) and, for their HLA-B27- counterparts, the F score was 1.1
(p = 0.345).
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Figure 1. Alpha diversity measures comparing HLA-B27+ to HLA-B27- offspring of AS patients.
The Chao1 measure of richness (A) along with the Shannon (B) and inverse Simpson measures of
evenness (C) are shown.

Next, we used the DeSeq2 program [25] to perform pairwise comparisons between
the groups. Not unexpectedly in light of the overall similarity between the structure of the
microbiota between the two groups (Figure 2), only five OTUs differentiated the two sets
of subjects (Table 3, Supplemental Data) Of these, F. prausnitzii had higher abundance in
the HLA-B27+ subjects, while Coprococcus and three OTUs from the Blautia genus were all
higher in the HLA-B27- subjects.
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Figure 2. Ordination analysis of HLA-B27 positive (blue) versus negative (red) subjects. NMDS = non-
metric multidimensional scaling.

Table 3. Statistically significant results of the DeSeq2 output comparing HLA-B27+ to negative
offspring. The full dataset is shown as Supplemental data. Abbreviations: LFC, log2Fold change;
LFCSE, log2Fold change standard error; padj, adjusted (corrected) p-value. LFC values > 0 represent
OTUs higher in HLA-B27+ subjects.

Organism BaseMean LFC LFCSE padj

Blautia 2539 −1.91 0.40 6.13 × 10−5

Coprococcus 1146 −1.35 0.38 0.005
Blautia obeum 1142 −2.17 0.55 0.001
Blautia 743 −1.31 0.42 0.016
Faecalibacterium prausnitzii 611 0.72 0.26 0.034

As a complementary tool to tease out which taxa were most essential in distinguishing
the two groups of subjects, we used the random forest algorithm [27], which is a form
of decision tree analysis suitable for the analysis of “outcome” (here, HLA-B27+ versus
negative) of microbiota data. We incorporated both OTU-level information as well as
basic demographic features in the model. The 10 most distinguishing factors included
four distinct OTUs belonging to F. prausnitzii (Figure 3). The reason that multiple OTUs
matched to the same organism is that there are multiple entries in the database for bacteria
representing subspecies or strains that are more than 3% different from one another, as
indicated by the unique identifiers shown on the Y-axis. Thus, multiple unique strains of
F. prausnitzii were associated with HLA-B27 status, underscoring its association.
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3.2. Comparison of HLA-B27+ SpA Subjects and Offspring

A total of 32 offspring were identified, including the one found to have SpA at the
initial assessment. A total of 23 children diagnosed with HLA-B27+ SpA and naïve to
immunomodulatory therapy were identified elsewhere, for a total of 24 HLA-B27+ SpA
subjects and 31 HLA-B27+ offspring without arthritis. As depicted in Table 4, the children
with SpA were more likely to be male and were slightly older than the HLA-B27+ offspring;
in addition, 29% of the SpA patients versus none of the controls reported use of NSAIDs at
the time of sample collection.

Alpha diversity analyses demonstrated that the SpA patients had decreased richness
(Chao1 test) and evenness (Shannon test) as compared to the controls, although a second
test of evenness (inverse Simpson) did not demonstrate any differences between the two
groups (Figure 4). Ordination analysis (Figure 5) demonstrated partial separation of the two
sets of subjects, confirmed by the PERMANOVA test (F = 2.5; p = 0.001), which remained
significant following adjustment for NSAID use, age, and sex (F = 1.6, p = 0.003). DeSeq2
analysis demonstrated 21 OTUs that distinguished the patients from controls (Table 5,
Supplemental Data). Consistent with our previous work [7,17], Bacteroides was higher in
the SpA patients, while F. prausnitzii was lower in SpA patients. Of Blautia and Coprococcus,
both of which were higher in the HLA-B27- versus HLA-B27+ siblings, one of them (Blautia)
was higher in the SpA patients versus the HLA-B27+ siblings, while the other (Coprococcus)
was lower in the SpA patients. As discussed above with respect to the random forest plot,
several organisms appear more than once, due to multiple entries representing species or
strains that cannot be distinguished at the 16S level.
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Table 4. Demographic and clinical variables of the HLA-B27+ study population. Abbreviations:
NSAIDs, nonsteroidal anti-inflammatory drugs, SpA; spondyloarthritis. The number of offspring is
one less than that reported in Table 1, as the subject with SpA was included in the SpA group.

Feature Offspring SpA

n 31 24
Demographics
Male Sex 12 (38.7%) 15 (62%)
Age (years) 10.6 ± 3.7 13.5 ± 2.9

Race
White 11 (36%) 17 (71%)
Asian 4 (13%) 1 (4.2%)
Black 0 4 (17%)
American Indian 2 (6.5%) 0
Multiracial 14 (45%) 1 (4.2%)
Unknown 0 1 (4.2%)

Hispanic ethnicity 5 (16.1%) 0
NSAID usage 0 7 (29.2%)
Sacroiliitis 0 17 (71%)
Enthesitis 0 11 (46%)
Acute anterior uveitis 0 0
Body mass index (mg/kg2 ± SD) 17.8 ± 3.7 18.1 ± 3.8
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and inverse Simpson measures of evenness (C) are shown. Asterisks indicate statistically significant
difference (p < 0.05).
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Figure 5. Ordination analysis of HLA-B27 positive healthy offspring (purple) versus HLA-B27+ SpA
subjects (green). NMDS = nonmetric multidimensional scaling.

Table 5. Statistically significant results of the DeSeq2 output comparing HLA-B27+ healthy offspring
to HLA-B27+ SpA subjects. The full dataset is shown as Supplemental data. Abbreviations: LFC,
log2Fold change; LFCSE, log2Fold change standard error; padj, adjusted (corrected) p-value. LFC
values > 0 represent OTUs higher than the SpA subjects.

Organism BaseMean LFC LFCSE padj

Bacteroides 3233 1.27 0.47 0.047
Blautia 1803 1.47 0.35 <0.001
Bacteroides ovatus 1132 1.12 0.40 0.040
Faecalibacterium prausnitzii 618 −1.19 0.38 0.018
Escherichia coli 277 2.59 0.78 0.011
Parabacteroides 274 2.92 1.03 0.040
Bifidobacterium 128 −2.12 0.59 0.004
Coprococcus 109 −1.95 0.51 0.002
Ruminococcus 89 −26.0 2.47 <0.001
Ruminococcus torques 78 2.96 0.62 <0.001
Unspecified Lachnospiraceae 67 −2.12 0.76 0.047
Coprococcus 53 −2.22 0.49 <0.001
Bacteroides 50 3.01 0.97 0.018
Unspecified Clostridiales 46 −10.8 2.44 <0.001
Unspecified Christensenellaceae 43 −5.96 2.01 0.043
Bacteroides eggerthii 27 4.49 0.89 <0.001
Ruminococcus 20 −24.2 2.94 <0.001
Bacteroides plebeius 14 −9.59 2.94 0.013
Eubacterium biforme 11 −24.1 2.94 <0.001
Parabacteroides 10 2.55 0.94 0.047
Coprococcus eutactus 6.6 −5.87 1.81 0.013
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4. Discussion

This is the first study to compare the contents of the fecal microbiota of HLA-B27+
versus HLA-B27- offspring of AS patients and is also the first to compare that of HLA-
B27+ pediatric subjects with and without SpA. Several important messages emerged from
this work.

First, while the HLA-B27 allele may influence the contents of the fecal microbiota, this
work does not support the hypothesis that the impact of this allele on the microbiota is
the mechanism whereby it influences the risk of SpA. Prior studies evaluating the impact
of HLA-B27 on the microbiota have yielded contradictory findings. Specifically, Breban
and colleagues compared the fecal microbiota of HLA-B27 positive to negative siblings
of SpA patients [10]; similar to the present study, the PERMANOVA test demonstrated
no differences between the two groups, while pairwise testing demonstrated differences
in rare bacteria. A study of AS patients likewise revealed minimal differences between
HLA-B27 positive and negative subjects [31], although, in this study, only a subset of the
microbiome was profiled, and most patients were receiving therapies. In contrast, Asquith
and colleagues [32] compared the contents of the microbiota of HLA-B27+ versus negative
healthy adults undergoing ileocolonoscopy, showing substantial and consistent differences
at multiple habitats within the gut, including decreased Blautia among the HLA-B27+
subjects. In the current study, a key organism distinguishing HLA-B27+ from negative
subjects was F. prausnitzii, which, despite being depleted in juvenile SpA patients ([7] and
present study) and generally being considered a regulatory organism [33], was present in
increased abundance in the HLA-B27 positive cohort. Along those lines, this study does
not provide any evidence that the overall genetic milieu associated with SpA, independent
of HLA-B27, impacts the microbiota, although the study’s power to assess this is modest.
Further, the PRS applied is optimized for use in white European ancestry subjects, whereas
the participants of this study were of diverse ancestry.

Second, our study reconfirms findings of an altered microbiota in patients with SpA.
This has been demonstrated in multiple prior studies of patients with AS or undifferentiated
SpA [7–9,11,12,17,34]. Additionally, several of the taxa identified herein have previously
been linked to this condition. Specifically, Aggarwal and our own group have previously
demonstrated increased Bacteroides in children with SpA [7,11,17], and our work as well
as that of Zhou [35] have shown decreased abundance of F. prausnitzii. In contrast to
the present work, Blautia has been reported to be increased in AS [36], while there are
contradictory data with respect to the direction of change of Coprococcus [8,12].

Finally, this study appears to underscore the importance of age or disease state in
the nature of the microbial abnormalities. We have previously demonstrated that the
fecal abundance of F. prausnitzii is decreased in children with juvenile SpA [7], while
increased abundance was observed in the AS probands of the current study as compared
to healthy HLA-B27+ adults. Additionally, this study demonstrated increased abundance
of Bacteroides in general and B. ovatus specifically in children with SpA. This organism
has frequently been reported as abundant in pediatric arthritis, including) but not limited
to SpA [7,11,37,38], while the opposite is observed in adults with SpA [17,31,34,39,40].
Increased abundance of bacteria that may have a regulatory impact on immune function
may reflect altered mucosal immune development, which could, in turn, predispose to
autoimmunity [41].

This study has limitations, including the potential for differences due to the age dif-
ferences between the HLA-B27+ offspring and the SpA patients. We do not suspect this
difference to be problematic, as the microbiota appears to stabilize after age 3 [42]. Age did
not impact clustering in either group, and the differences in the contents of the microbiota
remained significant after adjustments were made for age. It is also possible that the
observed differences between the HLA-B27+ patients and the HLA-B27+ offspring repre-
sented geographic variation. Our previous [17] work did not reveal significant geographic
variation of the intestinal microbiota among children with SpA, and, among inhabitants of
developed nations, the microbiota may not vary widely even across countries [43], although
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further studies in which the patients and controls are drawn from the same geographic
locality would be optimal. Our study also has a modest sample size.

A novel aspect of this work is that of comparing both HLA-B27+ and HLA-B27- off-
spring who are well-balanced for age, sex, and geographic factors, and also comparing
HLA-B27+ SpA patients to HLA-B27+ controls. Prior studies of SpA patients [17,31,34,39]
had compared SpA patients to healthy controls, the majority of whom are HLA-B27-. Ours
is the first pediatric study limited to individuals with this risk allele, with the results sup-
porting previous pediatric studies. Future studies of SpA patients should take into account
the risk allele, and additional studies are required to validate the findings reported herein.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/children9040569/s1, Table S1: differences between HLA-B27
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juvenile spondyloarthritis subjects.
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