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Abstract

Summary: Intra-tumor heterogeneity is one of the major factors influencing cancer progression

and treatment outcome. However, evolutionary dynamics of cancer clone populations remain

poorly understood. Quantification of clonal selection and inference of fitness landscapes of tumors

is a key step to understanding evolutionary mechanisms driving cancer. These problems could be

addressed using single-cell sequencing (scSeq), which provides an unprecedented insight into

intra-tumor heterogeneity allowing to study and quantify selective advantages of individual clones.

Here, we present Single Cell Inference of FItness Landscape (SCIFIL), a computational tool for infer-

ence of fitness landscapes of heterogeneous cancer clone populations from scSeq data. SCIFIL

allows to estimate maximum likelihood fitnesses of clone variants, measure their selective advan-

tages and order of appearance by fitting an evolutionary model into the tumor phylogeny. We dem-

onstrate the accuracy our approach, and show how it could be applied to experimental tumor data

to study clonal selection and infer evolutionary history. SCIFIL can be used to provide new insight

into the evolutionary dynamics of cancer.

Availability and implementation: Its source code is available at https://github.com/compbel/SCIFIL.

Contact: pskums@gsu.edu

1 Introduction

Cancer is responsible for more than 600 000 deaths in the USA an-

nually (Siegel et al., 2018). It is a disease driven by the uncontrolled

growth of cancer cells having series of somatic mutations acquired

during the tumor evolution. Cancer clones form heterogeneous pop-

ulations, which include multiple subpopulations constantly evolving

to compete for resources, metastasize, escape immune system and

therapy (Doyle et al., 2014; Greaves and Maley, 2012; Kuipers

et al., 2017a; Yates and Campbell, 2012). Clonal heterogeneity

plays key role in tumor progression (Merlo et al., 2010), and has im-

portant implications for diagnostics and therapy, since rare drug re-

sistant variants could become dominant and lead to relapse in the

patient (Doyle et al., 2014; Landau et al., 2013). Therefore, cancer

is now viewed as a dynamic evolutionary process defined by com-

plex interactions between clonal variants, which include both com-

petition and cooperation (Bonavia et al., 2011; Greaves and Maley,

2012; Yates and Campbell, 2012).

Recent advances in sequencing technologies promise to have a

profound effect on oncological research. Study of genomic data for

different tumors produced by next-generation sequencing (NGS) led

to progress in understanding evolutionary mechanisms of cancer

(Greaves and Maley, 2012; Kuipers et al., 2017a; Yates and

Campbell, 2012). Most of cancer data have been obtained using

bulk sequencing, which produces admixed populations of cells.

Recently, the most promising technological breakthrough was the

advent of single-cell sequencing (scSeq), which allows to access can-

cer clone populations at the finest possible resolution. scSeq proto-

cols combined with NGS allow to analyze genomes of individual

cells, thus providing deeper insight into biological mechanisms of

tumor progression.

The cornerstone of such analysis is an estimation of parameters

defining the evolution of heterogeneous clonal populations. Currently,

there is no scientific consensus about the rules guiding the evolution of

cancer cells (Davis et al., 2017; Noorbakhsh and Chuang, 2017;

Tarabichi et al., 2018; Williams et al., 2018), with multiple competing

theories being advanced by different researchers. The open questions

include the rules of evolution (neutral, linear, branching or punctu-

ated), ways of interaction between clonal variants (competition or co-

operation) and the role of epistasis (non-linear interaction of single

nucleotide variant (SNVs) or genes). These questions could be

addressed by estimation of evolutionary parameters for cancer lineages

from NGS data (Tarabichi et al., 2018; Williams et al., 2018).

One of the most important evolutionary parameters is the collec-

tion of replicative fitnesses of individual genomic variants, common-

ly termed fitness landscape in evolutionary biology (Gavrilets,
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2004). Several computational tools have been proposed for in vitro

estimation of fitness landscapes (Ferguson et al., 2013; Hinkley

et al., 2011; Ma et al., 2010; Segal et al., 2004). However, in vitro

studies are cost- and labor-intensive, consider organisms removed

from their natural environments and does not allow to capture all

population genetic diversity (Seifert et al., 2014). One of the possible

ways to infer fitness landscape in vivo is to analyze follow-up sam-

ples taken from a patient at multiple time points and compute fit-

nesses directly by measuring changes of frequencies of genomic

variants over time. However, follow-up samples are very scarce, and

the overwhelming majority of data represent individual samples.

Quantification of clonal selection from individual samples is

computationally challenging, but extremely important for under-

standing mechanisms of cancer progression (Tarabichi et al., 2018;

Williams et al., 2018). In particular, recent findings on structures of

fitness landscapes of cancer from bulk sequencing data (Williams

et al., 2016) initiated a lively scientific discussion published in sev-

eral papers (Noorbakhsh and Chuang, 2017; Tarabichi et al., 2018;

Williams et al., 2018). It can be anticipated that scSeq data will be

able to shed light into this important problem. It is known that rela-

tive abundances of genomic variants alone are not indicative of vari-

ant fitnesses (Seifert et al., 2014). Existing methods for inference of

fitnesses from single samples utilize more sophisticated approaches,

but have various limitations including reliance on the assumption

that the population is in equilibrium state, or disregard of popula-

tion heterogeneity and variability of fitness landscapes, or custom-

ization to bulk sequencing data (Deforche et al., 2008; Seifert et al.,

2014; Williams et al., 2018).

1.1 Contributions
We propose a computational method Single Cell Inference of FItness

Landscape (SCIFIL) for in vivo inference of clonal selection and esti-

mate of fitness landscapes of heterogeneous cancer clone popula-

tions from scSeq data. SCIFIL estimates fitnesses of clonal variants

rather than alleles, and does not assume allele independence which

allows to take into account the effects of epistasis. Instead of assum-

ing that sampled populations are in the equilibrium state, our

method estimates fitnesses of individual clone types using a max-

imum likelihood approach. We demonstrate that the proposed

method allows for accurate inference of fitness landscapes and quan-

tification of clonal selection. We conclude by applying SCIFIL to

real tumor data.

2 Materials and Methods

We propose a maximum likelihood approach, which estimates fit-

nesses of individual clonal variants by fitting into the tumor phyl-

ogeny an evolutionary model with the parameters explaining the

observed data with the highest probability. We first establish the or-

dinary differential equations (ODE) model for the tumor evolution-

ary dynamics, and define the likelihood of the observed data given

the model parameters. We conclude with finding fitnesses maximiz-

ing the likelihood by reducing the problem to finding the most likely

mutation order and applying branch-and-bound search to solve that

problem.

Traditionally, evolutionary histories are represented using binary

phylogenetic trees. Following Jahn et al. (2016), we use an alterna-

tive representation of an evolutionary history of a tumor using a mu-

tation tree. The internal nodes of a mutation tree represent

mutations, leafs represent single cells, internal nodes are connected

according to their order of appearance during the tumor evolution

and the mutation profile of each cell equals the set of mutations on

its path to the root (Fig. 1). In addition, we accumulate all leafs

attached to the same internal node into a single leaf with an abun-

dance representing a particular clone. For simplicity, we assume that

there is a leaf attached to every internal node, with some leafs having

an abundance 0 (or rather a small number d� 1). Generally, we do

not need to employ the infinite site assumption, i.e. repeats of muta-

tions are allowed provided that mutation profiles of all clones in a

tree are unique. It agrees with recent findings (Kuipers et al.,

2017b). A mutation tree can be constructed using currently available

tools, such as SCITE (Jahn et al., 2016), infSCITE (Kuipers et al.,

2017b) or SiFit (Zafar et al., 2017).

Formally, we consider the following algorithmic problem.

Given are:

• mutation tree T with n þ 1 leafs corresponding to clonal var-

iants. We assume that internal nodes of T are labeled 0, 1,. . ., n

and the ith clone is attached to the node i. The root of T corres-

pond to the mutation 0, which represent absence of somatic

mutations or healthy tissue.
• observed relative abundances A ¼ ða0; . . . ; anÞ of clones.
• Mean cancer cells mutation rate h. This is a well-studied param-

eter with estimations provided by prior studies (Hao et al., 2016).

The goal is to find fitnesses F ¼ ðf0; . . . ; fnÞ maximizing the like-

lihood

pðAjT;F ; hÞ (1)

This section is organized as follows. First, we introduce our evo-

lutionary model of choice and the definition of the probability (1).

Next, we describe how the likelihood is modified to transform the

maximum likelihood problem (1) into a discrete optimization prob-

lem. Finally, we describe the method of estimation of fitnesses F
maximizing (1).

2.1 Evolutionary model
We consider tumor evolution as a branching process described by

the mutation tree T. Let V(T), VI(T) and E(T) be the node set, the in-

ternal node set and an the arc set of T, respectively. Let also pi de-

note the parent of a node i 2 VIðTÞ. We assume that nodes VI(T)

represent mutation events, with jth event occurring at rate hj. The

Fig. 1. Mutation tree
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mutation event corresponding to a node i happens at time ti; at the

event the clonal variant corresponding to the parent node pi gives

birth to a variant i. The dynamics of the cancer clone population is

described by the piecewise continuous function x ¼ ðx0; . . . ;xnÞ,
where xi ¼ xiðtÞ is the relative abundance of the ith clonal variant.

The discontinuity points of x correspond to mutation events. Let r, i,

j be three consecutive mutation events with times tr < ti < tj, and

x
ðiÞ
k be the restriction of xi to the interval [ti, tj]. Between mutation

events i and j clonal frequencies x
ðiÞ
k follow the system of ODEs

(Nowak and May, 2000):

d

dt
x
ðiÞ
k ¼ fkx

ðiÞ
k � x

ðiÞ
k

Xn

l¼0

flx
ðiÞ
l ; k ¼ 0; . . . ; n (2)

with initial conditions

x
ðiÞ
k ðtiÞ ¼

exðrÞpi
ðtiÞ; if k ¼ i

ð1� eÞxðrÞk ðtiÞ; if k ¼ pi

x
ðrÞ
k ðtiÞ; otherwise:

8>><
>>:

(3)

Subtraction of the term x
ðiÞ
k

Pn
l¼1 flx

ðiÞ
l ensures that relative abun-

dances of variants sum up to 1. Initial conditions (3) link clone

abundances before and after the mutation event i and indicate

that at time ti the clone i is generated by the clone pi. The parameter

e� 1 is a small number. At time 0, the root clonal variant (healthy

tissue) gives birth to the first mutation, with the corresponding

clones having relative abundances 1 � e and e. The model (2) is a

branching-type variant of the quasispecies model, which is applic-

able to cancer evolution (Wodarz and Komarova, 2005) and agrees

or extends several classical population genetics concepts (Wilke,

2005), including those describing genetic systems governed by muta-

tion and selection (Kimura and Maruyama, 1966; Moran, 1976). It

does not include specific assumptions about clonal competition or

cooperation.

2.2 Likelihood definition
In addition to n mutation events, we consider the (nþ1)th event

representing cell sampling. Suppose that times of mutation events

X ¼ ðtiÞnþ1
i¼1 and mutation rates between events H ¼ ðhiÞni¼1 are given.

Let r ¼ ðr1; . . . ; rnþ1Þ be the permutation of events in order of their

appearance, i.e. 0 ¼ tr1
< tr2

< . . . < trn
< trnþ1

. The probability

of observing abundances A given T,F , X, H and h is defined as the

product of probabilities of mutation events and probabilities of

observed clone abundances.

The mutation event in the vertex rj occurs if two conditions

are met:

a. no mutation events have been observed over the time interval

ðtrj�1
; trj
Þ;

b. at time trj
the mutation happened in the clone prj

rather than in

other clones which exist at that time.

Appearance of mutation is a classical rare event, and therefore

we assume that the time intervals between consecutive mutation

events i and j follow a Poisson distribution with the mean 1
hi
.

Mutation rates are distributed normally with the mean h and the

standard deviation �. Assuming that mutations are random, the

probability of (b) is equal to the frequency xprj
ðtrj
Þ of the clone prj

at time trj
according to the system (2). Finally, we assume that the

probability of seeing observed frequencies given model-based fre-

quencies at the sampling time follows a multinomial distribution

Mða0; . . . ; anjx0ðtnþ1Þ; . . . ;xnðtnþ1ÞÞ. After putting all probabilities

together, we have

pðAjT;F ;X; hÞ ¼
Ynþ1

j¼2

Pois trj
� trj�1

;
1

hj�1

� �
�
Yn
j¼1

Nðhj; h; �Þ�

Yn
j¼1

xpj
ðtjÞ �Mða0; . . . ; anjx0ðtnþ1Þ; . . . ; xnðtnþ1ÞÞ

(4)

Our goal is to find best fitting fitnesses FML, rates HML and

times XML by solving the following maximum likelihood problem:

ðFML;HML;XMLÞ ¼ arg max
F ;H;X

pðAjT;F ;X; hÞ (5)

The probabilities
Qnþ1

j¼2 Poisðtrj
� trj�1

; 1
hj�1
Þ;

Qn
j¼1Nðhj; h; �Þ;Qn

j¼1 xprj
ðtrj
Þ and Mða0; . . . ; anjx0ðtnþ1Þ; . . . ; xnðtnþ1ÞÞ are further

referred to as time likelihood, rate likelihood, mutation likelihood

and abundance likelihood, respectively. For the tree shown in

Figure 2, it is equally feasible that the mutation 2 appeared before

the mutation 3 or vice versa. However, clone 2 later produces muta-

tions 4 and 5, and therefore the mutation likelihood suggests that at

that mutation events it had high abundance. This situation is prob-

able if either 2nd mutation appeared earlier or it appeared later but

has a high fitness. Time, rate and abundance likelihoods allow to

choose between these two alternatives.

2.3 Reduction to discrete optimization
The standard way to solve the maximum likelihood problem (5) is

to optimize F , H and X jointly using Markov Chain Monte Carlo

(MCMC) sampling. However, our experiments have shown that the

function (1) has too many local optima which makes MCMC search

over the continuous space of possible solutions inefficient.

Therefore, we suggest an alternative heuristic approach, which

transforms the problem (5) into a discrete optimization problem

akin to a scheduling problem. This problem is then solved using a

specifically designed combinatorial heuristic search.

First, we assume that all fitnesses are relative with respect to a

fitness of a clone 0 which is set to be f0 ¼ 1. By default, this clone

corresponds to the normal tissue. For the problem of inference of

clonal selection such assumption does not restrict the predictive

power. Next, we observe that any assignment of event times X

defines the order of appearance li for each node i 2 VðTÞ (e.g. in

Fig. 2. Depiction of the evolutionary model. Tree nodes represent mutation

events whose times are marked on the time axis. Leafs represent the sam-

pling event. For each node, the distribution of clone abundances after the cor-

responding event is shown
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Fig. 2 li ¼ i for i ¼ 1; . . . ;5). This order agrees with the natural ver-

tex order induced by T, i.e. li < lj whenever i is an ancestor of j. It

turned out that conversely any order l defines times Xl, rates Hl

and fitnesses F l which maximize the partial likelihood

Ynþ1

j¼2

Pois trj
� trj�1

;
1

hj�1

� �
�
Yn
j¼1

Nðhj; h; �Þ�

�Mða0; . . . ; anjx0ðtnþ1Þ; . . . ; xnðtnþ1ÞÞ
(6)

More precisely, the following proposition holds.

Proposition 1. For a given order vector l, times Xl, rates Hl and fitnesses

F l maximizing (6) can be estimated as follows:

hi ¼ h; ti ¼
li � 1

h
; i ¼ 1; . . . ;n; tnþ1 ¼

n

h
(7)

fi ¼ 1� h
X

j2Ainf0g

1

n� lj þ 1
log

e
1� e

apj

aj

� �
; i ¼ 1; . . . ;n: (8)

Here, Ai is the set of ancestors of a node i (including itself).

Proof. Poisson and Gaussian probabilities achieve maximums at their

means, i.e. the rate and time likelihoods are maximal, when for consecu-

tive events i, j we have hi ¼ h; tj � ti ¼ 1
h. This yields the solution (7).

The multinomial probability Mða0; . . . ; anjx0ðtnþ1Þ; . . . ; xnðtnþ1ÞÞ is

maximal when xiðtnþ1Þ ¼ ai for all i 2 ½n�. This can be rewritten as

xiðtnþ1Þ
xiðtnþ1Þ þ xpi

ðtnþ1Þ
¼ ai

ai þ api

for all i ¼ 1; . . . ; n: (9)

Our goal is to find fitnesses F such that (9) holds. We find an approxi-

mate solution to this problem by disregarding the discontinuity of the

abundances x ¼ ðxiðtÞÞnþ1
i¼0 . We use the observation that the system (2) is

invariant with respect to the transition to relative abundances of any

pair of clones. Namely, for each clone pair i; j ¼ 0; . . . ; n dynamics of

their relative abundances with respect to each other yi ¼ xi

xiþxj
and yj ¼

xj

xiþxj
is described by the system of ODEs of the same form as (2):

yi
: ¼ fiyi � yiðfiyi þ fjyjÞ;

yj
: ¼ fjyj � yjðfiyi þ fjyjÞ;

(10)

On the interval ½ti; tnþ1� relative abundance yi ¼ xi

xiþxpi
satisfy the system

(10) with the initial condition yiðtiÞ ¼ e. After shifting time interval to

½0; tnþ1 � ti�, this system can be linearized and solved in closed form, pro-

ducing a solution

yiðtÞ ¼
eefit

ð1� eÞefpi
t þ eefit

(11)

After putting the expressions (11) into the equation (9) with

t ¼ tnþ1 � ti, we get the following system of equations to find fitnesses F :

fpi
� fi ¼

1

tnþ1 � ti
log

e
1� e

api

ai

� �
; i ¼ 1; . . . ; n; f0 ¼ 1 (12)

Solving it with ti described by (7) yields the solution (8). h

Using Proposition 1, we replace the maximum likelihood problem (5)

with the following discrete problem: find the ordering l maximizing the

mutation log-likelihood

Ll ¼ logðpðlÞÞ ¼
Xn

j¼1

log ðxpj
ðtjÞÞ (13)

with times Xl and fitnesses F l described by (7), (8) subject to the con-

straint that l agrees with the ancestral-descendant order of T.

2.4 Finding optimal ordering
The problem (13) could be considered as a variant of scheduling

problem with precedent constraints and with non-linear cumulative

cost function (Dolgui et al., 2012). Here, mutations play roles of

jobs, ordering of mutations corresponds to scheduling of jobs on a

single processor, mutation tree represent job precedence constraints

Algorithm 1. Algorithm for node ordering

1: Let U be the list of nodes of T sorted in inverse order of

their discovery by Breadth First Search from the root;

T 0 ¼ T;

2: for u 2 U do

3: while u has more than 1 child do

4: Choose sibling paths P1 and P2 with the start node u

5: Join P1 and P2 into a single path P using Algorithm 2

6: Modify T 0 by replacing P1 and P2 by P

7: end while

8: end for

Algorithm 2. Algorithm for path joining

Input Sibling paths P1 and P2

Output is calculated by calling MergePaths(/;1)

MergePaths(Y, i)

" Y is the current k-subset, i is the next element to be

added to it

" lopt and opt are the current optimal order and its

likelihood

1: if jYj ¼ k or i > kþ l then

2: return

3: end if

4: Ynew ¼ Y [ fig; l0 ¼ lYnew

5: while l0 is not a total order do

6: w1 ¼ PY
1 ð1Þ; w2 ¼ PY

2 ð1Þ; j ¼ jl0j þ 1

7: t ¼ j�1
h ; fw1

¼ fpw1
þ 1

tnþ1�t log e
1�e

apw1

aw1

� �
,

8: fw2
¼ fpw2

þ 1
tnþ1�t log e

1�e

apw2

aw2

� �

9: if fw1
� fw2

then

10: l0 ¼ l0 [ fw1g; PY
1 ¼ PY

1 n fw1g
11: else

12: l0 ¼ l0 [ fw2g; PY
2 ¼ PY

2 n fw2g
13: end if

14: end while

15: MergePaths (Y, iþ1)

16: if LlY
> opt then

17: opt ¼ Ll0 ; lopt ¼ l0

18: MergePaths (Ynew, iþ1)

19: end if
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and the objective (13) indicates that the cost of job processing

depends on the previously processed jobs. Such problems are usually

NP-hard (Dolgui et al., 2012). For small number of mutations, it

can be solved by a branch-and-bound search in the space of feasible

orderings via backtracking over the mutation tree. In general, we

solve it by a heuristic approach combined with the search in the

space of feasible sub-orderings of nodes of the mutation tree T. The

proposed scheme is described by Algorithm 1. The algorithm starts

with the initial tree T 0 ¼ T and iteratively transforms it into a total

order as follows. We call two simple paths of T 0 sibling paths, if

they share the starting vertex. We traverse the nodes of T 0 in a

bottom-up direction and merge sibling paths into one path repre-

senting optimal sub-order of their nodes with respect to the objective

(13). The algorithm stops when all nodes form a single path.

Merging of sibling paths P1 and P2 is performed by Algorithm 2.

We note that feasible orders of paths’ nodes bijectively correspond

to k-subsets of the set ½kþ l�: for a given k-subset X, a feasible order

lX is obtained by placing nodes from P1 n fug (resp., P2 n fug) at

positions from X (resp., ½kþ l� nX) in order of their appearance in

P1 (resp., P2); inverse is also true. Algorithm 2 recursively generates

k-subsets via branching and prune branches, if the corresponding

orders are likely to be sub-optimal.

The k-subsets are generated recursively (Nijenhuis and Wilf,

2014) using the property that every k-subset X of ½kþ l� is either k-

subset of the set ½2 : kþ l� or has the form X ¼ f1g [ Y, where Y is a

k � 1-subset of ½2 : kþ l�. Suppose that at a given iteration a partial

k0-subset Y, k0 � k, and the corresponding pre-order lY has been

constructed. For all nodes v covered by lY, we calculate their ap-

pearance times tv and fitnesses fv using (7), (8), and abundance dis-

tributions xv ¼ ðx0ðtvÞ; . . . ;xnðtvÞÞ from the system (2)–(3) (in fact,

it is not necessary to recalculate all values since some of them has

been already calculated at previous iterations). Next, we heuristical-

ly extend lY to a total order as described below. If the likelihood of

the constructed solution is below the current optimum, then the re-

cursion tree branch of the partial solution Y is pruned. Otherwise,

the current optimum is updated and the recursion continues.

Finally, we describe how an order lY is extended (lines 5–14 of

Algorithm 2). We consider the subpaths PY
1 and PY

2 formed by the

nodes of P1 and P2 that are not covered by lY. For the first nodes of

these subpaths, we calculate their provisional fitnesses under the as-

sumption that each node is added to lY as the next element. The

node with the smaller provisional fitness is added to lY. This proced-

ure is repeated until lY covers all nodes. The logic behind this ap-

proach is based on the observation that according to (2) the

frequency of a clone grows while its fitness is larger than the average

fitness of the population, and declines otherwise. For a given iter-

ation, adding clone with a smaller fitness slows down the average

fitness growth. As a result, for preceding clones probabilities of

appearances of their children in the future may become higher.

3 Results

3.1 Simulated data
We simulated 100 test examples with the numbers of mutations

ranging from m¼30 to m¼120, which correspond to numbers of

mutations for real scSeq data analyzed in previous studies (Jahn

et al., 2016; Kuipers et al., 2017a; Leung et al., 2017). For each test

example, clonal evolution was simulated as follows. (a) Mutations

1,. . ., m are generated randomly. For the time interval between mu-

tation events i and iþ1 the current mutation rate hi is sampled from

the normal distribution with the mean h¼0.01 and standard

deviation r 2 f0:1 � h;0:5 � h;0:9 � hg. At each moment of time of

that interval a mutation event happens with the probability hi; at the

event a random clone p selected with the probability equal to its cur-

rent relative abundance gives birth to a new clone j with the random

fitness fj by acquiring a random mutation iþ1. In our primary fit-

ness sampling scheme, new fitness is sampled uniformly from the

interval ½/; fmax�, where / is an average fitness of the population at

the time of mutation event. This scheme accounts for the fact that

according to the evolutionary model (2) the clone with the fitness

below / is not viable and will not be observed at sampling time. In

additional set of experiments, the secondary sampling scheme has

been employed, when new fitness is sampled uniformly from the

interval ½fmin; fmax� (by default fmin ¼ 1; fmax ¼ 1:2). When there is

no mutation event, abundances of existing clones are updated

according to (2). After the end of the simulation, final abundances

were randomly perturbed by 10% to incorporate the possible noise

in their estimation. The simulated mutation tree and clone abundan-

ces were used as an input for SCIFIL.

It should be noted that the construction of the proposed algo-

rithm implies that its performance would be higher on mutation

trees with monoclonal structure, both in terms of speed and accur-

acy. However, our simulation scheme predominantly produces trees

with polyclonal structures (see Fig. 3), thus providing no a priori ad-

vantage to SCIFIL.

We quantified the performance of SCIFIL using two measures:

1. Mean relative accuracy MRA ¼ 1� 1
n

Pn
i¼1
jf �i �fi j

f �
i

, where f �i and fi

are true and inferred fitnesses, respectively.

2. Spearman correlation SC between true and inferred fitnesses.

MRA and SC highlight different aspects of the problem. MRA

measure the accuracy of fitness value estimation, while SC measures

how well we are able to qualitatively detect selective advantage of

particular clones over other clones. Fitness ranking can be used in

evolutionary studies even when actual fitness values are missing or

inaccurate (Crona et al., 2017).

The results of SCIFIL evaluation on simulated data are shown in

Figures 4 and 5. The algorithm demonstrated high accuracy as meas-

ured by both parameters. The number of mutations (Fig. 4) does not

have a great impact on the Spearman correlation, which averages

97.35% (standard deviation 1.2%) over all analyzed test cases.

MRA decreases when the number of mutations grows, but remains

above 88% for all datasets. Increase in variation of mutation rate

(Fig. 5) does not significantly affect SC, and results in slight decrease

Fig. 3. Example of simulated mutation tree

i402 P.Skums et al.



of average MRA. Relative robustness of SCIFIL to the variation of

mutation rates (which also introduce variation in mutation times)

indirectly suggests, that the proposed algorithm is able to well ap-

proximate the original maximum likelihood problem (4). In the case

of near-neutral selection (fmax ¼ 1.01), MRA does not significantly

change and SC declines to 87.54%.

Additionally, we have compared SCIFIL output with the top-

ology of input mutation trees to evaluate the contribution of the

tree-based prior information to the algorithm’s accuracy.

Specifically, the clones have been ranked by their estimated fitnesses

and by their tree heights, and Spearman correlation SCT between fit-

nesses and tree ranks have been calculated (combined with the per-

mutation test to account for the presence of clones of the same

rank). The experiment has been repeated two times using the pri-

mary and secondary fitness sampling schemes, with the latter being

a completely random uniform sampling from the constant interval.

For the first sampling scheme, the average correlation between fit-

ness and tree ranks was SCT
1 ¼ 0:698 (with SC ¼ SC1 ¼ 0:969). For

the second sampling scheme, SCT drops to SCT
2 ¼ 0:314, while the

correlation between real and estimated fitnesses decreases to

SC2 ¼ 0.871. The value s ¼ 100 � SC1�SC2

SCT
1
�SCT

2

(decrease in accuracy per

one percent decrease in tree/fitness correlation) may serve as a meas-

ure of contribution of a tree topology to the SCIFIL quality. In our

case, this value is equal to 25.7%. Transition to near-neutral selec-

tion (fmax ¼ 1.01) has the similar effect, with the correlations being

SC ¼ 0.875 and SCT ¼ 0.379.

ScSeq data are prone to errors. To evaluate SCIFIL’s robustness

to trees inferred from noisy data, random errors were introduced to

clone mutation profiles at false negative rates a 2 f0:1; 0:2g and the

false positive rate b¼10–5, and mutation trees were reconstructed

from these profiles using the state-of-the-art tool SCITE (Jahn et al.,

2016). The simulated/reconstructed mutation trees were used as an

input for SCIFIL. It turned out that in 	8% of cases SCIFIL was not

able to produce a feasible solution. This issue could be resolved by

performing several additional steps of the local search with the same

tree modification operations as SCITE and with the objective (4).

With this modification, SCIFIL reconstructs fitnesses accurately, al-

though, as expected, the accuracy decreases with the error rate’s

growth (Fig. 6). To check the influence of undersampling, we

assumed that c ¼10% of clones with lowest frequencies were not

observed at the sampling time. For such clones, the auxiliary fre-

quency d� e has been assigned before running SCITE. For m¼50,

Fig. 4. Performance of SCIFIL on simulated data with m mutations and fixed standard deviation of mutation rate. (Left): Mean relative accuracy of fitness estima-

tion. (Right): Spearman correlation between true and inferred fitness vectors

Fig. 5. Performance of SCIFIL on simulated data with m¼50 mutations and different standard deviations of mutations rates. (Left) Mean relative accuracy of fit-

ness estimation. (Right) Spearman correlation between true and inferred fitness vectors
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the average MRA decreased from 0.99 to 0.96 in comparison to the

complete data, but SC remained stable (0.972 and 0.968,

respectively).

Finally, we compared our approach with the previously pub-

lished tool QuasiFit (Seifert et al., 2014). Although originally

designed for viruses, QuasiFit is based on quasispecies model, which

is applicable to both intra-host viral populations and cancer clone

populations (Wodarz and Komarova, 2005) and is essentially a fully

continuous version of the model used by SCIFIL. Both QuasiFit and

SCIFIL reconstruct replicative fitnesses of individual clones (rather

than alleles). In addition to genomic data, both algorithms utilize

other information: SCIFIL uses a mutation tree, while QuasiFit

assumes that the population is in equilibrium state of the quasispe-

cies model. Thus, SCIFIL has access to information about partial

clones order encoded by the mutation tree, while equilibrium site as-

sumption allows QuasiFit to eliminate from consideration the tem-

poral component. Furthermore, SCIFIL is a discrete optimization

approach, while QuasiFit implements MCMC sampling.

QuasiFit was run with the per-cell mutation rate l¼ eh (which is

a fully continuous analog of the parameters used by SCIFIL) and fit-

nesses were estimated after a burn-in of 105 iterations. As QuasiFit

uses a different fitness vector normalization, following Seifert et al.

(2014), we used only the parameter SC for the comparison. The

results are shown in Fig. 7(left). On our simulated data, SCIFIL out-

performs QuasiFit indicating that in certain settings the proposed

model could be more accurate for the inference of clonal selection

than the equilibrium state assumption.

Computational experiments suggest that the algorithm’s running

time scales quadratically with the number of mutations (Fig. 7,

correlation ¼ 0.981). It allows SCIFIL to finish in a few seconds for

all analyzed datasets when run on a simple desktop computer.

3.2 Experimental data
3.2.1 Fitness landscapes

We used SCIFIL to infer fitness landscapes for two recently pub-

lished experimental cancer datasets. The first dataset is scSeq data

from a JAK2-negative myeloproliferative neoplasm (essential

thrombocythemia) (Hou et al., 2012), the second one represents

metastatic colon cancer (Leung et al., 2017). The latter dataset

includes SNVs sampled from the main tumor and two metastases.

We confined our analysis only to the primary tumor, since it is bio-

logically meaningful to compare fitnesses of clones sampled from

the same environment. For both datasets, their mutation trees were

reconstructed using SCITE (Jahn et al., 2016), and fitnesses and

Fig. 7. (Left) Spearman correlation between true and inferred fitness vectors for QuasiFit and SCIFIL. (Right) Running time of SCIFIL

Fig. 6. Performance of SCIFIL on simulated data with different false negative error rates a and with mutation trees reconstructed by SCITE (Jahn et al., 2016).

(Left) Mean relative accuracy of fitness estimation. (Right) Spearman correlation between true and inferred fitness vectors
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mutation appearance times were inferred by SCIFIL with the cell-

wise mutation rate 10–6. It is important to note that varying SCIFIL

parameters may change absolute values of inferred fitnesses, but pre-

serve relations between them. The relations are the most informative

factors for evolutionary analysis.

We visualized inferred fitness landscapes as follows. We calcu-

lated pairwise distances between clones defined as the sum of their

hamming distance and the absolute difference of their orders of ap-

pearance. The distances were used to map clones to the plain R
2

using multidimensional scaling. Fitness values of the points corre-

sponding to clones were interpolated using biharmonic splines, and

the resulting surface was visualized as a contour plot (Fig. 8), where

colors represent fitness values, and distance from each tree node to

the root reflects its appearance time.

For myeloproliferative neoplasm (Fig. 8, left) we observe linear

accumulation of mutations with slight selective advantages at the be-

ginning of tumor evolution, followed by the subclone expansion of

two lineages with significantly faster fitness growth. The rate of fit-

ness growth after the branching event is 	3 times higher than before

it. Thus, answering the question posed in Jahn et al. (2016), we may

predict that recent subclones will replace ancestral clones. However,

based on the available information it is hard to decide whether one

of the subclone lineages will out-compete the other one, or they will

continue to coexist.

Evolution of the colon tumor (Fig. 8, right) follows different

scenarios, with three independent lineages co-existing at the begin-

ning without a clear selective advantage enjoyed by any of them.

This stage is followed by the fast expansion of one of the lineages,

which climbs a fitness peak and acquires selective advantage over

other lineages. Exactly, at this stage, the advantageous lineage

seeded the metastatic tumor at two seeding events (highlighted in

black in Fig. 8).

Experimental data also allow to emphasize how SCIFIL estima-

tions extend predictions implied by the underlying evolutionary

model. Although the model suggests positive selection with fitness

growth along each path of the mutation tree as the most probable

scenario, it does not imply any restrictions on the comparative fit-

nesses of different lineages. In particular, fitness advantages of

clones are not defined only by their distances from the root, as

emphasized by the fitness landscape of the colon tumor, where, for

instance, the node highlighted in purple has higher fitness than the

node highlighted in red. The reason is that clone abundances con-

tribute to the estimation of fitness values as much as the evolution-

ary model and the topology of mutation tree.

3.1.2 Recurrent mutations

Until recently, most studies of tumor evolution utilized infinite sites

assumption, which states that every genomic position mutates at

most once over the evolutionary history. However, recently it has

been demonstrated using ScSeq data, that the infinite site assump-

tion could be violated, with the same genomic positions mutational-

ly affected multiple times over the tumor evolution (Kuipers et al.,

2017b). Without infinite site assumption, the number of possible al-

ternative evolutionary histories accurately explaining the observed

ScSeq data increases, and it becomes challenging to choose the most

appropriate one.

We utilized SCIFIL for the analysis possible evolutionary histor-

ies with recurrent mutations for a JAK2-negative myeloproliferative

neoplasm (Hou et al., 2012). We used infSCITE (Kuipers et al.,

2017b) to generate the perfect phylogeny and 18 mutation trees Tmi

under the assumption that one of 18 mutations mi has a recurrence

(recurrence trees). Just as reported in Kuipers et al. (2017b), the

results strongly support recurrent mutations: the average log-

likelihood for recurrence trees produced by infSCITE in our experi-

ments was �313.45 (standard deviation 1.065), while the

log-likelihood of the perfect phylogeny was equal to �319.08

(Fig. 9). However, differences between log-likelihoods of recurrence

trees were small in comparison to their difference with the one of

the perfect phylogeny, thus impeding the reliable selection of the sin-

gle most likely recurrence tree. To choose such tree, we utilized evo-

lutionary likelihood estimated by SCIFIL. Among 18 trees, only two

have evolutionary likelihoods higher than for the perfect phylogeny

(Fig. 9). Notably, the log-likelihood of the tree TASNS is significantly

higher than for other recurrence trees (�518.62 versus �674.696 in

average (standard deviation 25.62)), thus providing the strong sup-

port for that particular evolutionary history with respect to other

possible histories. These results indicate that SCIFIL’s can be effi-

ciently used in conjunction with infSCITE or other similar tool for

detection of the most probable evolutionary scenarios.

Fig. 8. Fitness landscape and mutation tree for JAK2-negative myeloproliferative neoplasm (Hou et al., 2012) (left) and colorectal cancer (right) (Leung et al.,

2017) inferred by SCIFIL. Colors represent fitness values and distance from each tree node to the root is approximately proportional to its time of appearance

SCIFIL i405



4 Discussion

Intra-tumor heterogeneity is one of the major factors influencing

cancer progression and treatment outcome. Cancer clones form

complex populations of genomic variants constantly evolving to

compete for resources, proliferate, metastasize and escape immune

system and therapy. Quantification of clonal selection for tumors

may provide valuable information for understanding mechanisms of

disease progression and for design of personalized treatment. scSeq

provides an unprecedented insight into intra-tumor heterogeneity

allowing to study fitness landscapes at finest possible resolution and

quantify selective advantages on the level of individual clones.

In this paper, we presented SCIFIL, a likelihood-based method

for inference of fitnesses of clonal variants. Unlike other available

methods for related problems, SCIFIL takes full advantage of the in-

formation about structure and evolutionary history of clonal popu-

lation provided by scSeq. It uses individual cells as evolutionary

units, in contrast to the tools based on bulk sequencing which per-

form their analysis on the level of subpopulations or lineages.

Furthermore, SCIFIL can also handle bulk sequencing data as long

as clones are reconstructed and mutation tree is constructed using

available tools such as AncesTree (El-Kebir et al., 2015), PhyloSub

(Jiao et al., 2014) and CITUP (Malikic et al., 2015).

In contrast to previous approaches, SCIFIL employs dynamic

evolutionary model rather than assumption that the population

achieved the equilibrium state. We have demonstrated that our ap-

proach allows for accurate inference of fitness landscapes and can

be used for analysis of evolutionary history and clonal selection for

real tumors. We envision that SCIFIL can be also used to infer epis-

tasic interactions and to identify combinations of mutations driving

the tumor growth. In addition, it can be applied to other highly mut-

able heterogeneous populations, such as viral quasispecies or bacter-

ial communities.

The proposed approach has limitations which should be

addressed in the future work. Fitness is not defined by the genetic

composition alone and depends on the environment. Thus SCIFIL

quantitative predictions are more reliable when the analyzed clones

are sampled from the same tumor. Fitness inference relies on the

observed clone abundances, and therefore significant inaccuracies in

abundance estimation may affect accuracy of fitness reconstruction.

For single-cell data, it is particularly important owing to its suscepti-

bility to allelic dropouts and PCR bias. However, this problem can

be addressed by using a combination of bulk and scSeq data. There

exist a plethora of tools which can estimate clone abundances from

composite bulk and scSeq data (see, e.g. Baron et al., 2016;

Mukherjee et al., 2018). In addition, such composite data can be

employed to increase an accuracy of mutation trees reconstruction

(Malikic et al., 2017). We expect SCIFIL reliability to increase when

it will be combined with these tools.

Another set of limitations arise from the selected evolutionary

model (2). It was selected due to its generality (Wodarz and

Komarova, 2005) and suitability for fitness landscape inference

(Nowak, 2006). However, it has certain underlying assumptions:

the mutation rates are supposed to be normally distributed, while

the dynamical system (2) implies positive selection with the gradual

growth of average population fitness. It should be noted that in

many cases such assumptions are sufficiently realistic, and have

been used in several studies to obtain valuable insights into the dy-

namics of tumor evolution (Bozic et al., 2010; Jones et al., 2008). In

particular, other studies demonstrated that even a normal mutation

rate is sufficient to produce significant intra-tumor heterogeneity

and emphasized the relative importance of selection over both the

size of the cell population and the mutation rate (Beerenwinkel

et al., 2007). Although equations (12) suggest that in most cases fit-

ness growths along each path of the mutation tree, the model does

not imply any restrictions on the comparative fitnesses of different

lineages. Furthermore, observed relative abundances of clones are

independent of the model, and their contribution to the estimated

fitness values is paramount. Nevertheless, we expect that our ap-

proach can be extended by incorporating other models capturing

different evolutionary scenarios, such as gradual mutation rate

growth over the course of tumor evolution, and clonal competition/

cooperation, as well as spatial tumor heterogeneity. It should be

noted, though, that currently there is no universal evolutionary

model for tumor progression. Alternative models will inevitably

introduce other limitations and can be less practical for fitness

estimation.

On algorithmic side, the optimization problem behind our ap-

proach can be viewed as the type of scheduling problem with prece-

dent constraints and with non-linear objective (Dolgui et al., 2012).

Such problems are generally NP-hard, although the complexity of

our problem is unknown. It is known that for certain simple objec-

tives and well-structured precedence constraints (e.g. defined by

series-parallel graphs) the corresponding scheduling problems are

polynomially solvable (Dolgui et al., 2012). For our problem prece-

dence, constraints have the form of a tree. It gives a certain hope of

existence of exact polynomial or a good approximation algorithm,

although the complex objective function may keep our problem NP-

hard. This question requires additional study.

Fig. 9. Log-likelihoods of trees with and without recurrent mutations. (Left) Log-likelihoods produced by infSCITE. (Right) Evolutionary likelihoods produced by

SCIFIL. Likelihoods of perfect phylogeny are shown in green. Purple and red: trees with the evolutionary likelihoods higher than for the perfect phylogeny
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