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A B S T R A C T   

Magnetoencephalography (MEG) measures magnetic fluctuations in the brain generated by 
neural processes, some of which, such as cardiac signals, are generally removed as artifacts and 
discarded. However, heart rate variability (HRV) has long been regarded as a biomarker related to 
autonomic function, suggesting the cardiac signal in MEG contains valuable information that can 
provide supplemental health information about a patient. To enable access to these ancillary HRV 
data, we created an automated extraction tool capable of capturing HRV directly from raw MEG 
data with artificial intelligence. Five scans were conducted with simultaneous MEG and elec-
trocardiogram (ECG) acquisition, which provides a ground truth metric for assessing our algo-
rithms and data processing pipeline. In addition to directly comparing R-peaks between the MEG 
and ECG signals, this work explores the variation of the corresponding HRV output in time, 
frequency, and non-linear domains. After removing outlier intervals and aligning the ECG and 
derived cardiac MEG signals, the RMSE between the RR-intervals of each was RMSE1 = 2 ms, 
RMSE2 = 2 ms, RMSE3 = 8 ms, RMSE4 = 4 ms, RMSE5 = 13 ms. The findings indicate that cardiac 
artifacts from MEG data carry sufficient signal to approximate an individual’s HRV metrics.   

1. Introduction 

The autonomic nervous system (ANS), a component of the peripheral nervous system, regulates numerous physiologic processes, 
including heart rate, blood pressure, respiration, digestion, and sexual arousal. The ANS is classically divided into three anatomically 
distinct divisions: sympathetic, parasympathetic, and enteric [1]. Researchers have explored the connection between heart rate 
variability (HRV) and its relationship to sympathetic and parasympathetic function [2]. While there is still debate about the specifics of 
the complex systems behind these cardiac/brain relationships, evidence suggests that HRV is a valuable probe into the heart-brain 
connection [3]. 

Heart rate variability is the fluctuation in time intervals between successive heartbeats [4]. HRV probes how interdependent 
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autonomic systems operate on different temporal scales and reflect our capacity to handle environmental and psychological stressors 
(H. G. Kim et al., 2018). In other words, HRV has been identified as a biomarker capable of indexing neurological input to cardiac 
tissues, representing essential functional dynamics of the ANS. In this feasibility study, we explore using the cardiac artifact in 
magnetoencephalography (MEG) scans to approximate HRV. 

1.1. HRV highlights ANS health 

When analyzing heart rate variability, a higher degree of variability and complexity has been shown to correlate with a more 
flexible ANS that can quickly cope with an uncertain and changing environment [5]. That is, HRV provides physiological insights into 
the ANS. 

There are two distinct processes influencing short-term HRV. First, the dynamic interaction between the sympathetic and para-
sympathetic branches of the ANS. Secondly, the summation of regulatory mechanisms that control heart rate, including the respiratory 
sinus arrhythmia, the baroreceptor reflex, and rhythmic changes in vascular tone [6,7]. While there is a documented physiologic 
decrease in HRV as humans age, see for example (Delaney & Brodie, 2000), previous findings have shown pathologies are differen-
tiable by HRV, including those present in Alzheimer’s Disease (AD) (M. S. Kim et al., 2018), Parkinson’s Disease (Yoon et al., 2016), 
and cardiovascular disease (Accardo et al., 2022). Additionally, Manfrini et al. shown a relationship between HRV and coronary 
instability [8]. Observed an inverse relationship between the progression of arteriosclerosis and frequency measures related to 
parasympathetic activity. Furthermore, they observed a positive correlation with the presence of plaque formation in the 
low-frequency (LF)/high-frequency (HF) ratio, often ascribed as an index of sympathovagal balance. However, the HRV power ratio 
relationship to sympathovagal balance is likely an oversimplification of the complex, non-linear dynamics of the heart-brain system 
and is a highly debated concept (Billman, 2013). 

Several studies have shown low variability of inter-beat intervals is a statistically significant predictor of all-cause mortality 
(Jarczok et al., 2022; Shaffer et al., 2014). With a sample of over 400 individuals, The United Kingdom Heart Failure Evaluation 
Assessment of Risk Trial showed that reduced standard deviation of normal (e.g., removal of ectopic beats) RR intervals (SDNN) was 
able to predict death from progressive heart failure [9]. Other studies have demonstrated that autonomic dysfunction has been linked 
to the progression of diabetes. Differences in the time and frequency domain measures of HRV have noted differences between healthy 
and diabetic populations. Specifically, diabetic populations have shown parasympathetic impairment reflected by a decline in 
time-domain measures and a shift toward low-frequency power in frequency-domain analyses [10]. However, HRV has also been 
shown as a viable metric to index recovery during treatments. Previous investigations indicate beta-blocker treatments help restore 
HRV in type I diabetic patients after just six weeks of treatment [11]. Angiotensin-converting enzyme inhibitors have also been shown 
to improve HRV after three months of treatment ([12]; Malik et al., 1996). 

The utility of HRV, while still being explored and understood, is apparent. This cost-effective biomarker reflecting autonomic 
activity is readily accessible as heart rate monitors (e.g., ECG) are commonplace. Furthermore, access to HRV as an auxiliary biomarker 
obtainable alongside direct functional neurological data in MEG scans may well provide additional insights to unravel the complex 
connection between HRV and the ANS of an individual. 

1.2. MEG utility emerging 

MEG non-invasively measures small-scale magnetic field fluctuations generated by bundles of neurons in the brain as they send 
electrical impulses via neurotransmitters. These signals, typically on the order of 10–100 fT (10− 15T), provide direct insight into 
functional neurological activity by sensing changes in magnetic field with limited depth penetration [13] but high temporal resolution 
[14] – although it capable of detecting subcortical signals (Stapleton-Kotloski et al., 2018). Clinically, MEG is used mainly for the 
diagnosis and treatment of epilepsy [15] but is emerging as useful in other pathologies as well, including Traumatic Brain Injury (TBI) 
[16], early-stage AD (López-Sanz et al., 2018), and healthy aging [17]. 

While a relatively small number of MEG scanners are available (approximately 150 globally) and they can be cost-prohibitive, the 
combination of new applications with improving hardware indicates MEG is a promising, non-invasive clinical imaging tool. More 
MEG and corresponding HRV measurements could help scientists and clinicians better explore complex heart-brain interactions. 

1.3. Cardiac insight from MEG 

The cardiac artifact of a MEG signal, arising from cardiac currents (Jousmäki & Hari, 1996), can potentially be used as an inde-
pendent biomarker through derived HRV. This application is beneficial in cases where ECG cannot be simultaneously obtained during 
a MEG scan or for retrospective studies on MEG scans that do not have relevant cardiac signals. Additionally, having a reliable cardiac 
signal obtainable from the MEG scan may obviate the need to acquire ECG, which may complicate the data acquisition setup and 
contribute additional electromagnetic interference to the highly-sensitive magnetometers. Therefore, we implemented the workflow 
described here to automatically extract this cardiac signal and corresponding RR intervals (i.e., HRV) from MEG scans to facilitate the 
fast and reliable acquisition of this signal. 

Here we highlight the implementation and validation of an algorithm capable of quickly and reliably extracting HRV from resting- 
state MEG scans. To facilitate access to this algorithm for research purposes, we have made our program freely available and open- 
source under a public license in a version-controlled repository. 
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2. Materials and methods 

Validation of the algorithm and analysis procedures requires a ground truth reference. Five volunteers were scanned while 
simultaneously acquiring MEG data with ECG data gathered from an externally connected measuring and recording system. 

2.1. Ethics statement 

This study was carried out in accordance with the code of ethics of the Declaration of Helsinki. All study participants provided 
informed consent and the study was carried out under IRB approval (#IRB 00002960). 

2.2. Technical development scans 

The MEG data were acquired using a 304-channel, whole helmet system, specifically a CTF MEG International Services LP 
(Coquitlam, BC, Canada) scanner at Atrium Health Wake Forest Baptist under IRB approval. The scanner is kept in a magnetically 
shielded room to reduce noise imposed by external magnetic fields. An initial 5-min scan with an empty MEG scanner ensured that the 
electrical interference from the ECG sensing hardware would not destabilize the Helium-cooled Superconducting Quantum Interfer-
ence Devices (SQUIDs). All MEG signals were sampled at 1200 Hz. 

Each volunteer underwent an 8-min resting state MEG scan with eyes open, using an identical protocol from previous work [18]. 
Three ECG leads were affixed to the patient in such a way as to maximize the distance from the magnetometers while maintaining a 
reliable signal; one on each wrist, placed over the radial artery, and one over the patient’s left posterior tibial artery. All ECG signals 
were sampled at 1000 Hz. 

2.3. Data processing 

Each of the ten total signals (5 subjects, each with MEG and ECG time series recordings) was preprocessed with steps detailed in the 
workflow diagram, Fig. 1. 

Raw MEG data were obtained in CTF file format (as output from CTF scanners, although our processing pipeline is capable of 
accommodating other scanner types) and preprocessed using MNE ([19]; Jas et al., 2018), a Python package for analyzing neuro-
physiological data. Preprocessing steps improved signal-to-noise ratios by removing power-line noise with a notch filter at 60 Hz and 
band-pass filtering [0.5Hz–100Hz] to remove very high and low frequencies outside our region of interest. The signal was 
down-sampled to 500 Hz for consistency with the ECG data (which is also down-sampled) while maintaining sufficient resolution for 
reliable time and frequency domain HRV analysis [20]. Independent Component Analysis (ICA) was used to ‘un-mix’ the signals to 
differentiate the primary sources of signal contributing to each sensor [21]. The ICA approach is based on the infomax algorithm in 
MNE, a technique that serves to maximize the mutual information between the set of mixtures and the source signals. The algorithm 
output twenty independent components that are then sent to an AI classification tool, MEGNet [22], to identify the cardiac signal 
automatically and select it for processing. A workflow diagram shown in Fig. 1 indicates the processing steps of each algorithm. After 
the MEG signals are filtered to improve the signal quality, they are run through MEGNet for automatic detection of the cardiac signal. 

Fig. 1. Workflow diagrams for HRV extraction and validation algorithms. A) indicates the workflow for calculating the RMSE between the raw MEG 
and ECG signals. B) shows the workflow for determining the RR intervals of the cardiac signal from raw MEG data. 
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Fig. 2 shows a sample of the MEG pipeline, including the AI-based identification of the independent component representing the most 
prominent cardiac signal. 

2.3.1. AI-based cardiac detection 
An automated HRV extraction algorithm requires a selection step to determine which of the twenty independent components 

contains the strongest cardiac signal. MEGNet, a deep-learning model that identifies artifacts in MEG data, including cardiac and 
ocular artifacts (blinks and saccades), requires twenty independent components for model input and is used to classify the strongest 
cardiac signal from the 1D-time series of all components [22]. While MEGNet also incorporates 2D spatial maps generated with ICA, 
those proved unnecessary for reliable detection of just the primary cardiac component and are omitted here. Due to the discrepancies 
caused by spatial map projections between MNE and Brainstorm (the software used to preprocess data for MEGNet training), cardiac 
labeling performance decreased when using MNE spatial maps. To remove that input and still match the input layers, we passed 
zeroed-out 2D spatial inputs of the model, effectively providing no discriminating information to the 2D discriminator. The highlights 
of isolating the cardiac signal from the neuronal signal are captured in Fig. 2. 

2.3.1.1. Peak finding. The difference in time between two consecutive R-peaks is called an R–R interval (RRI). Statistical analysis of 
the set of heart rate intervals provides information about each patient’s HRV. All MEG and ECG signals were preprocessed and 
analyzed using the same NeuroKit2 [23] Python signal processing functions. The peak finding algorithm for NeuroKit2 is particularly 
useful, as it is non-parametric and outperforms traditional algorithms when bench-marked [23]. 

2.3.1.2. HRV analysis. HRV analysis is then performed on the RRIs. Evaluation of HRV consists of three primary types of investigation: 
time domain, frequency domain, and non-linear domain. Time domain analysis involves binning the RRIs in a histogram and eval-
uating the properties of the corresponding distributions [23]. Frequency domain analysis demonstrates the power distribution of the 
signal in frequency space, which was done here using Welch’s method [24]. Non-linear domain analysis includes complexity features 
like entropy and additional features derived from the Poincare Plot. All procedures described here used the default NeuroKit2 methods 
for peak finding and HRV analysis. 

2.4. Quality assessment 

With both the ECG and MEG cardiac signals, a direct comparison of the two is possible. Once RRIs were obtained from each source, 
corresponding MEG and ECG signals were aligned using the maximum of the cross-correlation and cropped. Expert evaluation and 
adjustment ensured alignment accuracy, removed outliers, and trimmed the data set to directly compare correctly identified peaks (by 
eliminating false positives and partial intervals). For each case, we calculated the root-mean-square-error (RMSE) of the time interval 
between consecutive peaks, using the following equation 

RMSE=
∑N

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − x̂i)
2

N

√

(1) 

A perfectly fit trial would have an exact agreement between each RR interval and would have an RMSE of zero. Additionally, Bland- 
Altman plots show the intervals of agreement between the two measurement methodologies (Altman & Bland, 1983). However, as 
Bland-Altman plots are insufficient to determine acceptable agreement (Giavarina, 2015), emphasis is placed on the RMSE evaluation. 

Fig. 2. Shows the pipeline processes used to isolate the cardiac signal contained within the MEG data. The raw data is preprocessed with noise 
filtering to remove power-line noise and frequencies well above or below the bandwidth of interest. ICA then un-mixes the signal into 20 primary 
components, which includes cardiac and ocular signals. The 20 1D time series are fed to MEGNet for identification of the cardiac signal (the right- 
most portion of figure was adapted and modified from original paper [22]. 
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2.5. Data and code availability 

Due to privacy considerations of the five volunteers, the raw data will not be released with the paper. However, software to 
reproduce the workflows shown in Fig. 1 is available at our publicly hosted git repository. 

3. Results 

The detection algorithm reliably detected the R-peaks of the cardiac signal for each trace. For demonstration purposes, we will 
show comparisons for the best and worst-performing volunteers. Results of the HRV metrics analytical comparisons for each subject 
are available in the Supplemental Figs. 2–6. Unsurprisingly, as it is the ‘gold-standard’ reference, the raw ECG signal is generally higher 
quality than the cardiac MEG component. By comparing Fig. 3a with 3b and of 3c with 3d, we can see that the time-aligned traces tend 
to find peaks in the same location. Fig. 3 indicatesss the effectiveness of the algorithm in capturing comparable interval data by 
identifying the same R-peak locations between the ECG signal the MEG-based IC cardiac signal. 

The time interval between subsequent R-peaks, or RRI, is required to measure HRV. The statistical distribution of the RRI intervals 
in the time domain shows strong agreement between the ECG-derived RRIs and the MEG-derived RRIs (e.g., Table 2.) Subject 5 showed 
the most considerable discrepancies, which are attributable to a few outlier RRIs in the MEG-derived results. A pictorial summary of 
the time domain results is highlighted in Fig. 4 for subjects 1 and 5, with the remaining subject comparisons available in Supplemental 
Figs. 3–5. 

3.1. Quality assurance 

Manual quality control performed by domain experts facilitated a direct comparison between ECG and cardiac MEG signals. As the 
recording hardware for the ECG and MEG signals were independent, the sensors ran for different lengths of time and were not syn-
chronized. A proper RMSE measurement requires aligned RRI vectors of the same size. Misaligned signals were corrected by maxi-
mizing the cross-correlation between ECG and MEG derived RRI waveforms. 

Subjects 3 and 5 had outliers removed to align and measure the RMSE between the RRIs correctly. Subject 3 had three consecutive 
cardiac MEG points removed, with two corresponding ECG points removed. All removed cardiac MEG values were outside 2.5σ. 
Similarly, subject 5 had five consecutive cardiac MEG points removed, with three corresponding ECG points removed. All removed 
cardiac MEG values for subject 5 were outside 4σ. The removed points for subject 5 are all apparent outliers shown on the histogram in 
Fig. 4d and the Bland Altman plot in Fig. 6d. 

The alignment and quality control steps provide the necessary data to calculate RMSE. The results of the RMSE calculation for each 
of the five subjects are in Table 1, with the top-performing data approaching the resolution limit of the signal. The algorithm correctly 
identified 85% of the RRIs with the resting-state accuracy threshold of |ϵ| ≤ 2.25ms, and 95% for a larger error threshold |ϵ| = 4.4ms as 
described in (Cassirame et al., 2017). 

Fig. 3. Comparison of a subset of the RR peak finding for the two signals. a) Raw and cleaned ECG signal and corresponding R-peak detection for 
subject 1. b) Raw and cleaned cardiac MEG signal with corresponding R-peaks detection for subject 1. c) Raw and cleaned ECG signal and cor-
responding R-peak detection for subject 5. d) Raw and cleaned cardiac MEG signal with corresponding R-peaks detection for subject 5. For each, the 
red line represents the cleaned signal, the blue line the raw signal and the yellow circles indicate the algorithmically determined R-peak for each 
pulse. The green shading represents a relative signal quality index based on the average QRS. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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Table 1 
Root mean square error (RMSE) between the ECG signal and the cardiac MEG signal in milliseconds. In the cases where peak determination was near 
perfect, we find RMSE errors approaching the 2 ms resolution limit of the sensors.   

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

RMSE (ms) 2 2 8 4 13  

Table 2 
Direct comparison of time-based statistics of the R–R intervals (RRI) before expert curation. The table details the mean, standard deviation (σ), 
median, root-mean-square between differences between RRI (RMSSD), standard deviation of successive differences between RRI (SDSD), the pro-
portion of times a normal sinus rhythm exceeds 50 ms or 20 ms in an hour (pNN50/pNN20), and overall minimum and maximum. All quantities are in 
milliseconds except pNN50/pNN20 (%).  

Time Domain HRV Comparison 

(ms) ECG1 MEG1 ECG2 MEG2 ECG3 MEG3 ECG4 MEG4 ECG5 MEG5 

Mean 773 773 739 738 987 985 858 858 855 852 
STD σ 34.8 35.0 28.4 28.2 80.7 84.2 96.5 96.4 50.8 60.4 
Median 774 774 736 734 998 1000 872 872 860 856 
RMSSD 25.5 25.5 13.0 13.3 68.7 71.4 69.5 69.2 55.0 59.2 
SDSD 25.6 25.5 13.1 13.3 68.8 71.5 69.5 69.2 55.0 59.3 
pNN50 3.29 3.39 0 0 50.7 50.2 49.0 48.0 41.8 40.1 
pNN20 45.61 47.1 11.6 10.9 78.6 78.6 76.9 76.7 72.4 67.8 
Min 642 642 674 672 734 584 630 628 722 452 
Max 860 862 856 856 1180 1178 1142 1142 970 972  

Fig. 4. Comparison of the Distribution of RRIs for ECG and MEG data for subjects 1 and 5. a) and b) show the ECG and cardiac MEG signal in the 
time-domain distribution for subject 1, where c) and d) show the ECG and cardiac MEG signals in the time-domain distribution for subject 5, 
respectively. 
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3.2. Time domain analysis 

Time-domain comparison of HRV for subject 1 is shown in Fig. 4, showing the distribution of RRIs with a best-fit approximation 
overlay in red. The MEG cardiac HRV distribution is nearly identical to the ECG distribution, with the quantitative results highlighted 
in Table 2. The quantitative measures described include the following analysis of the extracted RRIs: mean, standard deviation (σ), 
median, root mean square standard deviation (RMSSD), the standard deviation of successive RR interval differences (SDSD), the 
proportion of RRIs larger than 50 ms or 20 ms (pNN50/pNN20), overall minimum and maximum. The distributions for all pairs of ECG 
are comparable (2). However, cases three and five show several outliers, all of which skew the distribution lower and increase the 
standard deviation. This discrepancy indicates that the peak finding algorithm found extra peaks meriting further investigation. A 
complete comparison of the time domain results are available in Supplemental Table 1. 

3.3. Frequency domain analysis 

The frequency domain analysis in Fig. 5 compares the power spectral density (PSD) for the RRI intervals of the ECG and cardiac 
MEG per subject. Fig. 5 shows the close resemblance between the two signals indicating similar power distribution profiles. Quan-
titatively, the frequency domain data for all five subjects were comparable for the ECG and MEG measurements, as shown in the 
Supplemental Table 2. Namely, for Case 1, the spectral power was 0.0087, 0.0135, 0.0001 for the ECG signal in the low frequency (LF – 
[0.04–0.15] Hz) domain, high-frequency domain (HF – [0.15–0.4] Hz), and the very high-frequency domain (VHF – [0.4–0.5] Hz), 
respectively. Similarly, the respective LF, HF, and VHF spectral power of the cardiac MEG signal was 0.0085, 0.0134, and 0.0002. 

3.4. Bland-Altman results 

Bland-Altman plots compare the difference between the measured (MEG) and expected (ECG) RRIs to the mean of the two mea-
surements, and Fig. 6 highlights the best (6a.) and worst (6b.) performing Bland-Altman results. In each plot, the red line indicates the 
mean of the distribution of differences and the green line indicates ± 3σ lines above and below the mean. In the best performing case, 

Fig. 5. Comparison of the Power Spectral Densities (PSD) of RRI signals for ECG and MEG data for subjects 1 and 5. a) and b) show the PSD for the 
ECG and cardiac MEG signals in the frequency-domain for subject 1, where c) and d) show the PSD for the ECG and cardiac MEG signals in the 
frequency domain for subject 5, respectively. 
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the resolution limit of the sampling frequency is clearly seen the 2 (ms) gaps along the y-axis. In the worst case, the plots show 
significantly more outliers, requiring additional filtering as discussed in Section 3.1. The strong agreement between the RRIs derived 
from the MEG signal with those obtained from the ECG signal indicate that this technique for extracting HRV signal from MEG is 
reliable, but may require additional outlier removal to correct for misidentified peaks in the cardiac artifact component of the MEG 
signal. 

3.5. Non-linear analysis 

Lastly, a non-linear comparison of the HRV metrics is shown via a Poincaré plot in Supplemental Figs. 2–6. Poincaré plots are a 2D 
representation of consecutive RRIs, plotting RRN vs. RRN+1 in a scatter plot. These 2D distributions are used to understand the non- 
linear dynamics of a patient’s HRV in a scatter plot representation of consecutive intervals. Three primary indicators are derived 
from fitting an ellipse and measuring the corresponding semi-major and semi-minor axes: the semi-minor axis corresponds to the 
standard deviation of the instantaneous RRI, the semi-major axis corresponds to the standard deviation of the long-term RRI vari-
ability, and the third indicator is the ratio of the two [25]. The corresponding quantitative measures for the non-linear plots are 
available in Supplemental Table 3. Overall, the 89 metrics output from NeuroKit2’s HRV analysis show high Pearson correlation 
coefficients between the ECG and cardiac MEG signals, with R2

1 = 0.999,R2
2 = 0.999,R2

3 = 0.999,R2
4 = 0.999,R2

5 = 0.996. 

4. Discussion 

On the order of milliseconds, oscillations of a healthy heart show non-linear, mathematically chaotic properties [26]. It is believed 
that this non-linear variability reflects the flexible, readily adapting nature of a system prepared to engage with an uncertain and 
constantly changing environment. The results of the technical development scans indicate this method reliably captures RR intervals 
and their corresponding fluctuations from the extracted cardiac signal from ICA, including the complex, non-linear features. While two 

Fig. 6. Bland Altman plots for Subjects 1 (best agreement) and 5 (worst agreement). The y-axis represents the difference of measured RRIs between 
the MEG (measured) and ECG (expected) signal. The x-axis represents the mean of corresponding MEG and ECG RRI pairs. The red horizontal line is 
the mean of the difference distribution and the green lines represent ± 3 σ from the mean. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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subjects (3 and 5) had several outlying RR intervals, the overall HRV metrics were still highly correlated. While careful outlier removal 
can improve these results further (for example, extra peaks found in poor-quality cardiac MEG signal for subject 5), the calculated HRV 
metrics are comparable even without this extra step. While the unprocessed results are not in perfect agreement, there are a number of 
factors that may cause differences in the acquired ECG and cardiac MEG signals. 

Here, we do not consider pulse rate variability here as the predominant source of cardiac artifact in MEG is from propagated electro- 
magnetic fields created during heart contraction, and not from the pulsatile flow of blood in the brain. While there maybe secondary 
effects associated with pulsatile blood flow in the brain, these are assumed to be of lower magnitude than those caused directly from 
the heart’s electromagnetic field (Braeutigam, 2013). 

4.1. Design limitations 

The volunteers in this study were all healthy males between 18 and 28. This feasibility study showed strong agreement in this 
category of individuals, yet there may be gender or other socio-demographic factors that could disrupt the conclusions reached in this 
work. Additionally, these were only 8-min scans. Research has shown that HRV metrics can individually vary on short (minutes) versus 
long (hours/days) timescales. Further investigation is needed on a larger cohort and over a broader range of times scales for validation. 

Heart conditions that cause arrhythmia or other irregular heartbeats are also likely to produce cardiac traces that may not work 
well with the methods proposed here. Additional studies, again on a larger cohort, are required to determine the robustness and 
applicability of this approach. The software is contained in an open-source version control repository located at UAB’s GitLab for 
interested parties to explore this research further. 

5. Conclusion 

This demonstrates feasibility of using cardiac artifact signals from MEG data to approximate heart rate variability and provides a 
corresponding open-source software package. Using simultaneous MEG and ECG measures, and the ECG reference as the ground truth, 
these data demonstrate strong agreement between the HRV metrics of each. While additional study is needed to explore this concept on 
a larger patient population, under prolonged scanning conditions, and on other MEG scanners, the data here suggest it may well be 
possible to reliably attain insights regarding cardiac function from MEG signals via extracted HRV. This tool for automatic HRV 
extraction in MEG can potentially help physicians readily probe cardiovascular dynamics from MEG scans without the need for 
additional sensors that could interfere with SQUIDs. Simultaneous insights from cardiac and neurological function can open new ways 
to investigate sympathovagal balance and explore complex heart-brain relationships. 
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