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Abstract: Pancreatic ductal adenocarcinoma (PDAC), accounting for 90–95% of all pancreatic tumors,
is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests
and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the
advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and
treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vector-
ized radiotherapy have been developed and some of them are currently under clinical consideration.
The functional information provided by Positron Emission Tomography (PET) or Single Photon
Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and
thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of
β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies.
This review summarizes the current knowledge concerning the recent developments in the nuclear
medicine field for the management of PDAC patients.

Keywords: PDAC; nuclear medicine; molecular imaging; internal vectorized radiotherapy

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is by far the most common type of pancre-
atic neoplastic disease, accounting for about 90 to 95% of all pancreatic malignancies [1,2].
PDAC is an aggressive disease, representing the fourth most frequent cause of cancer-
related deaths worldwide in 2018 [3,4]. The incidence of PDAC is increasing and PDAC is
predicted to become the second deadliest malignancy by the year 2030. Indeed, a two-fold
augmentation of PDAC cases is expected for the next ten years [5,6]. During the last
decades, significant improvements have been achieved in the screening and treatment
of different solid tumors, incrementing the patient’s chance to be cured. Nevertheless,
insignificant modification of the mortality-to-incidence ratio has been evidenced in PDAC.
PDAC has the shortest 5-year overall survival (OS) rate of all major cancers (7%) [7]. Ef-
ficacy of treatments and outcome of PDAC are largely determined by the disease stage
at the diagnosis, but unfortunately PDAC patients are usually diagnosed at advanced
stages, limiting the therapeutic opportunities [7]. The only curative therapy available is
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surgical resection followed by adjuvant therapy [8]. Unfortunately, most of the patients
(80–90%) with PDAC remains asymptomatic until the disease develops to advanced stages
or metastatic disease that make them ineligible to surgery [9], explaining the poor prog-
nosis [10]. During the last 30 years, the 5-year survival of surgically resected patients has
increased from 5 up to 54% [11–13]. However, the 5-year survival remains unchanged over
the same period in unresected PDAC patients [10,14].

Differences in the molecular biology of PDAC may contribute to its early metastatic
dissemination. Indeed, pre-clinical models of PDAC indicate that metastases can be
detected even in the absence of any pancreatic primary tumor [15]. PDAC is therefore
suggested to be a systemic pathology and multidisciplinary management of this disease
becomes of great of importance. Therefore, the identification of novel therapeutic targets
and the modalities to improve clinical management of the disease and life expectancy of
PDAC patients are urgently needed. The diagnosis and therapeutic potential of nuclear
medicine could provide new opportunities for the management of PDAC patients. Nuclear
medicine indeed came up with radiopharmaceuticals that impart the ability to destroy
tumor cells specifically with high-energy-emitting radionuclides [16,17]. The emergence
and advent of theranostics, a combination of a single drug used for both diagnosis and
therapeutic purposes, has now opened a new avenue in the field of personalized treatments.
In recent years, theranostics has been successfully applied to a whole range of malignancies,
including neuroendocrine tumors and prostate cancer [18,19]. In this review, we first
discuss the different available molecules used in the clinic for PDAC imaging and staging,
to finally emphasize the different imaging and theranostic agents that are currently under
development for the management of PDAC, including radioligand therapy.

2. Radiotracers Clinically Available for PDAC Diagnosis, Staging and Monitoring

2.1. 18F-FDG

Diagnosis of suspected PDAC is based on clinical suspicion and a combination of
imaging modalities, including computed tomography (CT), magnetic resonance imaging
(MRI) and endoscopic ultrasound (US) [20]. Unfortunately, these imaging modalities are
of limited value in the detection of small primary tumors and small-disseminated masses.
Over the past two decades, the potential of positron emission tomography (PET) imaging
using 18-fluorodeoxyglucose (18F-FDG) has been investigated for the diagnosis, staging
and detection of recurrence of PDAC. 18F-FDG PET takes advantage of the Warburg effect,
a hallmark of cancer in which proliferating tumor cells produce energy via glycolysis at
higher rates as compared to normal tissues [21–23]. 18F-FDG PET is a sensitive imaging
modality for detection, staging and response assessment in oncology in most solid tu-
mors [24]. FDG, a glucose analogue, is transported into the cells via glucose transporters,
phosphorylated by hexokinase, but does not go further into the glycolysis steps, thereby
allowing its accumulation into the cells. Almost 90% of PDAC exhibit mutation of the
K-Ras oncogene, promoting glucose uptake through the upregulation of hexokinase-2 or
glucose transporters [25,26]. 18F-FDG uptake was investigated in mice models of PDAC
and demonstrated an increased uptake throughout disease progression from pancreatic in-
traepithelial neoplasia precursor lesions to PDAC [27]. 18F-FDG PET has consequently been
proposed as a relevant diagnosis modality for PDAC. Nevertheless, the role of 18F-FDG
PET in the early detection of PDAC still remains controversial. Some guidelines indeed
suggest that 18F-FDG PET has a very limited role in the diagnosis of PDAC whereas other
studies reported the augmented ability of 18F-FDG PET in PDAC detection, over CT and
MRI [28,29]. A systematic review of 54 studies recently reported that, while 18F-FDG PET
had a superior sensitivity when compared to CT and MRI, the specificity of CT and MRI is
higher [30]. However, 18F-FDG PET failed to distinguish PDAC from focal mass-forming
pancreatitis, which was reported to be 18F-FDG positive in nearly 80% of cases [31]. Impor-
tantly, the most important advantages of 18F-FDG PET over CT and MRI are (1) it detects
distant and potentially unknown metastases by performing a whole-body scan; and (2) it
monitors early tumor responses [32]. As for other solid tumors, metabolic changes in PET
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precede anatomic changes in tumor size [33]. CT cannot detect small tumors [34]. Hence,
following chemo/radiotherapy, 18F-FDG-PET more accurately evaluates the treatment
responses compared to CT. A recent study on 22 patients showed that the response to
neoadjuvant therapy in PDAC was more efficiently measured as compared to CT [35].
Several studies demonstrated the role of PET imaging in monitoring tumor recurrence. For
instance, Sperti et al. showed that PET could detect earlier tumor relapse in comparison
to CT, with a diagnostic accuracy of 96% and 57%, respectively [36]. Wang et al. recently
confirmed these findings using 18F-FDG in resected PDAC [37]. 18F-FDG PET imaging
has the ability to distinguish treatment-related fibrosis and inflammation from residual or
progressive tumors, as observed by Javery et al. in a cohort of 49 patients [38]. Besides,
pre-operative PET imaging predicts tumor recurrence and prognosis in PDAC patients [39].
Indeed, the high standardized uptake value (SUVmax) of patients with PDAC, which is
the most common PET parameter used in the clinic, was associated with worse overall
survival (OS) and progression-free survival (PFS) [29,40,41]. The emergence of a PET/MRI
hybrid system and of radiomics analysis should provide added value in the management
of patients with PDAC.

2.2. 18F-FLT

3-Deoxy-3-18F-fluorothymidine (18F-FLT) is a fluorinated tracer proposed as an imag-
ing biomarker of cell proliferation. 18F-FLT is phosphorylated by thymidine-kinase-1
during the S phase and trapped inside the cells, providing an indirect measure of prolif-
eration [42]. Pre-clinical studies carried out in mice demonstrated the ability of 18F-FLT
to non-invasively image PDAC cells [43]. The role of 18F-FLT in the clinic has been in-
vestigated in several studies. 18F-FLT was found to be negative in 10 benign pancreatic
lesions but 15/21 of malignant tumors display high uptake of 18F-FLT, thereby suggesting a
significant diagnostic potential [44]. Nevertheless, conclusions regarding the use of 18F-FLT
remain controversial. Quon et al. indeed reported a poor detectability of lesions and a
decreased uptake level in the primary tumor foci [45]. Despite its poor sensitivity, a recent
study however showed that initial 18F-FLT activity is correlated to poor outcomes in PDAC
patients [46]. One limitation of this study is certainly the use of a stand-alone PET without
any simultaneous CT acquisition. The use of hybrid PET/CT or PET/MRI may thus lead to
a greater accuracy. Clinical investigations should be conducted by a dual-image modality
and in a higher number of patients to conclude about the real potential role of 18F-FLT in
managing patients with PDAC.

2.3. 18F-FMISO and 18F-FAZA

Hypoxia, a condition of low oxygen availability, is a common feature of solid tumors
affecting many aspects of tumor biology and promoting resistance to therapy [47]. PDAC is
a poorly vascularized tumor and is characterized by a strong desmoplastic reaction, which
contributes to the hypoxic state. A poor blood supply is associated with poor prognosis
in PDAC patients [48]. In a constitutive hypoxic microenvironment, PDAC constitutively
express the hypoxia-inducible factor-1 (HIF-1). HIF-1 expression levels are associated
with tumor progression and metastasis [49,50]. The hypoxic environment of PDAC thus
provides the rational for imaging hypoxia and investigating its role in the management of
patients. Two radiotracers, 18F-fluoromisonidazole (18F-FMISO) and 18F-fluoroazomycin
arabinoside (18F-FAZA), have been evaluated in PDAC. However, their tumor uptakes were
found to be weak, thereby limiting their interest in the imaging of PDAC [51,52]. However,
a recent study carried out on 20 PDAC patients prior to surgery showed a prognostic value
of 18F-FMISO imaging, with a significant shorter OS in 18F-FMISO-positive lesions [53].
Further investigations are therefore needed to decipher the role of hypoxia imaging in the
management of PDAC patients.
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2.4. 68Ga-FAPI

Cancer-associated fibroblasts (CAF) and extracellular fibrosis can contribute to up to
90% of the tumor mass [54]. CAFs differ from normal fibroblasts by their expression of
fibroblast activation protein (FAP). FAP inhibitors (FAPI) were therefore developed as anti-
cancer drugs and then as tumor-targeting radiotracers [55]. Several solid tumors, such as
breast, lung, colorectal and PDAC cancers, were found to remarkably display high uptake
of 68Ga-FAPI [56]. 68Ga-FAPI was found as a promising alternative to 18F-FDG in cancer
patients. Studies of 68Ga-FAPI biodistribution demonstrated a high uptake in primary
PDAC, lymph nodes and distant metastases, with low activity in healthy tissues. Indeed, a
recent study revealed a higher tumor uptake of 68Ga-FAPI PET/CT as compared to 18F-FDG
PET/CT in several cancers, including PDAC, as well as in more metastatic lesions [57]. In a
study of 19 patients with primary or recurrent histologically confirmed PDAC, 68Ga-FAPI
PET/CT showed a change in TNM stage in 10/19 (53%) patients compared to contrast-
enhanced CT and a change in therapeutic management in 7 patients (37%) [58]. Recently,
the tumor target volume for radiation therapy was more accurately defined with 68Ga-FAPI
PET/CT as compared to the gold standard contrast-enhanced CT [59]. These preliminary
results paved the way to conduct further investigations on the clinical value of 68Ga-FAPI
in PDAC [60]. Moreover, the biodistribution of 68Ga-FAPI makes this tracer suitable for
radioligand therapy.

The different radiotracers evaluated in clinic for PDAC imaging are depicted in
Figure 1.
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Figure 1. Radiotracers dedicated to diagnosis, staging and therapeutic monitoring of PDAC.

3. Recent Developments in Nuclear Medicine for PDAC Imaging and Treatment

Currently, the ability to interrogate the target engagement of experimental therapies
and the lack of specific imaging to assess therapy response are real concerns for clinical
trials. The potential of nuclear medicine to non-invasively characterize tumors at the
molecular level should be considered for the follow-up of patients with PDAC. Moreover,
recent advances in the molecular mechanisms of PDAC tumorigenesis, and the advent of
small-animal dedicated imaging systems have led to the development of new radiotracers.
Indeed, several radiotracers dedicated for staging, monitoring or for the evaluation of pa-
tients’ eligibility for a targeted therapy (companion approach), or for targeted radionuclide
therapy (theranostic approach), have been developed and evaluated in several PDAC mice
models. Most of the radioisotopes described here are β+ emitters (64Cu, 89Zr and 68Ga)
and therefore suitable for PET imaging. They can be potentially substituted on the vector
molecule by β- (177Lu and 90Y) or α-emitters (225Ac and 213Bi) isotopes for therapeutic use.

3.1. Radiotracers in Development Dedicated to Stroma Imaging

The extremely dense stroma of PDAC and its fundamental role during tumor progres-
sion gave the rationale for investigating the role of its components and the relevance of their
targeting [61]. In addition to CAF targeting with the 18F-FAPI agent that could efficiently
detect PDAC masses, radiotracers targeting fibronectin and matrix metalloproteinases
(MMP) were recently developed for this application (Figure 1).



Int. J. Mol. Sci. 2021, 22, 6413 5 of 19

3.1.1. Fibronectin-Targeting Agents

Fibronectin, a major component of the extracellular matrix, is overexpressed in PDAC
samples and associated with advanced stages [62]. A single-domain antibody (sdAb)
targeting the fibronectin (NJB2) was recently evaluated in mice models of breast cancer and
PDAC [63]. 64Cu-NJB2 demonstrated high specificity for fibronectin-expressing lesions
and exhibited a high tumor-to-background ratio at early time points. Moreover, 64Cu-NJB2
allowed early detection of PDAC as well as liver metastasis, whereas 18F-FDG did not. The
biodistribution profile of sdAb, with limited uptake in liver and intestine, could overcome
the known limitations of conventional mAbs to image metastasis with high contrast. The
ability of 64Cu-NJB2 to detect PDAC and secondary masses remains to be evaluated in
future clinical studies.

3.1.2. MT1-MMP Imaging

The desmoplastic PDAC stroma contains many different proteases that play a key role
in the crosstalk between cancer and stromal cells. MMPs are a family of zinc-dependent
endopeptidases involved in the degradation of the ECM components. MMPs are con-
sidered as important contributors to PDAC progression [64]. Membrane-type 1 matrix
metalloproteinase (MT1-MMP) upregulation promotes tumor progression and resistance
to gemcitabine in a PDAC xenograft model [65]. MT1-MMP, as a candidate biomarker
for non-invasive PDAC imaging, was evaluated using 89Zr-labeled antibodies (89Zr-DFO-
LEM2/15). Despite liver uptake of the radiotracer, 89Zr-DFO-LEM2/15 allowed high-
contrast imaging of PDAC in mice bearing orthotopically implanted, patient-derived
xenograft tumors [66]. Clinical investigations of this radiotracer have not been conducted.

3.1.3. CAFs

The tumor stroma represents an attractive target for the diagnosis but also for the
delivery of therapeutic compounds. The absence of fibroblast-activation protein expression
in normal tissue and the biodistribution profile of 68Ga-FAPI observed in the clinic offer a
very encouraging opportunity for theranostic applications [67–69]. A proof of concept of
radioligand therapy using 90Y-FAPI-04 in two patients with final-stage breast cancer was
recently assessed [70]. 90Y-FAPI-04 led to a significant decrease in pain in these patients.
In parallel, FAPI was labeled with 225Ac (225Ac-FAPI) and evaluated for its therapeutic
potential in preclinical models of PDAC. 225Ac-FAPI treatment of PANC-1 xenografted
mice showed a significant decrease in tumor growth in comparison to control mice [69].
However, 225Ac-FAPI therapeutic potential remains to be evaluated in clinical practice.

3.2. Radiotracers Targeting Tumor Antigen: Companion and Theranostic Approaches

The radiotracers dedicated to companion and theranostic approaches currently in
development are presented in Figure 2.

3.2.1. MUC1-Targeting

Most of the tracers designed for the theranostic approach target the MUC1 protein.
MUC1 is a 300–600 kDa membrane-bound mucin expressed in pancreatic ductal and
acinar cells. More than 60% of PDAC overexpressed MUC1 and it has a pivotal role
in PDAC progression [71,72]. In tumor cells, MUC1 binds to EGFR and β-catenin to
enhance cell proliferation through the MAPK, Akt or Wnt/β-catenin pathways [73,74].
Moreover, MUC1 also induces epithelial–mesenchymal transition through activation of
MMP13, Stat3 and PDGFR [71]. MUC1 also favors chemoresistance in PDAC by acting as
a transcriptional regulator of multidrug-resistance genes [75]. MUC1 has therefore been
linked to a poor prognosis in PDAC patients [76]. Some 64Cu- and 89Zr-radiolabelled
monoclonal antibodies (mAbs) were recently developed for non-invasive measurement of
MUC1-expression [77–79]. 64Cu-DOTA-PR81 and 89Zr-Df-GGSK-1/30 were successfully
validated in MUC1-expressing breast cancers with a high ratio tumor/background uptake
72 h after injection [77,78]. More recently, 89Zr-DFO-AR20.5 was validated as a valuable
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tracer for the visualization of tumor tissues, including metastatic lesions in a pre-clinical
model of ovarian cancer [79]. Nevertheless, all these radiotracers must be first validated
for PDAC imaging and then clinically transferred for an eventual application.
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Numerous MUC-1-targeting radiotracers dedicated to radioimmunotherapy of PDAC
have been investigated in pre-clinical and clinical studies [80]. PAM4, an anti-MUC1 mAb,
was radiolabeled with 90Y and 131I, and evaluated in combination with gemcitabine in
pre-clinical models of PDAC. 90Y-PM4 provided greater growth inhibition as compared
to 131I-PM4, with an improved median survival time (>26 weeks in the 90Y-PM4-treated
group, and 17.5 weeks for the 131I-PM4-treated group) [81]. Gold et al. further showed
that a combination of 90Y-PM4 with gemcitabine enhanced tumor response in mice models
of PDAC [82]. This observation led to the clinical evaluation of 90Y-PM4 in PDAC pa-
tients. 90Y-PM4 treatment was well tolerated, with manageable hematologic toxicity [83].
Low-dose gemcitabine in combination with 90Y-PM4 was evaluated in 38 advanced PDAC
patients. Partial response and stable disease were found in 16% and 58% of patients, respec-
tively [84]. Phase III was recently conducted in 334 PDAC patients but failed to demonstrate
any significant improvement of OS when compared to the placebo (NCT01956812). The
superior therapeutic efficacy of alpha-therapy in comparison to beta-therapy gave rise to
the development of alpha-emitter radiotracers [85]. 213Bi-C595, a monoclonal antibody,
was cytotoxic in vitro on PDAC cells and in vivo on a model of ovarian cancer [86,87].
Alpha-therapy remains to be evaluated in PDAC.

3.2.2. Mesothelin-Targeting with Antibody-Derived Radiotracers

Mesothelin is a 40-kDa, GPI-anchored membrane protein whose expression is very
low in normal tissues (pleura, peritoneum and pericardium). However, mesothelin is
overexpressed in several solid tumors, including in 80 to 85% of PDAC [88,89]. Mesothelin
is a key player in sustaining cell proliferation and invasion of PDAC [89]. The limited
expression of mesothelin in normal tissues as well as its overexpression in a broad range of
tumors makes it an attractive and promising target for therapy. Several anti-mesothelin
targeting drugs, including an antibody-based approach, immunotoxins or CAR-T cells,
are under clinical investigations [90,91]. Some radiotracers serving as companion markers
of anti-mesothelin therapies are currently in development. Some mAbs have been evalu-
ated for PDAC targeting in pre-clinical mouse models and in patients. Specific signals in
mesothelin-positive lesions were detected using 64Cu- and 89Zr-radiolabeled mAbs [92–94].
Clinical investigations showed high ability of 111In- and 89Zr-radiolabeled mAbs for the
phenotypic imaging of mesothelin-expressing PDAC [95,96]. Nevertheless, hepatic elimina-
tion of mAbs and their slow blood clearance constitute important limitations. Single-chain
variant (ScFv) and single-domain antibodies displaying optimal pharmacokinetics have
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been validated in pre-clinical studies and will thus deserve to be fully considered for
clinical development [89,97,98].

In addition to their potential to serve as a companion marker for the selection of pa-
tients eligible for anti-mesothelin therapies, anti-mesothelin mAbs have been radiolabeled
with alpha-emitter particles for targeted radionuclides therapy. A 227-thorium (227Th)-
radiolabeled anti-mesothelin mAbs has recently been validated in pre-clinical models of
ovarian cancer [99]. A Phase I trial using this compound is ongoing in patients with locally
advanced or metastatic PDAC (NCT03507452).

3.2.3. Transferrin Receptor (TfR)-Targeting Agents

Transferrin receptor (TfR) is a type II transmembrane heterodimeric glycoprotein
involved in iron uptake. Tumor cells are highly dependent on iron for proliferation when
compared to normal cells and are more sensitive to iron deprivation [100,101]. TfR is
therefore upregulated in malignant cells [102], including PDAC [97]. More generally, TfR
is a key actor of several hallmarks of cancer, including cancer cell proliferation, migration
and invasion [103]. TfR have consequently emerged as a candidate for antibody-mediated
cancer therapy [104]. Different antibody-based strategies that target TfR in malignant cells
have been developed and assessed in pre-clinical models of solid tumors. This includes
in particular mAbs that can be combined to therapeutic agents (chemotherapy), toxins
or radioisotopes, or ScFv [105]. Indeed, the internalization of TfR ligands opens unique
opportunities for the delivery of toxic agents into malignant cells. Among the therapies, the
combination of SGT-53 (nanocomplex carrying the p53 gene) with docetaxel was evaluated
in 12 patients (1 PDAC) in a Phase 1b dose-escalation trial. The RECIST partial response
observed in 3/12 patients and the stable disease observed in 2 patients support the Phase
2 testing this combination [106]. A Phase II study of the combination of SGT-53 and
gemcitabine/nab-paclitaxel is ongoing in patients with metastatic PDAC (NCT02340117).
89Zr-TSP-A01, an anti-TfR mAb, was successfully evaluated in MiaPaCa-2-bearing mice
for its ability to bind to TfR-positive tumors [107]. This antibody was also radiolabeled
with 90Y (90Y-TSP-A01) and considered for radioimmunotherapy. One injection of 90Y-TSP-
A01 in tumor-bearing mice (MiaPaCa-2-derived tumors) resulted in an almost complete
disappearance of tumors, making it a very promising agent [108]. Nevertheless, the clinical
potential of such a theranostic agent remains to be further investigated. More recently,
transferrin was radiolabeled with 89Zr and evaluated for its ability to target PDAC.

Moreover, 89Zr-transferrin was evaluated for its potential to non-invasively assess the
signaling downstream KRAS to stratify patients that will benefit from targeted therapies.
89Zr-transferrin was confirmed to be a valuable tool to evaluate oncogene status, as TfR
is a downstream target of the KRAS pathway, and the target engagement of MYC- and
ERK-targeted therapies [109,110].

3.2.4. CEACAM5-Targeting Agents

CEA, also called carcinoembryonic antigen–related cell adhesion molecule 5 (CEA-
CAM5), is a 200-kDa protein belonging to the CEACAM family and anchored to the cell
surface by a glycosylphosphatidylinositol (GPI). Despite poor sensitivity and specificity,
serum CEACAM5 is a prognostic biomarker of PDAC [111]. Soluble CEACAM5 is related
to tumor burden in patients with PDAC, thereby giving the rationale for its use in clini-
cal practice [112]. Histological analysis of tumor samples revealed its ability to identify
viable tumor cells before and after neoadjuvant treatment [113]. Moreover, the high tumor-
to-normal ratio of CEACAM5 expression supports the development of anti-CEACAM5
imaging agents for diagnosis and staging of PDAC. That said, such potential need to be
further investigated in PDAC.

Of note, the theranostic potential of anti-CEACAM5 radiolabeled antibodies was
supported by a clinical pilot study carried out in five patients having metastatic colorec-
tal cancer (mCRC) [114]. 111In-IMP288—a bispecific, engineered antibody—rapidly and
selectively accumulated in tumors with a high tumor-to-tissue ratio. Administration of
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177Lu-IMP288 therapeutic antibody was well tolerated without any observed adverse effect.
The therapeutic potential of such an antibody remains to be demonstrated and evaluated
in PDAC patients. A Phase II carried out in mCRC patients is investigating the ability of
another mAb (124I-M5A) to detect liver metastasis.

3.2.5. Neurotensin Receptor-Targeting Agents

Neurotensin (NTS) is a physiological hormone, which affects the function of the
gastro-intestinal tract through its cellular receptor (NTSR1). In 1998, both NTS and NTSR1
were reported to be more expressed in PDAC tissues when compared to normal sam-
ples [115]. Expression of NTSR1 correlated with histological grade and higher expression of
NTSR1 was detected in patients with liver metastasis [116,117]. The signaling pathway of
NTS/NTSR1 is well known in cancer—NTS/NTSR1 triggers PKC, PI3K and ERK1/2 acti-
vation, leading to aberrant survival and proliferation of tumor cells [118]. NTS/NTSR1 also
activated Rho GTPases and the focal adhesion kinase, key players involved in cell migration
phenomena [119–121]. The selective inhibition of NTSR1 in mice attenuated the tumori-
genicity of the pancreatic cells [122]. Based on the selective expression of NTS/NTSR1
and its role in PDAC progression, several NTSR1-targeting agents were proposed for
non-invasive imaging, treatment monitoring tools and vectorized radiotherapy [123]. 68Ga-
DOTA-NT-20.3, an analogue of NTS that displays a high affinity for PDAC cells, was
evaluated in orthotopic xenograft models of PDAC [124,125]. 68Ga-DOTA-NT-20.3 exhib-
ited high tumor uptake and high contrast between the tumor and background, at early
time points with a fast blood clearance. This promising result led to a recent first clinical
trial in humans, where the safety, tolerability and 68Ga-DOTA-NT-20.3 uptake in PDAC
(n = 3) were observed [126]. However, future investigations need to be assessed in a larger
cohort of patients. Another NTS radiolabeled-analogue (99mTc-NT-XI) was previously
evaluated in four PDAC patients. Despite the small number of patients, the relevance of the
NTSR phenotypic imaging method has been reported [127]. A PET-dedicated radiotracer
was recently developed and evaluated in prostate tumor-bearing mice. 64Cu-DOTA-NT
specifically binds NTSR-expressing tumors [128]. The biochemical structure of DOTA also
allows 177Lu radiolabeling, which is dedicated to targeted radiotherapy.

Twenty years ago, one of the first NTS analogues was radiolabeled with 188Re and
evaluated in a radiotherapy study using HT29 colon cancer-bearing nude mice [129]. Three
injections of 188Re-NT-XIX led to a 50% decrease in tumor growth. Only few studies have
reported the pre-clinical efficacy of 177Lu-radiolabelled NTS in PDAC. 177Lu-FAUC469, a
triazolyl-linked DOTA-derivative, was shown to display high tumor growth inhibition in
PDAC-bearing mice [123]. The first patient injection of 177Lu-labelled DOTA-conjugate
of NTS (177Lu-3BP-227) was performed in six PDAC patients [130]. 177Lu-3BP-227 was
well tolerated and one patient achieved a partial response and experienced an improved
quality of life. Despite this observation, which provides clinical evidence of 177Lu-3BP-227
treatment feasibility, it remains to be further evaluated in a Phase II study.

3.2.6. CA19.9-Targeting Agents

Serum carbohydrate antigen 19.9 (CA19.9) is regularly measured in patients with
PDAC [131]. The diagnostic potential of soluble CA19.9 was evaluated in several studies.
CA19.9 levels are upregulated up to 2 years prior to a PDAC diagnosis, and its level corre-
lated with tumor stage [132–134]. However, CA19.9 as a soluble biomarker has limitations,
including a low positive predictive value, and augmented values in pancreatico-biliary
diseases [135]. Nonetheless, CA19.9 remains an attractive target for specific diagnosis and
therapy as it is expressed at high levels at the surface of cancer cells. 89Zr-5B1, an anti-
CA19.9 radiolabeled antibody, allowed non-invasive imaging of PDAC xenografts with an
intense uptake (>100% of injected activity per gram of tissue), and notably a low activity in
the liver and spleen [136,137]. Moreover, when unlabeled 5B1 was administered prior to
89Zr-5B1, the radiotracer significantly enhanced the image contrast and tumor-to-tissue
ratio [137]. Due to the potential of 89Zr-5B1 to non-invasively measure CA19.9 expression,
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a dose-escalation trial of 89Zr-5B1 in PDAC patients was performed. This dose-escalation
study confirmed these promising results in 12 patients with metastatic CA19.9-expressing
tumors [138]. Anti-CA19.9 diabodies were also engineered and provided specific molecular
imaging in tumor xenograft models [139,140].

The biodistribution profile of 5B1 validated the rationale for its use as a theranostic
agent. A Phase I study on 177Lu-5B1 therapy was initiated and is ongoing (NCT02672917).
The aim of this study is to determine the maximum tolerated dose of 177Lu-5B1, as well as
its pharmacokinetics and dosimetry characteristics.

3.2.7. uPA/uPAR System

The tumor cell-associated urokinase plasminogen activator (uPA) system, including
the serine protease uPA, its membrane-associated receptor uPAR and the plasminogen
activator inhibitor (PAI2), play a crucial role in cell proliferation and metastasis [141,142].
uPAR binds uPA to convert inactive plasminogen to active plasmin, disrupting the ECM,
and allowing invasion and metastatic spread of malignant cells [143]. Aberrant expression
of the uPA-uPAR system components has been detected in a wide range of tumors [144].
Around 60% of patients with PDAC express uPAR in neoplastic or stromal cells [145]. In-
creased gene expression is associated with poor survival in PDAC patients [146]. Chen et al.
showed that uPAR expression could discriminate between PDAC and pancreatitis [147].
Much attention has been deployed in the development of non-invasive imaging of uPA
systems. The peptide antagonist AE105 and the anti-uPAR mAb ATN-658 were developed
and radiolabeled with 68Ga (68Ga-AE105) and 89Zr (89Zr-ATN-658), respectively [148–150].
As a 1-kDa molecule, 68Ga-AE105 exhibited rapid blood clearance, thereby allowing tumor
imaging at early time points with a good contrast. 89Zr-ATN-658 has a much longer half-life
in the blood, offering then a possibility of acquisition at later time points. 68Ga-AE105 was
evaluated in a Phase I study in patients with prostate, breast and bladder cancers [150,151].
The administration of 68Ga-AE105 was well tolerated and primary tumor uptake could be
evidenced with high contrast 60 min post-injection. Moreover, the capacity of this tracer to
accurately detect lymph nodes metastasis makes it suitable to allow the staging of solid
tumors. To date, no evaluation in PDAC patients was performed but 177Lu-AE105 was
evaluated in a disseminated metastatic prostate cancer model [152]. uPAR-targeted ra-
dionuclide therapy significantly reduced the number of metastatic lesions when compared
to the vehicle and non-targeted 177Lu-groups. Targeted alpha-therapy was evaluated in a
xenograft model of PDAC using the 213Bi-PAI2 radiotracer, and a significant tumor growth
inhibition could then be evidenced [153]. However, further investigations are needed for
PDAC and should ultimately allow a better overall understanding.

3.2.8. EGFR

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor
involved in the regulation of cell proliferation, survival and apoptosis [154]. Overexpres-
sion of EGFR was reported in a wide range of tumors, including breast, colon or lung
cancers [154,155]. For PDAC, the EGFR levels ranged from 40 to 70% and its expression is
associated with advanced stages and poor clinical outcomes [156–160]. In addition, EGFR
signaling contributes to the transition of normal pancreatic epithelia to neoplasms [161].
Two classes of inhibitors have been developed for the EGFR-targeting: tyrosine kinase
inhibitors (erlotinib) and EGFR mAbs (cetuximab and panitumumab). The Food and
Drug Administration approved the combinatory use of erlotinib with gemcitabine as a
first-line therapy for patients with advanced PDAC, since a significant improvement in
OS was evidenced in comparison to gemcitabine treatment alone [162]. The measure of
EGFR expression with SPECT and TEP imaging was performed using sdAbs radiolabeled
with 99mTc- or 68Ga [163–166]. 99mTc-7C12 sdAb represents a valuable tool for monitoring
erlotinib response in mice models of epidermoid carcinoma [166]. 89Zr-DFO-ZEGFR:2377,
a radiolabeled affibody was also validated as a non-invasive tool to quantity EGFR expres-
sion in this tumor model [167]. 89Zr-cetuximab was evaluated in 10 patients with metastatic
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colorectal cancers and treated with cetuximab. Despite the low number of patients, a corre-
lation between 89Zr-cetuximab uptake in secondary lesions and tumor response could be
demonstrated [168]. The theranostic couple 111In- and 177Lu-panitumumab was recently
evaluated for EGFR imaging in mice models of PDAC [169]. The radio-immunotherapy
was further evaluated in PANC-1 xenografts. 177Lu-panitumumab strongly impedes tu-
mor growth without any significant detected side effect (blood counts, serum alanine
aminotransferase and creatinine) [170]. To date, no investigation of radioimmunotherapy
targeting EGFR has been evaluated in a clinical study.

3.2.9. CDCP-1

The CUB domain-containing protein 1 (CDCP1) is a glycosylated transmembrane
protein discovered 20 years ago by Scherl-Mostageer [171]. CDCP1 expression is associated
with the loss of anchorage in epithelial cells during mitosis [172]. CDCP1 regulates the
SRC/PKC, PI3K/Akt and RAS/ERK pathway, making it a player located at the nexus of
tumorigenesis and metastasis processes [173]. Its expression has therefore been associated
with a poor prognosis in several cancers, including PDAC [174,175]. These findings have
stimulated the development of CDCP1-targeting agents for detection and treatment of
cancers. Small molecules (Pd-Oqn) or antibodies (10D7) targeting CDCP1 have been
developed and evaluated in pre-clinical studies. Peritoneal injection of Pd-Oqn in mice
models was associated with a significant decrease in the peritoneal dissemination of gastric
tumors [176]. The combination of 10D7 with monomethyl auristatin E cytotoxin (10D7-
MMAE) reduced tumor burden in mice models of metastatic ovarian cancers [177]. 10D7
was radiolabeled with 89Zr (89Zr-10D7) and evaluated in an ovarian cancer model and a
high tumor-to-background ratio could be obtained 144 h following administration [177].
Moreover, peritoneal masses were readily observable using 89Zr-10D7. Of note, 89Zr-10D7
was also found to detect PDAC tumor-derived xenografts [178]. Another antibody, 4A06,
was recently radiolabeled with 89Zr (89Zr-4A06) for PET imaging of PDAC tumors but also
with 177Lu- and 225Ac-, respectively, for β-- and α-emitter-targeted therapy [179]. 89Zr-4A06
detected CDCP-1 expressing PDAC (seven cell lines). Treatment with a single dose of
177Lu-4A06 significantly reduced tumor volumes in comparison to the control. Despite
significant results when compared to the control conditions, the 225Ac-4A06 effect was less
pronounced as compared to 177Lu-4A06. Similarly, further investigations deserve to be
conducted for the clinical evaluation of these compounds.

4. Conclusions

Despite intensive efforts in the field of pancreatic cancer research, early-stage detection,
treatment response monitoring and development of efficient therapeutic strategies in
PDAC are still in urgent need. The field of nuclear medicine, for its ability to image a
molecular-target and to treat tumors, could represent a way to improve the management
of these patients. The upcoming availability of 68Ga-FAPI, with its ability to discriminate
inflammation from neoplastic masses, to allow an accurate staging of patients, favors its
future use in clinical routines. 68Ga-FAPI seems to overcome the known limitations of
other available imaging modalities. Nonetheless, the clinical value of 68Ga-FAPI in PDAC
remains to be further investigated.

The advent of theranostic and radioligand therapy in nuclear medicine has opened
new opportunities for the management of solid tumors, including PDAC. More than
15 agents have been developed for the radioligand therapy of PDAC, including β- (177Lu
and 90Y) and α-emitter (225Ac and 213Bi)-radiolabeled compounds. All these theranos-
tic agents exhibit a high ability to non-invasively image PDAC with a high tumor-to-
background ratio and strong anti-tumor efficacy in pre-clinical models of PDAC. Although
the clinical applicability (toxicity and objective tumor response) of most of these agents
remains to be further evaluated, they undoubtedly have great potential to be integrated
into combination anti-cancer therapies.
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