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Abstract

Background

Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer

(BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2.

We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modu-

lates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and

drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated

HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-inde-

pendent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/

EGFR activation.

Results and Discussion

Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474

and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this

protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4’-phenoxyani-

lino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other

hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the

presence of the MMP inhibitor 1–10, phenanthroline monohydrate, and the dual inhibition of

both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the

use of these inhibitors demonstrated that this Src and MMP-dependent signaling is impor-

tant to the cell viability and migration capacity of HER2+ and EGFR+ cell lines.

Conclusion

Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory

cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.
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Introduction
The cellular and non-cellular components of the tumor microenvironment shape tumor evolu-
tion[1]. Among the components of the tumor microenvironment, the nervous system and the
neuropeptides secreted by non-neuronal (i.e., by modulating immune cells) and neuronal cells
appear to have a direct and indirect effects on tumor progression [2]. This is the case of neuro-
kinin 1 receptor (NK-1R) (TACR1 gene) and its preferential ligand substance P (SP) (TAC1
gene), a pro-inflammatory cytokine and neuropeptide that belongs to the family of tachykinins
[3, 4]. This family consists of SP, neurokinin A (NKA) and neurokinin B (NKB), encoded by
the TAC1 (SP and NKA) or TAC3 (NKB) genes [5], and the recently discovered hemokinins
and endokinins encoded by the TAC4 gene [5–7]. Specifically, NK-1R is a G-protein coupled
receptor (GPCR) which, together with SP, is expressed in the central nervous, gastrointestinal,
and immune systems, and is involved in cellular responses such as pain transmission, paracrine
and endocrine secretion, vasodilation, angiogenesis and modulation of cell proliferation [5, 8–
11]. SP not only signals through NK-1R; it can also bind (with lower affinity) to additional
tachykinin receptors like neurokinin 2 receptor (NK-2R) and neurokinin 3 receptor (NK-3R)
encoded by the TACR2 and the TACR3 gene respectively [5, 12].

Despite their physiological functions, G proteins can also activate pathways related to cellu-
lar proliferation and survival in several types of cancer cell through secondary messengers and
receptors, as in the case of NK-1R [13–15]. This receptor is expressed on the cell surface of
many cancer cell types like breast [16–19], pancreatic [20], colon [21, 22], and laryngeal cancer
cells [23], glioblastoma [22], acute lymphoblastic leukemia [5, 24], and melanoma [5]. NK-1R
signaling can activate tyrosine kinase receptors (RTKs) like EGFR and HER2 [25–27]. The
RTK family shares a similar structure, and the receptors belonging to the ErbB family (EGFR,
HER2, HER3, and HER4) are driver oncogenes in different types of cancer [28, 29]. Several
reports have shown the involvement of the non-receptor protein tyrosine kinase c-Src and
metalloproteinases (MMPs) in the GPCR-mediated activation of ErbB receptors [30–32]. Acti-
vated c-Src can bind to the cytoplasmic tail of EGFR and HER2 and phosphorylate tyrosine
residues; therefore, c-Src activation may lead to the triggering of ErbB receptors in a ligand-
independent manner [30, 31]. The signal transduction by G-proteins may also enhance ligand-
mediated EGFR activation by stimulating MMPs synthesis and secretion and favoring the
shedding of membrane-anchored ligands [14, 33].

The interaction of GPCRs and RTKs has a prominent role in various physiological processes
[13, 34, 35], but it is also involved in pathologic conditions since its deregulation can drive
tumorigenic processes [14]. We previously identified SP as a key modulator of the steady state
of HER2 and EGFR, with the functional consequence of enhanced tumor aggressiveness and
tumor progression, and alterations in the cellular responses to apoptotic stimuli [27]. In the
present study, we aimed to identify the mechanisms involved in the transactivation of HER2
and EGFR by SP in BC cells. Focusing on the involvement of ligand-independent and depen-
dent mediators, we conclude that the transmodulation of HER2 and EGFR in response to SP is
a c-Src and MMP-dependent mechanism.

Materials and Methods

Cell lines and reagents used in the study
The following cell lines were purchased from American Type Culture Collection and were cul-
tured in accordance with the instructions: MDA-MB-453, BT-474, SK-BR-3, MDA-MB-231,
and MDA-MB-468. The cultures were incubated at 37°C in a humidified 5% CO2 atmosphere
and the cells were serum starved overnight before experiments, unless otherwise specified. For
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some proliferation experiments, cells were grown in a complete growth medium plus fetal
bovine serum (FBS), as specified in the methods section. The authenticity of all the cell lines
used in this study was validated by single locus short tandem repeats (STR) typing (Bio-Synthe-
sis, Inc.).

Insulin (Cat# I-9278), Substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-
NH2) (Cat# S1136), and MMP inhibitor 1–10, phenanthroline monohydrate (Cat# P9375)
were obtained from Sigma-Aldrich. NK-1R antagonist L-733,060 was obtained from Tocris
(Cat# 1145) and c-Src inhibitor 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline from Calbio-
chem (Cat# 567805). All were prepared in accordance with the instructions.

Time-course studies
To determine the effects of SP treatment on c-Src activation, cells were seeded in 100 mm cul-
ture dishes, grown until 80% confluence, serum starved for 24 hours, and then treated at the
indicated times with 100 nM of SP. After each treatment, the cells were washed twice in cold
PBS and rapidly frozen until protein extraction. To determine the effects of SP in the presence
of c-Src, inhibitor cells grown until 80% confluence were serum starved for 4 hours, and treated
for 20 hours with c-Src inhibitor 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline (1μM). To
determine the effects of SP in the presence of the MMP inhibitor 1–10, phenanthroline mono-
hydrate, cells were serum starved for 16 hours and treated with phenanthroline monohydrate
(7μM) for 4 hours. Finally, to determine the effects of SP in the presence of c-Src and MMP
inhibitors, cells were serum starved for 4 hours and treated with c-Src inhibitor 4-(40-Phenox-
yanilino)-6,7-dimethoxyquinazoline for 16 hours. At this point phenanthroline monohydrate
was added to the cells, and both inhibitors were incubated for 4 additional hours. The control
group without treatment was serum starved for 24 hours. Subsequently, the cells were treated
with SP 100 nM for 6, 10 and 15 min. After the treatment, the cells were washed twice in cold
PBS, and rapidly frozen until protein extraction. The experiments with each cell line were
repeated at least twice to ensure the reproducibility of the data. In all cases, the corresponding
dose of DMSO or MetOH (never above 0.1% v/v) was added to the control points.

Overexpression of TACR1
The TACR1 expression vector pcDNA3.1(+)-TACR1 was obtained from the University of Mis-
souri-Rolla cDNA Resource Center. The empty vector pcDNA3.1(+) was generated by remov-
ing TACR1 insert. The constructs were transfected into the MDA-MB-231 by AMAXA
nucleofection (Amaxa, Germany). Briefly, around 2x106 of MDA-MB-231 cells were resus-
pended in 100 μl of Nucleofector V solution (Amaxa, Germany) and 5 μg of pcDNA3.1(+) or
pcDNA3.1(+)-TACR1 vectors were added to the cell suspension. The electrogene transfer was
conducted using the Amaxa Nucleofector system program X-13. The selection of positive
clones was performed by antibiotic selection with G418 (Invitrogen, CA) (1200 μg/ml) for at
least 2 weeks, and additional enrichment by Fluorescent Activated Cell Sorting (FACS).

Inhibition of NK-1R with L-733,060 antagonist
To inhibit NK-1R signaling, cells cultured until 70% confluence were serum starved for 5 hours
and then treated with 20 μM (SK-BR-3 and BT-474) and 30 μM (MDA-MB-453) of NK-1R
antagonist L-733,060 during 24h. For the simultaneous inhibition of the three receptors NK-
1R, NK-2R and NK-3R cells were also treated with MEN 10376 (30 μM, NK-2R antagonist)
and SB 218795 (20 μM, NK-3R antagonist). After the treatment, the cells were washed twice in
cold PBS, and rapidly frozen until protein extraction. The experiments with each cell line were
repeated at least three times to ensure the reproducibility of the data, and all quantitative
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measurements were generated from three or more replicates. The statistical significance of
the data was analyzed by t-test (two-tailed). P values< 0.05 were considered statistically
significant.

Western blot
For protein extraction, cells were lysed in ice-cold radioimmunoprecipitation assay buffer
(RIPA) (Tris-HCl 50 mM, pH 7.4; NP-40 1%; Na-deoxycholate, 0.25%; NaCl 150 mM; EDTA
1 mM; PMSF 1 mM; proteinase inhibitors; Na3VO4 1 mM and NaF 1 mM) and sonicated for
10 seconds. After centrifugation (13000 rpm from 5 min) supernatants were quantified for pro-
tein content. Equal amounts of proteins were separated by SDS-PAGE and electrophoretically
transferred to polyvinylidene difluoride membranes (BioRad Laboratories, CA), blocked with
5% milk in PBS for 1 hour, incubated overnight with the corresponding primary antibodies:
phospho-EGFR Tyr1068 (Cell Signaling, MA, Cat# 2234) at 1:1000 dilution, phospho-HER2
Tyr1248 (Abcam, UK, Cat# ab5654) at 1:500 dilution, phospho p42/44-MAPK (Cell Signaling,
MA, Cat# 9101S) at 1:1000 dilution, phospho-Src Family (Tyr416) at 1:500 dilution (Cell Sig-
naling, MA, Cat# 2101), Src (Cell Signaling, MA, Cat# 2109S) at 1:1000 dilution and then, one
hour with goat anti mouse HRP-conjugated (Amersham, NJ, Cat# NXA931) or goat anti rabbit
HRP-conjugated (GE Healthcare Amersham, NJ, Cat# NA934V) at 1:2000. To confirm equal
protein loading, membranes were incubated with α-tubulin (Cell Signaling, MA, Cat# 2144) or
α-actin (Sigma Aldrich, MO, Cat#A2066) antibodies at 1:2000 dilution as internal control.
Chemiluminiscence on membranes was detected after ECL treatment (GE Healthcare Amer-
sham, NJ, Cat# RPN2209) and image capture was performed with a Fujifilm LAS3000 imaging
system. The Image Gauge software was used for the densitometric quantification of each pro-
tein. Correct Mr was compared with pre-stained protein standards (BioRad Laboratories, CA,
Cat# 161–0374). The experiments with each cell line were repeated at least three times to
ensure the reproducibility of the data and all quantitative data were generated from three or
more replicates. The statistical significance of the data was analyzed by t-test (two-tailed).
P values< 0.05 were considered statistically significant.

Cell viability assay
Cell viability was assessed in subconfluent cell cultures that were incubated for 24 hours with
IC50 of MMP inhibitor 1–10, phenanthroline monohydrate (16μM in SK-BR-3 and 8μM in
MDA-MB-468), c-Src inhibitor 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline (6μM in
SK-BR-3 and 50 μM in MDA-MB-468), or L-733,060 antagonist (9μM in SK-BR-3 and 10μM
in MDA-MB-468) or with the IC50 combinations drug: MMP inhibitor + Src inhibitor (14μM
+5 μM in SK-BR-3; 6μM+40 μM in MDA-MB-468), MMP inhibitor + L-733,060 (14μM+9 μM
in SK-BR-3; 6μM+8 μM in MDA-MB-468), Src inhibitor + L-733,060 (5μM+9 μM in SK-BR-3;
40μM+8 μM in MDA-MB-468) and MMP inhibitor + Src inhibitor + L-733,060 (14 μM+5μM
+ 9 μM in SK-BR-3; 6μM+40μM+ 8 μM in MDA-MB-468) in serum free medium. Briefly, cells
were seeded in 96-well plates at a density of 1 ×105 cells/well and allowed to attach overnight.
After treatment, cells were washed and the cell viability was determined with Calcein Assay Kit
(Molecular Probes). For viable fluorescent cells detection, 100 μl of calcein working solution
were added to each well and an additional 100 μl of PBS, yielding 200 μl per well containing
2μM of calcein. The cells were incubated for 45 minutes at 37°C in a humidified 5% CO2 atmo-
sphere and then, the plate was read on a Synergy HTMulti-Detection Microplate Reader
(BioTek) at 485±10 nm (excitation optical filter) and 530±12,5 nm (emission optical filter).
Different doses were assessed in sixtiplicate. In all cases, the corresponding dose of DMSO or
MetOH (never above 0.1% v/v) was added to the control points. Assay values for controls were
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taken as 100% of viability, and the viability at each treatment point were calculated relative to
controls by the formula: %Live Cells = (F(530)sam-F(530)min)/F(530)max-F(530)min) x 100%
according to the manufacturer’s instructions.

Cell migration assay
Cell migration was assessed in culture cells not greater than 80% confluence and serum starved
24h prior to assay. A total of 1 × 106 harvest cells in 50 μl of serum-free medium /well were
plated in the top chamber of the transwell with a noncoated polyethylene terephthalate (PET)
membrane, 8.0 μm pore size (Cultrex, 96 well cell migration Assay,Trevigen) and then, 50 μl
serum-free medium with MMP inhibitor (16μM in SK-BR-3 and 8μM in MDA-MB-468), c-
Src inhibitor (6μM in SK-BR-3 and 50 μM in MDA-MB-468), or L-733,060 antagonist (9μM in
SK-BR-3 and 10μM inMDA-MB-468) or with the combination of MMP inhibitor + Src inhibi-
tor (14μM+5 μM in SK-BR-3; 6μM+40 μM in MDA-MB-468) or without inhibitors were
added. Complete growth media with 10% FBS with or without inhibitors was added to the bot-
tom chamber as a chemoattractant. After incubation for 24hours, the top and the bottom
chamber were washed with 200 μl of wash buffer and were added 100 μl of cell dissociation
Solution/Calcein AM (2μM) to each well of bottom chamber, and incubated at 37°C in CO2

incubator for 1h. The bottom assay chamber was read at 485nm exciation, 520 nM emission on
a Synergy HTMulti-Detection Microplate Reader (BioTek). Different doses were assessed in
sixtiplicate. In all cases, the corresponding dose of DMSO or MetOH (never above 0.1% v/v)
was added to the control points. Assay values for controls without inhibitors were taken as
100% of migration, and the viability at each treatment point were calculated relative to their
controls.

Statistical analysis
Statistical analysis of the results was performed by ANOVA with Tukey's Multiple Comparison
post-hoc test and t-test (two-tailed). Statistical significance was considered since P values less
than 0.05.

Results

The neuropeptide/proinflammatory mediator SP activates c-Src in BC
cell lines
We first investigated whether SP used the c-Src protein as a cell-signaling mediator in BC cells,
as previously shown in other cell types [36, 37]. First, we checked a panel of BC cell lines under
basal conditions without stimulation (Fig 1A) and we detected different levels of phosphory-
lated c-Src protein relative to total levels. Second, using time-course studies, we observed that
SP treatment induced the phosphorylation of c-Src Tyr416 (indicative of Src activation [38,
39]) at the indicated time points (Fig 1B) in all the cell lines, including the HER2 negative cell
lines MDA-MB-231 or MCF7. Some lines have more pronounced phosphorilation than others,
and this activation is not consistent in all time points used because NK-1R activation by SP is a
cyclic activation as we previously described [16]. For these reason, the activation of c-Src
Tyr416 within this time frame was consistently observed in all the replicates conducted,
although the exact time point and intensity of maximum activation varied. Lower activation of
c-Src was found after SP treatment in the MDA-MB-453 cell line and was slightly pronounced
in MDA-MB-468 line, probably due to the very low or very high basal levels of c-Src (phos-
phorylated and total protein) [30], respectively.

Transmodulation of HER2 by SP in Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0129661 June 26, 2015 5 / 15



The overexpression or inhibition of NK-1R modulates c-Src activity in BC
cell lines
We previously reported that the stable transfection of NK-1R into the HER2-negative
MDA-MB-231 cell line can be used as a tool to study the mechanism by which SP contributes
to the persistent transmodulation of the ERBB receptors [17]. These previous results demon-
strated that the overexpression of NK-1R enhanced SP-mediated HER2 activation even in a
HER2- negative and NK-1R-low cell line, the main reason we selected that particular cell line

Fig 1. c-Src phosphorylation levels at baseline or under SP treatment. Representative images of Western blots corresponding to experiments showing
(A) the basal levels of c-Src Y416 phosphorylation in BC cell lines and (B) c-Src (Y416) phosphorylation at 0, 1, 2, 4, 6, 8, 10, 15 and 30 minutes after SP 100
nM stimulation in different BC cell lines. The blot was standardized to c-Src levels. The plots accompanying each panel show the densitometric quantification
of Western blots (the ratio of intensities of the bands corresponding to phospho-Y416 and total c-Src) relative to the expression of tubulin or actin, which was
used to ensure equal protein loading.

doi:10.1371/journal.pone.0129661.g001
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[17]. To further confirm the involvement of NK-1R in c-Src activation, in the present study we
investigated the effects of NK-1R overexpression on c-Src activation in the MDA-MB-231 cell
line. The MDA-MB-231 cells were transfected with pcDNA3.1(+)-TACR1 or the empty vector
pcDNA3.1(+) and treated with SP 100 nM at 6 and 10 minutes. We observed that the basal lev-
els of p-Src Y416 (at point 0, red bar) were 2.5-fold higher in the MDA-MB-231 cells overex-
pressing NK-1R compared to the control cells (at point 0, open bar) (Fig 2A). Then, in
pcDNA3.1(+) transfected cells (left) (representing a basal situation), the treatment with SP for
10 minutes further increased the phosphorylation of c-Src Tyr416 (3.26 fold increased, open
bar) as we found in MDA-MB-231 cell line in Fig 1. On the other hand, in the MDA-MB-231
cells overexpressing NK-1R (pcDNA3.1(+)-TACR1), the treatment with SP for 6 or 10 minutes
further increased the phosphorylation of c-Src Tyr416 (5.5- and 4.6-fold, respectively, red bar)
and in all cases were expressed by ratio of phospho/total protein (Fig 2A).

We next analyzed the effects of NK-1R inhibition on c-Src activation. The HER2+ SK-BR-3,
BT-474, MDA-MB-453, and the EGFR+ MDA-MB-468 cell lines were treated with the NK-1R
antagonist L-733,060 for 48 hours. NK-1R antagonism significantly reduced c-Src phosphory-
lation at Tyr416 in SK-BR-3 and BT-474 cell lines while a non-significant trend towards inhibi-
tion was observed in the MDA-MB-453 and MDA-MB-468 cell line with the lowest or highest
levels of c-Src (phosphorilated and total protein), respectively (Fig 2B), so, it is not surprising
to observe fewer changes in cell lines which steady state of c-Src (both, the phosphorylated and
total protein) is already low or high. Since SP can also bind with lower affinity to NK-2R and
NK-3R receptors, we next investigated the effects of the triple chemical inhibition of NK-1R,
NK-2R, and NK-3R with L-733,060, MEN 10376, and SB 218795 inhibitors respectively. We
observed that the triple inhibition of SP receptors cause a dramatic downregulation of c-Src

Fig 2. NK-1R contributes to c-Src activation in BC cell lines. (A) The contribution of NK-1R to the activation of c-Src Y416 phosphorilation protein in the
MDA-MB-231 cell line transfected with pcDNA3.1(+)-TACR1 or empty vector and treated for 6 and 10 minutes with SP 100 nM; (B) the effects of single NK-
1R inhibition during 24h with L-733,060 (20 μM (SKBR3 and BT-474), 30 μM (MDA-MB-453)) or (C) combined NK-1R, NK-2R and NK-R3 inhibition during
24h with L-733,060 (20 μM), MEN 10376 (30 μM) and SB218795 (20 μM), respectively on c-Src (Y416). The blot was standardized to c-Src levels. All
quantitative data are generated from a minimum of 3 replicates and are presented as mean + S.D. and compared by t-test (two-tailed) as * P<0.05, **
P<0.01 and *** P<0.001.

doi:10.1371/journal.pone.0129661.g002
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phosphorylation (Fig 2C), indicating that c-Src is indeed triggered by tachykinin signaling in
BC cells.

The transactivation of HER2 and EGFR by SP is dependent on c-Src
and MMPs
To investigate the role of c-Src in SP-mediated HER2 and EGFR activation [30] we next per-
formed time-course studies with SP in the presence of the c-Src inhibitor 4-(40-phenoxyani-
lino)-6,7-dimethoxyquinazoline [40]. Inhibition of c-Src activity in the HER2 positive SK-BR-
3 cell line significantly blocked SP-induced phosphorylation of HER2 Tyr1248 compared to
control cells (Fig 3A and 3B). HER2 transactivation by SP was also substantially inhibited in
the presence of the MMP inhibitor 1–10, phenanthroline monohydrate, and almost completely
abolished after the inhibition of both pathways, suggesting that the transactivation of HER2 by
SP in BC cells is a c-Src and MMP-dependent process (Fig 3A and 3B). SP signaling activates
the mitogen-activated protein kinase (MAPK) pathway [10, 26, 41]; therefore, the phosphory-
lation of p42/44 MAPK was used to control of NK-1R downstream activation. For this reason,
the phosphorylation of p42/44 MAPK was not always reduced in the presence of c-Src and

Fig 3. SP transmodulates HER2 by c-Src and MMP-dependent mechanisms in SKBR3 cell line. (A) Representative images of Western blots evaluating
the effects of the single or combined inhibition of c-Src (Y416) with 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline (1μM) and MMPs with 1–10,
phenanthroline monohydrate (7μM) on the activation of HER2 and p42/44 MAPK triggered by SP 100 nM for 6, 10 and 15 minutes. The plots show the
densitometric quantification of the Western blots on phosphorylated (denoted by p-) HER2 (B) and p42/44 MAPK (C) relative to the expression of tubulin,
which was used to ensure equal protein loading. Western blots are representative of at least two independent experiments.

doi:10.1371/journal.pone.0129661.g003
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MMP inhibitors (Fig 3A and 3C), since the activation of the MAPK pathway can be triggered
by both NK-1R and ERBB signaling [14, 37].

To determine whether the transmodulation of EGFR by SP was also dependent on c-Src
and MMPs in BC cells, we performed similar experiments in the EGFR positive cell line
MDA-MB-468. In the control situation, addition of SP increased EGFR phosphorylation at 6
min (1.17-fold), 10 min (1.45-fold) and particularly at 15 min (2.61-fold). No increase occurred
in the presence of the inhibitors (alone or in combination) under SP treatment, as we observed
in the western blot and densitrometic quantification of phospho EGFR/EGFR ratio (Fig 4A
and 4B). In particular, c-Src inhibition significantly decreased the capability of SP to induce
EGFR phosphorylation. Similarly, MMP inhibition affected the phosphorylation of EGFR
induced by SP, as did the concomitant inhibition of both c-Src and MMPs, especially with both
c-Src and MMPs inhibitor treatment at 15 min point (0.46 fold decrease) compared with point
0 (Fig 4B, right diagram).We also observed that c-Src inhibition significantly decreased the
capability of SP to induce EGFR phosphorylation. Similarly, MMP inhibition affected the phos-
phorylation of EGFR induced by SP, as did the concomitant inhibition of both c-Src and
MMPs, especially with both c-Src and MMPs inhibitor treatment at 15 min point (0.46 fold
decrease) compared with the point 0, right diagram (Fig 4B). As before, the inhibition of c-Src

Fig 4. SP transmodulates EGFR by c-Src and MMP-dependent mechanisms in the MDA-MB-468 cell line. (A) Representative images of Western blots
evaluating the effects of the single or combined inhibition of c-Src (Y416) with 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline (1μM) and MMPs with 1–10,
phenanthroline monohydrate (7μM) on the activation of EGFR and p42/44 MAPK triggered by SP 100 nM for 6, 10 and 15 minutes. The plots show the
densitometric quantification of the Western blots on phosphorylated (denoted by p-) EGFR (B) and p42/44 MAPK (C) relative to the expression of tubulin,
which was used to ensure equal protein loading. Western blots are representative of at least two independent experiments.

doi:10.1371/journal.pone.0129661.g004
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and MMPs in this cell line did not block MAPK signaling due to its modulation by both NK-
1R and RTKs (Fig 4A and 4C).

Taken together, these data demonstrate that SP-mediated HER2 and EGFR activation is a c-
Src and MMP-dependent process in BC cells.

The inhibition of c-Src, MMPs and NK-1R decreases cell viability and
migration of breast cancer cells
To study the role of c-Src, MMPs, and NK-1R in cell viability and migration capacities, we
treated the HER2+ SK-BR-3 and EGFR+ MDA-MB-468 cell lines with NK-1R antagonist L-
733,060, c-Src inhibitor 4-(40-phenoxyanilino)-6,7-dimethoxyquinazoline and MMP inhibitor
1–10, phenanthroline monohydrate. Cell viability was significantly decreased, above all under
NK-1R antagonist in both cell lines (Fig 5A). Inhibition of c-Src and MMPs activity also signifi-
cantly decreased cell viability and was almost completely abolished after the combination of
each drug with NK-1R antagonist and after triple inhibition.

Of particular note, the migration rate of MDA-MB-468 significantly decreased under c-
Src inhibitor, L-733-060 antagonist and after the combination of c-Src and MMPs inhibitor
(Fig 5B); however, only L-733-060 significantly decreased the migration rate of SK-BR-3 cells.

Fig 5. Blockade of c-Src, MMPs or NK-1R inhibits tumor cell viability andmigration in SK-BR-3 and MDA-MB-468 cells. (A) Cell viability quantification
of SK-BR-3 cells and MDA-MB-468 cells treated for 24h with IC50 values of MMP inhibitor, c-Src inhibitor, L-733,060 antagonist or with the combinations of
drugs: MMP inhibitor + Src inhibitor, MMP inhibitor + L-733,060), Src inhibitor + L-733,060 and MMP inhibitor + Src inhibitor + L-733,060 in serum free
medium. After 24h, the cells were treated with calcein (2 μM) for 45 min and calcein AM fluorescence was measured to determine cell viability. (B) Migration
rate quantification of SK-BR-3 cells and MDA-MB-468 cells treated for 24h with IC50 values of MMP inhibitor, c-Src inhibitor, L-733,060 antagonist or with the
combination of MMP inhibitor + Src inhibitor in serum-free medium. After 24h, detection of cell migration was quantified using calcein AM. Results are
represented as mean of % viability or % migration ± SD. All the quantitative data are for a minimum of 6 replicates. Significant differences by ANOVA with
Tukey Multiple Comparison post-hoc test are indicated as * P<0.05, ** P<0.01 and *** P<0.001.

doi:10.1371/journal.pone.0129661.g005
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This finding suggests that the cells’migration capacity was partially mediated through c-Src
and NK-1R signaling in MDA-MB-468 and mainly by NK-1R signaling in SK-BR-3 cells
(Fig 5B).

Discussion
Tachykinins are pro-inflammatory mediators/neuropeptides that contribute to tumor progres-
sion by modulating the properties of both cancer and stromal cells. In previous work, we
showed that SP contributes to BC progression by modulating the activity of oncogenic recep-
tors like HER2 and EGFR, thus influencing tumor responses to targeted therapies designed to
inhibit these receptors [16]. In the present study, we show that SP triggers HER2 and EGFR
activation by activating c-Src and MMPs.

The modulation of the steady state of RTKs like HER2 and EGFR by neuropeptides such as
SP can influence the clinical response of a tumor [17]. Although the oncogenic addiction to
RTKs is therapeutically exploited for BC treatment, the transmodulation of RTKs by SP and
other neuropeptides and pro-inflammatory mediators [42, 43] can influence the cancer cell
response to RTK inhibitors since it serves as a mechanism for RTK activation in a ligand-inde-
pendent way [14]. The protein tyrosine kinase c-Src can directly phosphorylate Tyr residues in
the kinase domain HER2 [30, 32] and the cytoplasmic tail of EGFR [31], allowing the forma-
tion of stable homo- or heterocomplexes with other receptors or the binding of scaffold pro-
teins and the activation of signal transduction. In addition, activated RTKs will reciprocally
activate c-Src, thereby creating a positive regulatory loop. This overactivation may contribute
to the permanent signaling through the RTKs and the maintenance of multiple signaling path-
ways downstream of the receptor [44]. Then, the transactivation of these receptors by c-Src-
dependent mechanisms may contribute to the persistence of RTK-related signaling pathways
even in the presence of tyrosine kinase inhibitors or antibodies against extracellular domains of
these receptors (Fig 6).

It is known that the c-Src protein is overexpressed in 70% of BC tumors, and that in most of
them c-Src is co-expressed with at least one ErbB family member [45]. The finding that the
basal activation of HER2 and EGFR depends, in part, on the activity of other additional signal-
ing pathways suggests that these instigator pathways might be used for therapeutic purposes to
deregulate the activation of RTKs. We observed that overexpression of NK-1R in a BC cell line
increases c-Src phosphorylation at Tyr416 more than 6-fold under the stimulus of SP, in addi-
tion to increasing HER2 phosphorylation. On the other hand, chemical inhibition of NK-1R
decreases c-Src phosphorylation at Y416 in the BT-474 and SK-BR-3 cell lines and the combi-
nation of NK-1R, NK-2R and NK-3R chemical inhibitors strongly decreases c-Src phosphory-
lation at Y416 in SK-BR-3 (cell line expressing all 3 tachykinin receptors). Thus, the use of c-
Src and MMP inhibitors allowed us to demonstrate that the SP-mediated transactivation of
HER2 or EGFR depends, in part, on c-Src and MMP signaling pathways in BC cell lines. More-
over, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is
important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines, being
more pronounced using NK1-R antagonist, L-733,060 alone or in combination. These results
suggest an oncogenic addiction to NK-1R signaling in breast cancer cells, where c-Src and
MMPs play an important role, probably due to the transactivation mechanism-dependent pro-
cess of HER2 and EGFR.

Therefore, the c-Src protein may be crucial not only in the ligand-independent transactiva-
tion of RTKs, but probably also in MMP maintenance and activation by triggering cleavage of
membrane-anchored ligands. These ligands, once released, would bind to receptors as EGFR
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[46, 47] which could homodimerize or heterodimerize with HER2 as the preferred heterodi-
merization partner.

In summary, we have shown that c-Src and MMPs are involved in HER2 and EGFR transac-
tivation processes through NK-1R in BC. Therefore, a simultaneous blockade of ERBB recep-
tors and other instigators of c-Src/MMP-induced MAPK activation such as NK-1R may
improve treatment responses against the ERBB family of receptors.
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