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As a natural hibernator, the Chinese alligator (Alligator sinensis) is an ideal and
intriguing model to investigate changes in microbial community structure and function
caused by hibernation. In this study, we used 16S rRNA profiling and metagenomic
analysis to compare the composition, diversity, and functional capacity in the gut
microbiome of hibernating vs. active Chinese alligators. Our results show that gut
microbial communities undergo seasonal restructuring in response to seasonal cycles of
feeding and fasting in the Chinese alligator, but this animal harbors a core gut microbial
community primarily dominated by Proteobacteria, Fusobacteria, Bacteroidetes, and
Firmicutes across the gut regions. During hibernation, there is an increase in the
abundance of bacterial taxa (e.g., the genus Bacteroides) that can degrade host
mucin glycans, which allows adaptation to winter fasting. This is accompanied by
the enrichment of mucin oligosaccharide-degrading enzyme and carbohydrate-active
enzyme families. In contrast, during the active phase (feeding), active Chinese alligators
exhibit a carnivore gut microbiome dominated by Fusobacteria, and there is an increase
in the relative abundance of bacteria (e.g., Cetobacterium somerae) with known
proteolytic and amino acids-fermentating functions that improve host protein-rich food
digestion efficiency. In addition, seasonal variations in the expression of β-defensins play
a protective role in intestinal immunity. These findings provide insights into the functional
adaptations of host–gut microbe symbioses to seasonal dietary shifts to maintain gut
homeostasis and health, especially in extreme physiological states.

Keywords: hibernation, gut microbiota, Chinese alligator, metagenomics, mucin glycan degradation, fasting,
feeding

INTRODUCTION

The animal gastrointestinal (GI) tract harbors diverse and complex microbial ecosystems that
profoundly affect numerous aspects of host biology (Jandhyala et al., 2015), including nutrient
extraction (Shortt et al., 2018), development of the immune system (Thaiss et al., 2016), and
resistance to invading pathogens (Ouwerkerk et al., 2013). In turn, host organisms provide a
favorable environment and diet- or host-derived nutrients that sustain the growth of gut microbial
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communities (Carey and Assadi-Porter, 2017). Most studies
of the gut microbiome to date have focused on endotherms,
including humans, but there are relatively few reports on
gut microbiota in ectotherms. Some studies have investigated
the influence of geographical location (Ahasan et al., 2018),
diet (Hong et al., 2011; Xia et al., 2014; Kohl et al., 2016;
Jiang et al., 2017), captivity (Kohl et al., 2017), host genetics
(Yuan et al., 2015; Ren et al., 2016), and gut region (Colston
et al., 2015; Abdelrhman et al., 2016; Kohl et al., 2017) on
gut microbial communities in reptiles. However, there is little
information about gut microbiota in Crocodilia, with only one
study describing the influence of fasting on gut bacterial flora in
the American alligator (Keenan et al., 2013).

The Chinese alligator (Alligator sinensis) is an ancient,
endangered and endemic freshwater crocodilian that was listed
as a first-class protected species by the Chinese government in
1972 (Thorbjarnarson and Xiaoming, 1999). Besides, it was also
listed as a critically endangered species in the International Union
for Conservation of Nature and Natural Resources (IUCN) Red
List (Zhang et al., 2016). In recent years, wild populations
have suffered a sustained decline because of habitat loss,
environmental pollution, and hunting (Chen et al., 2003; Wan
et al., 2013). As a semi-aquatic obligate carnivore, this ancient
species feeds and forages within the freshwater, and its prey is
primarily made up of protein-rich freshwater fishes (Livingstone,
2012). The Chinese alligator is a poikilotherm whose body
temperature (Tb) varies with the ambient temperature. It
completely ceases food intake and body movement and enters
a state of hibernation when the environmental temperature
falls below 14◦C (Zhang et al., 2017). Unlike mammals, the
Chinese alligator is not interrupted by spontaneous periodic
arousals, which are characteristic of the 13-lined ground squirrel
(Stevenson et al., 2014).

Hibernation is an ideal model for examining the effects of
extreme dietary changes that occur annually on gut microbial
community composition and function (Dill-McFarland et al.,
2014). As a hibernator, the Chinese alligator experiences
hibernation periods lasting several months, which involve
voluntary fasting due to food unavailability and low temperatures
(Chen et al., 2003). Fasting induces shifts in gut microbial
communities in penguins (Dewar et al., 2014) and Syrian
hamsters (Sonoyama et al., 2009). Furthermore, hibernation
has been shown to alter the composition and diversity of
gut microbiota in several animals including brown bears
(Sommer et al., 2016), 13-lined ground squirrels (Dill-McFarland
et al., 2014), Arctic ground squirrels (Stevenson et al., 2014),
Syrian hamsters (Sonoyama et al., 2009), bats (Malinicova
et al., 2017), tadpoles (Kohl and Yahn, 2016), and tree frogs
(Weng et al., 2016). However, direct evidence for functional
variations induced by hibernation in the gut microbiome
(metagenome), proteome and metabolome is not yet reported
(Carey and Assadi-Porter, 2017).

During host fasting, gut microbes are presumed to degrade
and utilize host-derived substrates including mucin glycans
and nutrients in sloughed gut epithelia to support growth and
provide energy to the host (Martens et al., 2008; Carey et al.,
2013). However, there is no direct functional evidence for the

utilization of host-derived nutrients by gut microbes during
hibernation, and the mechanisms underlying the highly efficient
mucin glycan utilization observed in the gut microbiome of
hibernating animals are not fully understood. Furthermore,
few studies have investigated how the seasonal dynamics of
reptilian gut microbiota and host–microbiota interactions enable
physiological adaptation to the absence of diet-derived nutrients.

We addressed these questions in the present study by using
16S rRNA profiling and shotgun metagenomic sequencing to
investigate seasonal variations in the gut microbiome of the
Chinese alligator and the functional significance thereof. We
hypothesize that seasonal changes in gut microbial compositions
and potential function associate with altered physiological and
nutritional states in the Chinese alligator between hibernation
and the active phase. We also detected seasonal expression
of antimicrobial peptides genes and immune-related genes to
investigate host immune response to hibernation. This ancient
and endangered species can advance our understanding of the
interrelationships between gut microorganisms and their host, as
well as functional adaptations of gut microbiota and the intestinal
immune system to the diet- and hibernation-associated changes.

MATERIALS AND METHODS

Sample Collection
This study was carried out with permission from the State
Forestry Administration of China (Forest Conservation
Permission Document (2014) 1545). Biological samples were
obtained from Chinese alligators at the Changxing Yin-jiabian
Chinese Alligator Nature Reserve according to the guidelines and
approval of the Animal Ethics Committee of Zhejiang University
(ZJU2015-154-13). Hibernating Chinese alligators (n = 3) were
dug out of their caves during hibernation (January), while active
Chinese alligators (n = 3) were captured during their active
period (July). Basic information on the six Chinese alligators
analyzed in this study is shown in Supplementary Table S1. The
Chinese alligators were dissected, and the gastrointestinal tracts
were ligated at the junction of stomach and duodenum, and
the duodenum and colon. The stomach, duodenum and colon
were successively opened. The luminal stomach, duodenum, and
colon contents (SC, DC, and CC, respectively) were collected
separately at a super-clean bench, and fecal samples (F) were
collected from the cloaca. The samples were stored at −80◦C
for DNA extraction. After the gut contents were removed, tissue
samples from the three different sections (stomach, duodenum
and colon) of the GI tracts were obtained and stored in liquid
nitrogen for RNA extraction.

DNA Extraction and 16S rRNA Gene
Sequencing
Total bacterial DNA was extracted from gut contents and
fecal samples using the QIAamp Fast DNA Stool Mini Kit
(Qiagen, Hilden, Germany; cat. no. 51604) according to the
manufacturer’s instructions and stored at −80◦C until analysis.
The 16S rRNA gene was amplified using the 341f/806r
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primer set (341f, 5′-CCTAYGGGRBGCASCAG-3′ and 806r, 5′-
GGACTACNNGGGTATCTAAT-3′), which targets the V3–V4
hypervariable region of the gene. All PCRs were performed with
Phusion R© High-Fidelity PCR Master Mix (New England, Biolabs,
Ipswich, MA, United States) according to the manufacturer’s
instruction. Sequencing libraries were generated using the
TruSeq DNA PCR-Free Sample Preparation Kit (Illumina, San
Diego, CA, United States) as recommended by the manufacturer.
PCR products were sequenced on an Illumina HiSeq platform
(2 × 250 bp paired-end reads) by Novogene Bioinformatics
Technology Corporation (Beijing, China).

Bioinformatics and Amplicon
Sequencing Data Analyses
The overlapping paired-end reads were merged using FLASH
software (Magoč and Salzberg, 2011). High-quality clean tags
were obtained after quality filtering of raw tags under specific
conditions according to the QIIME v.1.7.0 quality control
process (Caporaso et al., 2010). Nucleotide sequences showing
97% identity in the 16S region were clustered into operational
taxonomic units (OTUs) using UPARSE software (Edgar, 2013),
and a representative sequence for each OTU was screened for
further annotation using RDP Classifier v.2.2 (Wang et al., 2007)
by searching the GreenGene Database.

Alpha diversity (i.e., Observed_species, Chao1, Shannon,
Simpson, ACE, and Good-coverage) matrices and Unweighted
Pair-group Method with Arithmetic Means (UPGMA) clustering
were performed using QIIME and displayed using R v.3.3.3.
software (Jiang et al., 2017). Beta diversity of both weighted and
unweighted Unifrac was calculated using QIIME and visualized
by two-dimensional principal coordinate analysis (PCoA). The
diversity indices were compared among samples with the
Wilcoxon rank-sum test. Analysis of similarity (ANOSIM) was
performed based on the Bray–Curtis distance matrix using the
R vegan package. We also compared the relative abundance
of bacteria at various taxonomic levels based on the linear
discriminatory analysis (LDA) effect size (LEfSe) method using
LEfSe software (Segata et al., 2011). Statistically significant
differences in the relative abundance of microbiota between
hibernation and active-state samples at different taxonomic levels
were evaluated using MetaStats (White et al., 2009). We also
used Pearson’s correlation coefficient to test the correlations of
microbial composition between the feces and the colon.

Shotgun Metagenomic Sequencing,
Annotation, and Statistical Analysis
Functional profiles of Chinese alligator fecal microbiomes
were obtained by analyzing shotgun metagenomic sequences.
Amplified libraries were generated and sequenced on the
Illumina HiSeq platform (300 bp insert size) at Novogene
Bioinformatics Technology Corporation (Guo et al., 2018).
After quality control, host sequences identified by Basic Local
Alignment Search Tool (BLAST) search of the A. sinensis
genome were removed. Reads were quality trimmed from
both ends and assembled with SOAPdenovo. MetaGeneMark
v.2.10 was used to predict open reading frames (ORFs), and

redundancy was removed using CD-HIT Software (Fu et al.,
2012). Unigene sequence files were then used as queries in
a BLAST search against the NCBI nr protein database using
DIAMOND software (Buchfink et al., 2015). The lowest common
ancestor (LCA) algorithm of MEGAN4 was used to sort ORF
alignments into taxonomic groups with the default parameters
(Huson et al., 2011). We determined significant differences in
the relative abundance of microbiota in two groups of samples
using MetaStats.

For functional assignment, predicted genes were searched
based on the BLAST alignment against the Kyoto Encyclopedia
of Genes and Genomes (KEGG) online database (Moriya et al.,
2007). Carbohydrate-active enzymes (CAZymes) were annotated
based on sequences predicted by BLAST using the CAZymes
Analysis Toolkit (Park et al., 2010) with parameters referred
to previous study (Guo et al., 2018). Heat maps, box plots,
scatter plots, and taxa summary bar charts were generated
using the “ggplot2” package of R software (Wickham, 2009).
Canonical correspondence analysis (CCA) was used to visualize
the relationship between gut microbiota and environmental
factors using R vegan package (Oksanen et al., 2016). The Mann–
Whitney U-test was performed to compare two groups of samples
for relative abundances of predicted genes. The metagenome
dataset and 16S rRNA sequences in this study were deposited
into the NCBI Sequence Read Archive (SRA1) under accession
number: PRJNA539906.

Expression of Immunity-Related Genes
in the GI Tract of Chinese Alligators
Total RNA was extracted from gut tissue samples using
TRIzol reagent (Invitrogen, Carlsbad, CA, United States). cDNA
synthesis and PCR were carried out as described in our previous
study (Tang et al., 2018); primer-specific annealing temperatures
are listed in Supplementary Table S2. Relative expression levels
of target genes were determined with the 2−1 1CT method based
on Ct values of triplicate reactions. The expression of immunity-
related genes was compared between hibernation and active
states with the Mann–Whitney U-test using SPSS v.20.0 (IBM,
Armonk, NY, United States) after normalizing to A. sinensis
glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

RESULTS

Summary of 16S rRNA Gene Sequencing
A total of 1,169,674 high-quality 16S rRNA gene reads were
obtained from 18 gut content microbiota samples [the luminal
contents of the stomach (SC), duodenum (DC), and colon (CC)
from three hibernating and three active alligators] and six fecal
(F) microbiota samples (obtained from three hibernating and
three active individuals) (Supplementary Table S3), and 2,237
unique OTUs were identified and classified to at least a domain
taxonomic level with 97% sequence similarity. On average, 91
and 65% of total reads were annotated at the phylum and genus
levels, respectively.

1http://www.ncbi.nlm.nih.gov/sra
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Seasonal Changes in Gut Microbial
Community Composition
We identified 41 bacterial phyla in the gut of the Chinese alligator
by 16S rRNA gene sequencing. The most highly represented phyla
(>80%) throughout the gut were Proteobacteria, Fusobacteria,
Bacteroidetes, and Firmicutes (Supplementary Table S4). The
top 10 most abundant phyla in each sample are shown in
Figure 1A. The Chinese alligator harbored a large community
of Proteobacteria (18.3–48.7%) throughout the gut during
hibernation as well as in the active state. At the phylum
level, microbial community composition showed seasonal
variations, with the phylum Fusobacteria detected at a high level
(duodenum: 20.37% vs. 0.15%, P = 0.04; colon: 41.22% vs. 0.39%,
P < 0.001; feces: 35.64% vs. 0.89%, P = 0.04; MetaStats) from
the duodenum to feces in active alligators, and the phylum
Bacteroidetes being more abundant during hibernation than
during the active state (feces: 57.95% vs. 18.29%, P = 0.02;
MetaStats), particularly in the feces (Supplementary Table S4).

We also compared the top 20 most abundant bacterial
genera throughout the gut during hibernation vs. in the active
state (Table 1). The significance of differences in relative
abundance at each taxonomic level between hibernation and
active states in different gut regions was evaluated using
LEfSe (Figure 1B). Within Bacteroidetes, over 98% of classified
OTUs were matched to the genus Bacteroides, which was
significantly enriched in the fecal samples from hibernating
Chinese alligator (55.82% vs. 8.19%; P < 0.001; MetaStats).
During the active phase, the most predominant genus in the
hindgut was Cetobacterium, which belongs to the phylum
Fusobacteria. Within the genus Cetobacterium, only one bacterial
species (Cetobacterium somerae) was identified and was prevalent
in the hindgut of active Chinese alligators (duodenum: 17.81%
vs. 0.09%, P = 0.05; colon: 31.40% vs. 0.35%, P = 0.002; feces:
33.91% vs. 0.81%, P = 0.038; MetaStats). Proteobacteria was
primarily represented by the genus Plesiomonas, which showed a
dramatic increase in relative abundance during the active phase
(stomach: 9.53% vs. 0.92%, P < 0.001; duodenum: 22.15% vs.
0.03%, P = 0.07; colon: 30.52% vs. 0.51%, P < 0.001; feces: 17.25%
vs. 0.53%, P < 0.001; MetaStats).

Microbial Community Diversity
We examined the α-diversity of microbiota throughout the
gut sections during hibernation and in the active state
based on ACE, Chao1, Observed_species, and Simpson and
Shannon indices (Supplementary Table S5). Compared to active
alligators, hibernating Chinese alligator had higher Chao1,
ACE, and Observed_species diversity values in colonic and
fecal samples (Supplementary Figure S1). There were no
significant differences in the Simpson and Shannon indices
between the two physiological states (Supplementary Table S6).
A comparison of the α-diversity of microbes across gut regions
revealed that the duodenum had the highest diversity estimates
(Supplementary Figures S1, S2). As expected, PCoA of weighted
and unweighted Unifrac distance matrices revealed differences
in bacterial community structure (which takes into account
relative abundance) and membership (presence/absence of a

species) between hibernation and active states (Figures 2A,B):
microbial taxa in active alligators clustered together and were
separate from those in hibernating animals. We also observed a
significant separation between colonic microbiota in hibernating
and active alligators (weighted Unifrac distance: P = 0.005;
Wilcoxon’s test) (Supplementary Table S7). Seasonal variations
in microbial communities were further supported by UPGMA
clustering of the weighted UniFrac metric (Figure 2C): in terms
of community structure, hibernation samples formed a branch
that was distinct from active-state samples. Moreover, colonic
and fecal communities clustered together only within active
samples, indicating that they had similar community structure
and membership (Figures 2C,D). Pearson’s correlation analysis
(Supplementary Figure S3) demonstrated a higher positive
correlation between fecal and colonic microbial communities at
the OTU level in the active state (R2 = 0.927, P < 0.001) than
that during hibernation (R2 = 0.325, P < 0.001), underscoring
the greater similarity in microbial communities of fecal and
colonic samples from active as compared to hibernating animals.
This result was also supported by the results of ANOSIM and
the Wilcoxon test based on weighted and unweighted Unifrac
distances (Supplementary Table S7).

Summary of the Shotgun Metagenomic
Datasets
For the shotgun metagenomic sequencing, we obtained 45,316
Mbp high-quality reads with an average 7 552 Mbp clean data of
each sample from feces samples of six alligators (Supplementary
Table S8). De novo assembly of feces metagenomic sequences
of six Chinese alligators contained 223,756 assembled scaftigs
having an average length of 1,469 bp and N50 value of 1,802 bp
(Supplementary Table S9). We obtained 248,034 predicted ORFs
with an average length of 727.58 bp. For taxonomic levels,
92.87 and 71.78% of the total sequences were assigned into the
phylum and genus level, respectively. For functional annotation,
70.09% of the genes were classified into KEGG database; 68.99%,
to eggnog; and 4.07%, to the carbohydrate-active enzymes
(CAZy) database (Supplementary Table S10). Additional details
of the shotgun metagenomic sequencing results are shown in
Supplementary Table S10.

Mucin Glycan Utilization by Specific
Microbes for Adaptation to Fasting
During Hibernation
In the present study, the phylum Bacteroidetes and genus
Bacteroides (Figure 1B and Supplementary Figure S4), which
were known mucin-utilizing bacteria, were highly represented
in the microbiome of hibernating Chinese alligators. Shotgun
metagenomic analysis identified 99 species within Bacteroides
(Supplementary Table S11) of which 47 increased in relative
abundance during hibernation, which was much higher than the
number of species that showed increased relative abundance in
the active state (n = 10; Supplementary Table S12). Reported
host-derived mucin oligosaccharide-degrading bacteria were
more highly represented during hibernation than during the
active state (Supplementary Table S13). Thus, in the absence
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FIGURE 1 | (A) Relative abundance of the top 10 phyla in each sample based on 16S rRNA gene sequencing. (B) Bacterial taxa significantly differentiated between
hibernation and the active state, as determined by LEfSe. LDA scores were interpreted as the degree of difference in relative abundance. A1-6, six independent
alligator individual 1–6; AAs, amino acids; C_, class; F_, family; G_, genus; O_, order; P_, phylum; Peps, peptides; S_, species.
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TABLE 1 | Comparison of relative abundance of the top 20 genera throughout the gut between hibernating and active Chinese alligator.

Position Stomach Duodenum Colon Feces

Genus H S.E (H) A S.E (A) P-value H S.E (H) A S.E (A) P-value H S.E (H) A S.E (A) P-value H S.E (H) A S.E (A) P-value

Serratia 28.04 23.40 0.01 0.01 0.19 2.27 1.21 0.16 0.12 0.06 4.49 2.87 0.00 0.00 0.07 0.21 0.04 0.00 0.00 ∗∗

Bacteroides 8.87 6.69 6.18 6.17 0.92 2.53 1.93 0.06 0.05 0.15 3.35 1.88 5.33 5.30 0.92 55.82 9.46 8.19 8.16 ∗∗

Cetobacterium 0.48 0.23 4.91 2.93 0.11 0.09 0.08 20.31 11.58 0.05 0.35 0.20 35.82 3.16 ∗∗ 0.81 0.43 35.62 17.68 0.04

Plesiomonas 0.92 0.49 9.53 2.12 ∗∗ 0.03 0.01 22.15 13.64 0.07 0.51 0.36 30.52 4.99 ∗∗ 0.53 0.30 17.25 8.02 0.01

Clostridium 2.99 2.92 20.25 12.63 0.15 2.93 2.91 5.81 3.12 0.82 0.63 0.29 2.21 0.83 0.04 0.69 0.62 2.21 1.20 0.24

Bifidobacterium 6.05 6.05 0.00 0.00 0.61 7.15 7.15 0.01 0.01 0.63 11.49 11.49 0.00 0.00 0.27 0.13 0.13 0.00 0.00 0.31

Citrobacter 0.15 0.06 0.14 0.06 0.94 0.12 0.09 0.14 0.05 0.95 0.79 0.34 0.07 0.06 0.02 2.02 1.22 6.14 6.13 0.75

Clostridium 0.01 0.01 8.09 5.20 0.10 0.00 0.00 2.33 1.20 0.03 0.00 0.00 0.75 0.53 0.09 0.01 0.01 0.70 0.50 0.17

Sedimentibacter 0.39 0.33 0.02 0.01 0.21 0.16 0.16 0.03 0.02 0.76 0.57 0.38 0.02 0.02 0.09 5.02 4.98 3.49 3.45 0.90

Lactobacillus 4.04 2.38 0.04 0.02 0.08 6.06 4.51 0.31 0.27 0.15 4.08 2.12 0.01 0.01 0.03 0.58 0.22 0.00 0.00 0.01

Shewanella 0.52 0.18 0.01 0.01 0.01 1.77 0.78 4.62 4.62 0.84 1.71 0.55 0.01 0.01 0.01 0.71 0.46 0.00 0.00 0.13

Parabacteroides 0.01 0.01 3.11 3.11 0.62 0.01 0.01 0.04 0.04 0.74 0.00 0.00 1.93 1.92 0.25 0.00 0.00 3.64 3.62 0.28

Enterococcus 2.09 2.09 0.00 0.00 0.27 1.40 1.39 0.00 0.00 0.26 3.59 3.58 0.00 0.00 0.26 0.10 0.10 0.00 0.00 0.27

Escherichia 0.48 0.39 0.14 0.07 0.71 3.58 3.47 0.15 0.07 0.63 3.07 3.03 0.23 0.10 0.69 0.11 0.11 0.13 0.11 0.94

Streptococcus 1.71 1.63 0.21 0.17 0.67 2.00 1.83 0.45 0.36 0.74 3.01 2.97 0.03 0.03 0.26 0.06 0.06 0.00 0.00 0.25

Edwardsiella 0.18 0.17 0.44 0.15 0.22 0.09 0.09 2.30 1.10 0.02 0.08 0.07 1.72 0.72 0.01 1.90 1.90 2.25 1.39 0.94

Epulopiscium 0.12 0.02 1.27 0.72 0.09 0.03 0.02 0.54 0.36 0.11 0.10 0.04 1.90 1.78 0.25 0.16 0.07 3.35 1.61 0.03

Chelonobacter 1.63 1.16 0.03 0.02 0.13 0.37 0.35 0.01 0.01 0.24 0.05 0.02 0.00 0.00 0.03 0.03 0.03 0.00 0.00 0.64

Faecalibacterium 0.66 0.66 0.00 0.00 0.61 0.75 0.74 0.00 0.00 0.26 1.12 1.12 0.00 0.00 0.26 0.07 0.07 0.00 0.00 0.27

Pseudomonas 0.30 0.12 0.54 0.39 0.83 1.16 0.96 0.63 0.44 0.88 1.03 0.89 0.05 0.03 0.19 0.52 0.46 0.02 0.01 0.24

Relative abundance were determined by 16S rRNA amplicon sequencing; numbers in bold denote a significant difference (P < 0.05). ∗∗P < 0.01. A, active state; H, hibernation; SE, standard error.
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FIGURE 2 | (A,B) Gut microbiome β-diversity during hibernation and in the active state by PCoA based on weighted (A) and unweighted (B) UniFrac distances.
Each point represents the gut microbial community of an individual Chinese alligator in a given gut region. Microbial β-diversity throughout the gut was determined
with UPGMA. (C,D) UPGMA tree of weighted (C) and unweighted (D) UniFrac distances constructed at a distance of 0.1.

of diet-derived carbohydrates during winter fasting, the gut
microbiota of the Chinese alligator appears to shift to favor
bacterial species that specialize in the degradation of host-
derived mucin glycans.

To further investigate the utilization of host-derived mucin
glycans in the gut of hibernating Chinese alligators, we analyzed
microbiome function by using the CAZy database (Vincent
et al., 2014) to generate carbohydrate-active enzyme (CAZyme)
profiles. In total, we identified 193 different CAZyme families
comprising over 458 CAZymes. There were 30 CAZyme families
with significant enrichment during hibernation (Supplementary
Tables S14, S15), which was much higher than the number
of CAZyme families that showed increased relative abundance
in the active state (n = 7; Supplementary Table S14). Among
CAZyme families that were significantly enriched in the
hibernation group, there were 11 glycoside hydrolases (GH)
families, two carbohydrate-binding modules (CBM) families, and
one carbohydrate esterase (CE) family (Supplementary Table
S15), some of which are known to bind and degrade various
mucin oligosaccharides according to the CAZy database. In
particular, CAZyme families involved in the degradation of

four common mucin glycan chains were highly enriched in
the microbiome of hibernating alligators (Figure 3A), including
several GHs and CBMs (GH20, GH42, GH84, GH89, GH95,
CBM32, and CBM51) (Supplementary Table S15).

The oligosaccharides that participated in mucin glycosylation
are mainly composed of one or more of four primary
sugars, i.e., fucose (Fuc), galactose (Gal), N-acetylglucosamine
(GlcNAc), and N-acetylgalactosamine (GalNAc) (Figures 3A,B;
Derrien et al., 2004; Tailford et al., 2015). Mucins show
significant structural diversity and complexity across species and
gut regions, also harboring oligosaccharides such as glucose,
mannose, xylose, arabinose, and other sugars (Table 2; Jensen
et al., 2010; Turroni et al., 2011). Given the assortment of
mucin glycosylation, we compared the relative abundance of
a variety of CAZymes involved in the degradation of diverse
mucin oligosaccharides between hibernation and active states
(Table 2). Notably, the hibernating Chinese alligator microbiome
was highly enriched in many mucin oligosaccharide-degrading
enzymes (Figure 3C and Table 2). A heat map of CAZymes with
significant differences in the relative abundance between the two
physiological states indicated that CAZymes were enriched to
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FIGURE 3 | Enzymatic degradation of mucin glycans during hibernation. (A) Mucin glycan chains showing sites of action of GHs, CBMs, and sulfatases (Tailford
et al., 2015). Chain 1 is a hypothetical mucin glycan chain; chain 2 is O-GlcNAc often present on other glycoproteins; and chains 3 and 4 are associated with
gastro-duodenal mucin. Letters in blue indicate CAZyme families significantly enriched during hibernation; black indicates that there are no significant differences
between the two physiological states. (B) Schematic composite structure of most O-linked mucin oligosaccharides (Johansson et al., 2011). The positions most
often and less frequently used by different substituents are represented by large and small letters, respectively. (C) Differences in the relative abundance of
representative mucin oligosaccharide-degrading enzymes between hibernation and the active state. Data are expressed as mean ± SE. (D) Heat map of the relative
abundance of other CAZy enzymes showing significantly differential relative abundance between hibernation and the active state. A, active state; Fuc, fucose; F, fecal
sample; Gal, galactose; GalNAc, N-acetyl-galactosamine; HexNAc, N-acetylhexosamine; H, hibernation; NeuAc, N-acetylneuraminic acid.

a greater extent during hibernation (Figure 3D). These results
demonstrate that mucin glycans are utilized as an energy source
by mucin-degrading colonizers (Figure 4A) in response to food-
derived nutrient unavailability during hibernation.

Carnivore Microbiomes Digest
Protein-Rich Diets During the Active
Phase
Given the carnivorous diet (mainly consisting of freshwater
fishes) of active Chinese alligators, we compared the gut
microbial composition at the phylum level of the Chinese
alligator with that of known carnivores. A remarkable
characteristic of the gut microbiome of carnivores is a
high relative abundance of Fusobacteria (Supplementary

Table S16) in the hindgut; Fusobacteria is regarded as a
flesh-degrading taxon colonizing the hindgut of carnivorous
animals (Roggenbuck et al., 2014). Similar to other carnivores
(Supplementary Table S16), the Fusobacteria phylum,
dominated by the genus Cetobacterium was prevalent in
the GI tract of Chinese alligators in the active state. At different
taxonomic levels, the microbial composition comparisons
between hibernation and the active state throughout the
gut revealed a higher relative abundance of proteolytic and
amino acid (AA)-fermenting bacteria (e.g., Clostridium,
Peptostreptococcaceae, and Fusobacteriaceae) in the active
state (Figure 1B). A greater relative abundance of bacterial
species involved in protein degradation and AA fermentation
were detected in the active state by shotgun metagenomic
sequencing (Supplementary Table S17 and Figure 4B),
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TABLE 2 | Comparison of relative abundance of mucin oligosaccharide-degrading enzymes in hibernating vs. active Chinese alligators.

Mucin oligosaccharide Mucin oligosaccharide degrading enzymes Relative abundance (%) P-value

Hibernation S.E (H) Active S.E (A)

Fucose (Fuc) α-1,3_1,4-L-fucosidase 0.2036 0.0291 0.1158 0.0415 0.156

α_-1,2-L-fucosidase 0.1912 0.0275 0.0563 0.0266 0.041

β_-fucosidase 0.0549 0.0070 0.0079 0.0041 0.013

β_-D-fucosidase 0.0105 0.0034 0.0151 0.0033 0.397

α_-L-fucosidase 0.3948 0.0566 0.1721 0.0680 0.078

N-acetylgalactosamine (GalNAc) α_-N-acetylgalactosaminidase 0.1419 0.0103 0.1003 0.0206 0.142

endo-α_-N-acetylgalactosaminidase 0.0014 0.0008 0.0010 0.0006 0.706

N-acetylglucosamine (GlcNAc) β_-1,6-N-acetylglucosaminidase 0.2503 0.0173 0.1778 0.0193 0.062

endo-β_-N-acetylglucosaminidase 0.0794 0.0051 0.0668 0.0050 0.148

β_-6-SO3-N-acetylglucosaminidase 0.0025 0.0002 0.0018 0.0002 0.062

α_-N-acetylglucosaminidase 0.0610 0.0098 0.0235 0.0033 0.035

N-acetylglucosamine 6-phosphate deacetylase 0.0004 0.0000 0.0003 0.0000 0.012

Galactose (Gal) β_-galactosidase 0.0890 0.0040 0.0757 0.0226 0.586

α_-galactosidase 0.2430 0.0215 0.1691 0.0229 0.084

endo-β_-1,4-galactosidase 0.0439 0.0111 0.0324 0.0101 0.488

Glucose α_-1,3-glucosidase 0.1064 0.0145 0.0727 0.0073 0.103

α_-glucosidase 0.3929 0.0188 0.2887 0.0092 0.016

β_-glucosidase 0.3466 0.0212 0.1865 0.0726 0.101

amylo-β_-1,6-glucosidase 0.2213 0.0094 0.1610 0.0018 0.011

oligo-α_-glucosidase 0.2204 0.0094 0.1461 0.0026 0.006

Mannose β_-mannosidase 0.4478 0.0553 0.3217 0.0401 0.139

α_-mannosidase 0.2461 0.0285 0.1892 0.0299 0.229

Arabinose β_-L-arabinobiosidase 1.10E-06 1.83E-07 6.28E-14 1.45E-07 0.460

α_-L-arabinosyltransferase 0.0002 0.0002 2.50E-10 9.13E-06 0.003

Xylose α_-xylosidase 0.0007 0.0004 1.87E-08 7.90E-05 0.125

β_-xylosidase 0.0005 7.95E-05 5.13E-09 4.13E-05 0.013

α_-xylosyltransferase 3.11E-05 1.79E-05 2.38E-12 8.91E-07 0.424

N-acetylhexosamine (HexNAc) β_-N-acetylhexosaminidase 0.0024 0.0002 0.0014 0.0006 0.195

The relative abundance was determined based on CAZy database annotation; numbers in bold denote a significant difference (P < 0.05). Abbreviations: A, active state;
H, hibernation; SE, standard error.

including C. somerae, Selenomonas ruminantium, Megasphaera
elsdenii, and Prevotella ruminicola among others. In addition, the
relative abundances of dozens of methanogenic bacteria during
the active phase were higher than those during the hibernation
phase, the several of them had statistically significant differences
(Supplementary Table S18). Therefore, the protein-rich diet
of active Chinese alligators induces a shift in the microbial
community composition toward increased proteolytic and
AA-metabolizing bacteria.

A search of metabolic pathways and annotated genes in the
KEGG database indicated that several AA metabolism pathways
(e.g., histidine metabolism) were more highly represented during
feeding. At lower levels of the KEGG hierarchy, the microbiome
of actively feeding alligators was enriched in genes related
to D-glutamine and D-glutamate metabolism (Supplementary
Figure S5A) and valine, leucine, and isoleucine biosynthesis
(Supplementary Figure S5B) as compared to that of hibernating
alligators. The enrichment of pathways and genes associated with
AA metabolism was consistent with the increased abundance
of bacteria capable of degrading and fermenting proteins and
AAs in the active phase, implying that the Chinese alligator’s

protein-based diet shapes the gut microbial community as an
adaptation to a protein-rich diet in order to maximize nutrient
extraction and energy production.

Seasonal Immune Response and
Opportunistic Intestinal Pathogens
Given the loss of intestinal barrier function caused by mucin
degradation during hibernation, we examined the effect of
hibernation on the expression of immune-related genes and the
relative abundance of opportunistic pathogens. In accordance
with the strong expression of β-defensins in the GI tract of the
Chinese alligator reported in our earlier study (Tang et al., 2018),
here, we observed seasonal differences in the levels of these genes,
with orthologous β-defensins (AsBD5, 10, and 13) predominating
in the active state and paralogs (AsBD105α, 105θ, and 106α)
being more highly expressed during hibernation (Figure 5). In
addition to AsBD5 and Toll-like receptor (TLR)-2, the levels of
the other seven genes increased gradually with distance along
the GI tract, suggesting that immune activation is higher in the
distal gut. Surprisingly, we detected viral sequences at much
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FIGURE 4 | (A,B) Representative mucin oligosaccharide-degrading (A) and protein- or AA-degrading (B) bacterial species exhibiting significantly differential relative
abundance during hibernation vs. the active state. Data are expressed as mean ± SE. (C,D) Relationships between environmental factors and bacterial community
composition (C) and KEGG pathways (D) based on CCA. Abbreviations: BL, body length; BW, body weight; Food, food intake; F, fecal sample; T, environment
temperature.

higher levels (4.03%) in fecal samples of active Chinese alligators
than in other carnivores (Supplementary Table S19), which
merits further study.

DISCUSSION

Previous studies have investigated the influence of hibernation
on gut microbial community composition and structure based
on 16S rRNA gene sequencing (Carey et al., 2013; Dill-
McFarland et al., 2014; Stevenson et al., 2014), but a functional
characterization of the hibernator microbiome through shotgun
metagenomic profiling is lacking (Carey and Assadi-Porter,
2017). Our results highlight that the gut microbiota employs
seasonal flexibility in function to degrade host-derived and

diet-derived substrates during the hibernation phase and active
phase, respectively, to meet their metabolic and nutritional
needs (Figure 6). In particular, we further explain the molecular
mechanism that enables the survival of the gut bacteria of
the Chinese alligator on host-derived mucin glycan when diet-
derived nutrients are absent during host hibernation.

We observed dramatic shifts in microbial community
diversity and composition between hibernation and active
states in the Chinese alligator, consistent with previous findings
(Carey et al., 2013; Dill-McFarland et al., 2014; Sommer
et al., 2016). The results of canonical correspondence analysis
(CCA) revealed that the microbial taxa (Figure 4C) and
functions (Figure 4D) in the fecal microbiome also showed
seasonal variation. As reported earlier (Sonoyama et al., 2009;
Dill-McFarland et al., 2014), dietary intake and body temperature

Frontiers in Microbiology | www.frontiersin.org 10 October 2019 | Volume 10 | Article 2409

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02409 October 25, 2019 Time: 16:31 # 11

Tang et al. Gut Metagenome of Chinese Alligators

FIGURE 5 | Relative expression levels of immune-related genes throughout the gut during hibernation and in the active state. Data are expressed as mean ± SE.

are likely strong environmental driving forces in shaping seasonal
gut microbial communities (Figures 4C,D). The predominant
lineages (primarily Bacteroidetes) in the gut of hibernating
alligator was more diverse at the species level (Supplementary
Table S11) than those observed during the feeding state
(primarily Fusobacteria and Plesiomonas), which may contribute
to the higher diversity during hibernation. Plesiomonas
shigelloides, which was the most abundant Plesiomonas species in
this study, is commonly found in freshwater fish and freshwater
ecosystems (Islam et al., 2011). In addition, C. somerae – which
accounted for the majority of Fusobacteria – can inhibit the
growth of other bacteria (Sugita et al., 1996), and stabilize
microbial community composition when diet-derived substrates
are readily available, resulting in less genetic and metabolic
diversity in the active alligator gut microbiome. Captive habitat
and lower food diversity (freshwater fishes account for more
than 90%) may contribute to the reduction in the diversity of gut
microbiota colonizing the hindgut of feeding Chinese alligator
(Kohl et al., 2014; Delport et al., 2016). The gut microbiome
may be used to evaluate the potential environmental adaptability
of a host (Stumpf et al., 2016). Microbiome monitoring and
protection of gut microbiome diversity are as important as
genetic diversity in the conservation of endangered species.
Different gut chambers vary in terms of pH, content, and other

physiological characteristics (Kohl et al., 2017), leading to a
modest dispersion of microbial communities across the gut
regions even in the same physiological state (Figures 2A,B).
UPGMA clustering (Figures 2C,D) and correlation analysis
(Supplementary Figure S3) of colonic and fecal microbial
communities in active Chinese alligators revealed that these two
adjacent sections of the gut have similar microbial communities.
Previous studies have used cloacal swabs for non-invasive
sampling of snake gut microbiota (Colston et al., 2015) and fecal
samples as a substitute for colon samples in lizards (Kohl et al.,
2017). Given that collecting fecal samples is less invasive and
therefore more suitable for endangered animals, we propose that
fecal samples are representative of colonic communities in such
species under normal physiological conditions.

Only a few microbial species from the genera Bacteroides,
Akkermansia, Ruminococcus, and Bifidobacterium are known
to metabolize mucins (Derrien et al., 2004; Png et al., 2010;
Turroni et al., 2011; Tailford et al., 2015). Studies on hibernating
squirrels (Dill-McFarland et al., 2014; Stevenson et al., 2014)
have shown that hibernation is associated with increased
relative abundance of known mucin-utilizing bacteria (e.g.,
Bacteroides and Akkermansia) with the capacity to degrade and
consume host-derived mucin glycans for growth during periods
of starvation or voluntary fasting (Belzer and de Vos, 2012;
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FIGURE 6 | Consolidated results and overview of the effect of hibernation on gut microbial community composition, energy metabolism, enzyme enrichment, and
expression of immune-related genes in the GI tract of Chinese alligator.

Foley et al., 2016). It is worth noting that Bacteroidetes was
dominated by the genus Bacteroides in hibernating Chinese
alligator, in accordance with earlier studies (Supplementary
Table S16), e.g., the Burmese python, Asian sea bass, brown
bear, and ground squirrel under starvation or fasting show a
predominance (36–57.95%) of Bacteroidetes (Supplementary
Table S16; Costello et al., 2010; Stevenson et al., 2014; Xia
et al., 2014; Sommer et al., 2016). This enrichment may
be explained by the ability of members of this phylum to
degrade host-derived mucin glycans in the absence of dietary
polysaccharides (Backhed et al., 2005; Tailford et al., 2015),
allowing these bacteria to outcompete others under conditions
of food shortage. Mucins are heavily glycosylated proteins
composed of a core proline-threonine-serine domain that is
decorated with and elongated by oligosaccharides via O- or
N-linkage, with glycan accounting for up to 80% of the total
mucin mass (Johansson et al., 2011; Tran et al., 2016). Based
on bacterial genome sequencing, it was determined that all
gut Bacteroidetes harbor polysaccharide utilization loci (PULs)
that are selectively activated to metabolize diet- or host-derived
glycans (Foley et al., 2016). Each PUL confers the ability to grow

on a different glycan; thus, Bacteroides species are versatile and
can cleave a variety of polysaccharides (Foley et al., 2016). For
example, B. thetaiotaomicron encodes massive bacterial GHs and
polysaccharolytic lyases (PLs) associated with degrading mucin
and produces multiple fucosidases to deconstruct mucin and
obtain the mucin component Fucose, resulting in high fucose
availability in the GI tract (Xu et al., 2003; Sonnenburg et al.,
2005; Tailford et al., 2015). Bacteroides vulgatus and Bacteroides
fragilis also encode α-fucosidases for capturing L-fucose (Xu
et al., 2007). In addition to Bacteroidetes, Ruminococcus gnavus
and Ruminococcus torques have been reported to grow on
the mucin glycans glucose, galactose, fucose, and GlcNAc as
substrates (Png et al., 2010; Crost et al., 2013). The gene encoding
endo-α-N-acetylgalactosaminidase and α-1, 2-L-fucosidase in
Bifidobacterium bifidum and Bifidobacterium longum are highly
expressed in the presence of mucin (Ruas-Madiedo et al., 2008;
Turroni et al., 2011). Thus, the notable enrichment of these mucin
degraders during hibernation may reflect the increased relative
abundance of fucosidases and N-acetylglucosaminidases in the
gut microbiome of hibernating Chinese alligator (Figures 3C,
6 and Table 2). However, only a limited number of bacterial
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species to date have been characterized as mucin degraders
(Supplementary Table S13). It will be interesting to determine
whether the many Bacteroides species identified in our study
are capable of utilizing mucin glycans. Meanwhile, in contrast
with the results obtained in the thirteen-lined ground squirrel
(Stevenson et al., 2014), the decrease in the relative abundance of
Akkermansia muciniphila during hibernation (Figure 4A) may
be explained by the fact that the optimal temperature for the
growth of this species is 37◦C (Derrien et al., 2004), and reduced
environmental temperature during hibernation is known to
restrict the growth of certain microbial taxa. The CCA results
demonstrate that host fasting and environmental temperature are
strong forces shaping gut microbial communities in the Chinese
alligator (Figures 4C,D).

The lack of diversity among endogenous GHs in vertebrate
hosts (Sonnenburg et al., 2005) reflects their difficulty in
utilizing mucin carbohydrates. The utilization of diverse mucin
oligosaccharides depends on CAZymes encoded by mucin
degraders, which convert carbohydrates into short-chain fatty
acids (SCFAs), benefiting both gut-resident microbiota and the
host (Foley et al., 2016; Adamberg et al., 2018). Significantly
enriched CAZyme families (GH 20, GH42, GH84, GH89,
GH95, CBM32, and GH51) (Supplementary Table S15) during
hibernation are involved in the recognition and degradation
of mucin oligosaccharides (Vincent et al., 2014). In this study
we did not analyze bacterial metabolites due to the limited
contents of the gut during hibernation. This further explains
how Chinese alligator gut microbiota – which employs a highly
organized mucin-degrading enzyme system – can subsist on
enteral nutrients during the shortage of food-derived substrates
under hibernation (Figure 6). The hibernation-adapted gut
microbiota of the Chinese alligator is similar to human intestine-
adapted bacterial symbionts, which extract energy and carbon
substrates from the host under conditions of nutrient deprivation
(Sonnenburg et al., 2005).

The gut microbiome of active Chinese alligators is dominated
by Fusobacteria, which is also highly enriched in other carnivores
(Supplementary Table S16) such as vultures (Roggenbuck
et al., 2014), seals (Nelson et al., 2013), American alligators
(Keenan et al., 2013), and cheetahs and jackals (Menke et al.,
2014). It is associated with a protein-rich diet, suggesting
that the gut microbiota of active Chinese alligators shares a
carnivorous compositional feature. Accordingly, these flesh-
degrading Fusobacteria exhibit proteolytic activity (Dai et al.,
2011; Roggenbuck et al., 2014; Soverini et al., 2016), with
optimum growth at 35–37◦C and at a pH close to 7 (Olsen,
2014). Dramatic enrichment for Fusobacteria only in the gut
of active Chinese alligators (except the stomach) could be
explained by their carnivorous dietary regime and optimum
growth conditions. This idea is consistent with results of
CCA (Figure 4C), in that temperature and diet are the
primary drivers for shaping the bacterial community and key
members. C. somerae, the most abundant member of the phylum
Fusobacteria in this study, is abundant in the GI tract of
various fish and aquatic mammals (Larsen et al., 2014; Daniela
et al., 2016; Godoy-Vitorino et al., 2017; Li et al., 2017) with
a habitat and diet similar to those of Chinese alligators. This

reflects their adaptation to the piscivorous diet and aquatic
environment. C. somerae is known to ferment AAs and peptides
into SCFAs that can be absorbed and utilized by both bacteria
and the host (Finegold et al., 2003; Tsuchiya et al., 2010; Olsen,
2014), and it also benefits the host by producing vitamin B12
and antimicrobial peptides (Tsuchiya et al., 2010). Given that
the Chinese alligator primarily feeds on freshwater fishes, we
speculate that the enrichment of C. somerae is critical for
facilitating the decomposition of animal-based proteins.

In addition to Cetobacterium, we also observed the
enrichment of many other bacterial species (Supplementary
Table S17) that are known to confer the ability to degrade and
ferment proteins and AAs (Potrykus and White, 2008; Dai et al.,
2010, 2011, 2013, 2015) during the active state, when the Chinese
alligator has access to a protein-rich diet. Small peptides and
AAs produced by these proteolytic bacteria serve as fuel for GI
cells, as well as for bacteria themselves (Buckel, 2001). Moreover,
fermentative and proteolytic bacteria generate SCFAs (acetate,
butyrate, and propionate), ammonia, CO2, and H2 as the major
end products of peptide and AA degradation and fermentation
(Finegold et al., 2003; Ley et al., 2008; Tsuchiya et al., 2010). Some
of these directly benefit the intestinal epithelium by providing
energy, host defense, and immune regulation (Dai et al., 2011;
Schwab and Gänzle, 2011; Larsen et al., 2014; Ohno, 2015).
Active Chinese alligators appear to favor microbes that specialize
in the degradation of protein-based substrates to potentially
assist the host in enhancing energy and nutrient extraction from
high-protein diets. Nevertheless, methanogenic archaea can use
hydrogen and bacterial fermentation products such as acetate,
formate, and methanol to reduce carbon dioxide to methane.
The production of enteric methane not only aggravates global
warming as a greenhouse gas, but also results in energy loss for
the host (Luo et al., 2014). The significantly increased relative
abundance of methanogenic bacteria in active Chinese alligators
might be explained by their ability to exploit the products
of bacterial AA fermentation (Supplementary Table S18),
suggesting that the decrease in the efficiency of fermentative
system is caused by methanogens in the gut of feeding Chinese
alligator. This loss of ingested energy available to the host
due to methanogenesis was also examined in pigs (Luo et al.,
2014), lambs (Machmuller et al., 2000), and white rhinoceroses
(Machmuller et al., 2000; Luo et al., 2013). Thus, the specific
enrichment of gut proteolytic bacteria in the active state reflects
the adaptation of a gut ecosystem to the host’s high-protein
diet, resulting in better energy and nutrients utilization by the
host and residing microbes. Overall, the seasonal variations in
microbial composition and metabolic enzymes are correlated
with the different nutritional requirements of the host and
microbes during the fasting vs. active phase (Figure 6).

Mucin degradation is considered to be a pathogenic process
since it damages the mucosal barrier, thereby increasing
the permeability of the intestinal mucosa and exposing
GI tract cells to harmful substances (Derrien et al., 2004;
Thomas et al., 2011). Alligators are vulnerable to pathogens
since they exist in bacteria-rich semi-aquatic environments
(Kommanee et al., 2012). Indeed, the opportunistic intestinal
pathogens of 26 genera were identified in this study, irrespective
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of season (Supplementary Table S20). Like reported animal
pathogens, Edwardsiella, Shewanella, Aeromonas, Helicobacter,
and Enterococcus genera, which contain species that are known
opportunistic pathogens (Uddin et al., 2017; Ahasan et al., 2018;
Xiang et al., 2018), were detected in the Chinese alligator gut
during both seasons (Supplementary Table S20). The loss of
the mucosal barrier and the presence of opportunistic pathogens
are two major factors that induce the immune response in the
GI tract of Chinese alligators. However, one study claimed that
hibernation decreased the function of the innate and adaptive
immune (Bouma et al., 2010). The intestinal immune system
represents a seasonal immune response (e.g., by β-defensins)
via receptors such as major histocompatibility complex (MHC)
and TLR expressed on epithelial and immune cells in the GI
tract of Chinese alligators. Similar to mammalian α-defensins
(Tang et al., 2018), the paralogous β-defensins that are highly
expressed in the GI tracts of hibernating Chinese alligators
protect them against opportunistic pathogens and maintain
gut symbiont homeostasis. The seasonal immune alteration
of Chinese alligators is consistent with a protective immune
phenotype of squirrel, which contributes to the maintenance of
epithelial integrity and function during the winter fast (Kurtz and
Carey, 2007). The observed gradual increase in the expression
of these β-defensins along the length of the GI tract of Chinese
alligators from the stomach to colon may be attributable to the
parallel increase in the number of goblet cells (Chen et al., 2003)
and higher concentration of pathogenic factors in the lower GI
tract. The elevated levels of orthologous β-defensins, MHC-beta,
and TLR2 in the gut of feeding alligators presumably reflected
a protective response that may have been induced by a greater
relative abundance of viruses and pathogens in the active state
(Supplementary Tables S19, S20). The gut microbiome profile
of captive Chinese alligators exhibits changes under increased
anthropogenic pressure – such as through interactions with
human keepers and the general public (Delport et al., 2016) –
that can potentially lead to an increase in viral titer (from 0.04
to 4.03%) as compared to hibernating animals (Supplementary
Table S19). Despite the presence of opportunistic pathogens and
viruses, the robust immune response in Chinese alligator and
adaptability of the gut microbial community can maintain gut
homeostasis and animal health. Monitoring the Chinese alligator
gut microbiome and deriving functional insights about it might
provide clues to improve the environmental adaptability of this
endangered species and contribute to its survival and health in
extreme physiological states.

CONCLUSION

Our study characterizes seasonal fluctuations and functional
features in the gut microbiome of a hibernating species based
on shotgun metagenomic and 16S rRNA gene sequencing. The
schematic overview provides a visual abstract of the major
findings but does not describe all the biochemical processes in
the GI tract of Chinese alligators (Figure 6). Our results indicate
that the gut microbial communities and their functional layout in
Chinese alligators vary significantly between hibernation and the

active state. Importantly, we showed that mucin oligosaccharide-
degrading enzymes and mucin-degrading bacteria were enriched
during hibernation; this allows host-derived mucin glycans to be
utilized by gut bacteria, thereby supplying the host and resident
microbiota with energy during food shortage. The hibernator
intestinal mucosa–microbiota interactions can serve as a model
for future studies on physiological states characterized by altered
nutrition in the GI tract. Moreover, seasonal expression patterns
of intestinal immune genes represented adaptive responses to
potential pathogens and altered gut environment (e.g., loss
of mucosal barrier function) induced by hibernation. Taken
together, our results provide insights into the adaptive strategies
employed by gut microbiota and gut immune mechanisms that
contribute to the maintenance of gut ecosystem homeostasis and
host health, particularly in periods of extreme dietary changes.
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