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ATP7A is a critical copper transporter involved in Menkes Disease, Occipital horn Syndrome and X-linked
distal spinal muscular atrophy type 3 which are X linked genetic disorders. These are rare diseases and
their genetic epidemiology of the diseases is unknown. A number of genetic variants in the genes have
been reported in published literature as well as databases, however, understanding the pathogenicity
of variants and genetic epidemiology requires the data to be compiled in a unified format. To this end,
we systematically compiled genetic variants from published literature and datasets. Each of the variants
were systematically evaluated for evidences with respect to their pathogenicity and classified as per the
American College of Medical Genetics and the Association of Molecular Pathologists (ACMG-AMP) guide-
lines into Pathogenic, Likely Pathogenic, Benign, Likely Benign and Variants of Uncertain Significance.
Additional integrative analysis of population genomic datasets provides insights into the genetic epi-
demiology of the disease through estimation of carrier frequencies in global populations. To deliver a
mechanistic explanation for the pathogenicity of selected variants, we also performed molecular model-
ing studies. Our modeling studies concluded that the small structural distortions observed in the local
structures of the protein may lead to the destabilization of the global structure. To the best of our knowl-
edge, ATP7A Clinical Genetics Resource is one of the most comprehensive compendium of variants in the
gene providing clinically relevant annotations in gene.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Copper (Cu) is an essential trace element vital to the health of
all living organisms and is crucial for the normal development of
the nervous system. It is required for a variety of biological pro-
cesses in the body including myelin formation and connective tis-
sue synthesis.It is required by cuproenzymes like ceruloplasmin, a
major circulating transport protein for copper, lysyl oxidase, an
enzyme essential for initiating the crosslinking of connective tis-
sues by oxidizing peptidyl lysine in elastin and collagen [1].
Human body requires copper for its cellular metabolism. The cop-
per transporter 1, CTR1, plays a major role for cellular Cu uptake in
the intestinal epithelium and in hepatic cells. Various chaperons
such as Antioxidant 1, Copper Chaperone (ATOX1) and, Human
Cytochrome c oxidase copper chaperone (hCOX17) distribute the
Cu to specific proteins or organelles. Cu is transported from entero-
cytes into blood circulation by ATP7A whereas ATP7B incorporates
Cu in liver ceruloplasmin and also mediates biliary excretion of Cu
[2].

Various genes are involved in Cu metabolism, such as CTR1
which is a high affinity Cu transporter mediating copper uptake,
DMT1 another mediator of Cu uptake. Another important gene
involved in Cu transport is ATOX1 which transports Cu from the
cytosol to transporters ATP7A and ATP7B. ATP7A and ATP7B are
located in the trans golgi network, ATP7A pumps Cu into blood
and ATP7B is responsible for maturation of ceruloplasmin [3].
ATP7A located at chromosome Xq21.1 spans about 150 kb of geno-
mic DNA and contains 23 exons. The size of individual coding
exons varies between 77 and 726 bp and introns vary in size
between 196 bp and approximately 60 kb [4]. As described by
[5] ATP7A is a member of the P1B-subfamily of the P-type ATPases.
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The gene encodes a transmembrane copper-transporting P-type
ATPase. Copper-transporting ATPases (Cu-ATPases) mediate the
copper transport, these ATPases are required for the growth, devel-
opment and also various physiological processes. Cu-ATPases
transport copper from the cytosol across cellular membranes, this
process reduces the intracellular copper concentration and also
controls the copper homeostasis in the body.

Genetic anomalies in the Cu-ATPase encoding ATP7A are asso-
ciated with a fatal neurological disorder such as Menkes disease
(MD), Occipital Horn Syndrome (OHS) which is a mild form of
MD and X-linked distal spinal muscular atrophy. ATP7A is ubiq-
uitously expressed in extrahepatic cells and tissues, therefore,
systemic defects are caused due to its absence or inactivation,
in MD or OHS patients. MD is an X-linked recessive disorder
which results in copper deficiency. Two forms of MD have been
described: classic MD and mild MD, based on the symptoms
mild MD is a less severe form. Classical MD is characterized by
neurological defects and peculiar ‘‘kinky” hair. MD is caused by
mutations in the ATP7A gene. One-third of the MD cases are
due to de novo mutations in ATP7A [6]. Copper absorption is
highly impaired in MD and intracellular copper trafficking is dis-
rupted by mutations in the ATP7A gene [4]. Similar to MD, OHS
is also a rare disorder occurring due to impaired copper absorp-
tion. OHS patients are characterized by ‘‘occipital horns” which
are downward pointing exostosis arising from the occipital bone
and certain connective tissue deformities comprising cutis laxa,
hernias, joint laxity and bladder diverticula [7]. X-linked distal
spinal muscular atrophy type 3 is a rare distal hereditary motor
neuropathy. This disease is characterized by weakness of distal
muscles of hands and feet, distal motor weakness particularly
of the lower limbs [8].

In the present study, we have developed a comprehensive
clinically relevant resource for genetic variants in the ATP7A
gene by systematic curation and annotation of the genetic vari-
ants, with appropriate classification according to ACMG-AMP
guidelines. We have also estimated the carrier frequencies of
the variants in global populations thus explicating the genetic
epidemiology of the disease. In this manuscript, we also present
our molecular modelling studies for six variants, to elucidate the
stability of these variants and the mutation-structure relation-
ship. To the best of our knowledge, this resource is one of the
most comprehensive compendium of variants in the ATP7A gene,
with systematic annotation and classification according to the
ACMG-AMP guidelines.
2. Materials and methods

2.1. Data curation and contents

The genetic variants in ATP7A associated with diseases were
curated from publications indexed in PubMed and PubMed Central
databases using formatted queries including the gene name and
disease names. The data was systematically entered into a prefor-
matted spreadsheet. Additional variants listed in ClinVar and Locus
Specific Databases were also checked and linked to the data cura-
tion. The preformatted spreadsheet also collected a number of
fields including the genome build, variant loci including the chro-
mosome, Start position, End position, Reference base (Ref), Altered
base (Alt), gene and the amino acid change was collected. In addi-
tion, the Technique used for identification, Ethnicity, Geographical
origin and Population from where the variant was identified were
collected. The nomenclature of the variants as per the Human Gen-
ome Variation Society guidelines were also generated. In addition,
the variant types as defined by nonsense, frameshift, splicing, and
deletion/insertion, missense, UTR30, UTR50 were also annotated.
2.2. Validation of curated data

All the variants which were curated from the various platforms
were rechecked in order to ensure the correctness of the variant
positions as well as the variant notations as per the Human Gen-
ome Variation Society (HGVS) nomenclature guidelines. Two web
based utilities – LUMC Mutalyzer and Variant Validator were
utilized.

Mutalyzer (https://mutalyzer.nl/) is a Web interface used for
constructing, validating, and transforming sequence variant
descriptions. Mutalyzer evaluates sequence variant nomenclature
according to the guidelines of the Human Genome Variation Soci-
ety (HGVS) nomenclature. The DNA tool Position converter was
used for finding the missing pieces of data obtained originally.
The Position Converter depends on mapping information from
the NCBI. The Position Converter converts the variation description
positions from the chromosomal position for a specific human gen-
ome build i.e GRCh37 / hg19 to a position relative to RefSeq tran-
script reference sequences present in the local mapping database
or vice versa.

Variant Validator (https://variantvalidator.org/) is a web-based
variant validation tool which provides an interface which allows
the validation of genomic variations published in scientific litera-
ture or databases. It is a web interface which is used to describe
sequence variants. We validated all the curated variants through
Variant Validator, in order to correct the erroneous variants pub-
lished in the literature sources if any [9].

2.3. Functional annotation of the variants

All the curated variants post-validation were systematically
annotated using the ANNOVAR package. The gene based annota-
tions were retrieved for the variants. In addition, Computational
annotations of the variants such as deleteriousness-prediction
scores such as SIFT, PolyPhen, CADD etc for predicting the delete-
rious nature of the variants were obtained. In addition, the allele
frequencies across ExAC, gnomAD, ESP6500, 1000 genome datasets
were retrieved.

2.4. Interpretation of pathogenicity of sequence variants

The variants were systematically analysed and classified as per
the guidelines for interpretation of sequence variants as put for-
ward by the ACMG & AMP.

The following attributes were decided on the basis of popula-
tion data i.e allele frequencies of the variant from the three data-
bases 1000 Genomes Project, ESP6500 exome-sequencing project,
ExAC 65,000 exomes data set. BA1 (Allele frequency is >5%); BS1
(Allele frequency in between 0.01 and 0.05); PM2 (Allele frequency
absent or <0.0005). The following attributes were decided on the
bases of computational data like SIFT, Polyphen and CADD score
generated through annovar run. PP3 (If two of the three computa-
tional data shows deleterious effect); BP4 (If two of the three com-
putational data shows tolerated/benign effect). The following
attributes were decided on the basis of functional data; PS3 (If
in vitro or in vivo functional assay support the damaging effect
of the variant on the gene or gene product); BS3 (If in vitro or
in vivo functional assay support the benign effect of the variant
on the gene or gene product); PM1 (Variant must be present in
functionally important protein domain) this was evaluated from
the pfam protein families database). The following attributes were
decided on the basis of Clinvar significance; PP5 (If Clinvar reports
the variant as pathogenic or likely pathogenic); BP6 (If Clinvar
reports the variant as Benign or likely benign); The following attri-
butes were decided on the bases of segregation data; PP1 (Cosegre-
gation with disease in multiple affected family members); BS4
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https://variantvalidator.org/


A. Mhaske et al. / Computational and Structural Biotechnology Journal 18 (2020) 2347–2356 2349
(Lack of segregation in affected members of a family); PS2 (De novo
confirmed); PM6 (De novo assumed); PP4 (Large family segrega-
tion); The following attributes were decided on the bases of vari-
ants; BP7 (Synonymous variants); PVS1 (Frameshift, Non-sense,
Splice-site variants); PP2 (Missense variant in a gene that has a
low rate of benign missense variation); BP1 (Missense in gene
where only truncating cause disease); Other attributes; PS1 (Same
amino acid change, previously described as pathogenic); PM5
(Missense change at a position where a different amino acid
change described as pathogenic before [10]. These criteria were
used to annotate each variant to the five classes as ‘‘pathogenic,”
‘‘likely pathogenic,” ‘‘uncertain significance,” ‘‘likely benign,” and
‘‘benign” as per the algorithm.

2.5. Comparison of allele frequencies in different global datasets

The variants that were classified as Pathogenic and Likely
pathogenic according to the ACMG guidelines, were mapped to dif-
ferent global datasets of 1000 Genomes, ExAC and gnomAD version
2. The allele frequencies in the different subpopulations of the vari-
ants mapping to different datasets were compared to the global
allele frequency in their respective dataset using Fisher’s Exact test.
The p values thus obtained were corrected using bonferroni correc-
tion method. The allele frequencies in the subpopulations having
corrected p value less than 0.05 were defined to be significantly
different as compared to the global allele frequency of that variant
in the respective dataset.

2.6. Molecular modeling studies

The variants that were classified as ‘‘pathogenic and likely
pathogenic” according to ACMG guidelines, were subjected to
detailed molecular modeling studies to provide a mechanistic
explanation for their pathogenicity. Although we have multiple
entries with pathogenic and likely pathogenic labels, we restricted
our studies only to those that have tertiary structures. To select the
variants that have tertiary structures, we systematically matched
the position of variants against the structure of Copper-
transporting ATPase 1 (ATP7A). Though there are 6 isoforms of
ATP7A reported, we chose isoform-4 (contains 1500 amino acids)
for our studies since it was reported as a canonical sequence.

2.7. Assessment of structural stability upon mutations

After systematically matching the respective positions of muta-
tions onto the structure, we selected several mutations for our
modeling studies. All those mutations underwent structural stabil-
ity calculations using multiple tools. We assumed a consensus-
based ranking would provide a better understanding of the delete-
rious nature of the mutations via their structural distortions.
Hence, we used 9 tools which consist of standalone molecular
modeling packages such as FoldX [11], Schrödinger with two differ
(ent force fields, OPLS2005 [12] and OPLS3 [13], MOE [14] and web
servers such as CUPSAT [15], mCSM [16], SDM [17], iMutant 2.0
[18] and POPMUSIC [19]. The outputs of these tools were catego-
rized as ‘destabilizing’, ‘stabilizing’ and ‘neutral’ based on the refer-
ence values of individual tools and a heat map was plotted.

2.8. Molecular dynamics simulations

In order to corroborate the results obtained from the previously
used tools, we performed molecular dynamics simulations for
50 ns. We found that the mutation A629P lies in the solution struc-
ture of the apo form of the sixth soluble domain of ATP7A (PDB ID:
1YJV) [20]. Similarly, mutations such as R844C, R844H, P852L and
G876R lie in the solution structure of the actuator domain of the
ATP7A (PDB ID: 2KIJ) [21]. In the same way, mutation V1180D lies
in the solution structure of the nucleotide binding domain of the
ATP7A (PDB ID: 2KMV) [22]. To perform MD simulations, we
selected the first structure from the ensembles of solution struc-
tures and mutations were introduced using COOT [23]. Later, all
these mutants along with the wild types (WT) were subjected to
MD simulations with Desmond molecular dynamics package by
preparing the proteins using the protein preparation wizard of
Schrödinger Maestro, where the protein preparation was executed
by adding hydrogen atoms, specifying the bond orders, incorporat-
ing protonation states for protein residues, optimizing hydrogen
bond network and running a short energy minimization with a
RMSD cutoff of 0.30 Å. The prepared proteins (both WT and
mutants) were soaked into an orthorhombic water box that con-
tained TIP3P water molecules. The size of the box was set in such
a way to include the entire protein. Also, the system was neutral-
ized by applying the respective number of Cl- atoms. All MD sim-
ulations were performed using NPT ensemble where the pressure
and temperature was set to default i.e. 1.01325 bar and 300 K
respectively. We recorded the trajectory and energy at every
50 ps and 1.2 ps respectively.

2.9. Database and web server

The database search tool was designed to allow users to easily
explore variants in gene ATP7A from the database. The variant data
is stored in MongoDB v3.4.10. The data can be accessed through a
web interface running on Apache HTTP server using PHP 7.0. The
user-friendly web interface for querying the database is coded in
PHP 7.0, AngularJS, HTML, Bootstrap 4 and CSS. MongoDB v3.4.10
was used to keep track of data processing through the web
interface.
3. Results

3.1. Compendium and classification of genetic variants

The compendium of curated variants encompasses a total of
602 variant entries in the ATP7A gene. These variants were derived
from a total of 64 publications [6, 8 and 24–82] and encompassed
variants reported from 17 countries. Of the total compendium of
variants, a total of 404 variants were unique and a large majority
of variants mapped to exons 18,18% (328/404), while a small num-
ber were intronic 12% (49/404), splicing 6.18% (25/404) and UTR
0.49% (2/404) variants (Fig. 1A). The variants were also classified
by their potential functional implication. A majority of variants
were classified as non-synonymous (226/404), while (14/404)
were classified as synonymous. (52/404) variants caused a stop-
gain, while (31/404) variants caused a frameshift, (3/404) were
non-frameshift and (2/404) were insertions. The variant classes
are summarised in Fig. 1B.

3.2. Classification of variants as per the ACMG & AMP guidelines

The variants were further reclassified as per the ACMG & AMP
guidelines for interpretation of the pathogenicity of variants. All
variants were classified into one of the five categories - Pathogenic,
Likely Pathogenic, Benign, Likely Benign and Variant of Uncertain
Significance (VUS). The classification revealed that 87 variants
could be classified as Pathogenic (21.53%), while 56/404 could be
classified as Likely pathogenic (13.86%). 22/404 could be classified
as likely benign 5.44% and 10/404 as benign (2.47%). A vast major-
ity of variants, 229/404 could only be classified as a VUS (56.68%)
for lack of evidence to classify them as Pathogenic or Benign
(Fig. 1C). Of the Pathogenic / Likely Pathogenic variants, 136 are



Fig. 1. The variants were annotated based on the context of the (A) genomic loci, (B) the functionality, (C) Distribution by Disease for the Pathogenic and Likely Pathogenic
variants and (D) ACMG classification.
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associated with Menkes disease, while 11 are associated with X-
linked distal spinal muscular atrophy type 3 and 6 are associated
with OHS (Fig. 1D).

3.3. Distribution of likely pathogenic and pathogenic variants in the
ATP7A gene

Our analysis revealed a total of 143 variants which could be
classified as pathogenic / likely pathogenic as per the ACMG &
AMP guidelines. The variants were systematically mapped to the
ATP7A protein structure and domains. A total of four functional
protein domains were annotated as per Pfam database using maf-
tools package in r-programming. These included six heavy metal
associated domains (HMA), E1-E2 ATPase, HAD like hydrolase
and ATPase IB-1. With an exception of a few variants, all the
pathogenic/likely pathogenic variants mapped to functional
domains of the protein (Fig. 2).
Fig. 2. Distribution of pathogenic/likely p
3.4. Global allele frequencies

All the variants annotated as Pathogenic and Likely Pathogenic
were further checked in global population genome datasets for
their allele frequencies.

The datasets considered include the 1000 Genomes, ExAC and
the gnomAD (version 2). Only a total of 5 likely pathogenic vari-
ants, of the 143 likely pathogenic and Pathogenic variants, mapped
to any of the global datasets. The variant rs782237314 shows fre-
quency of 0.00002 in the gnomAD dataset and ExAC dataset while
it was absent in the 1000 Genomes dataset. This variant was only
observed in the non-Finnish european subpopulation of both the
datasets. The variant rs367775730 shows frequency of 0.0002 in
the gnomAD dataset and ExAC dataset while it was absent in the
1000 Genomes dataset. This variant had a significantly high allele
frequency in the Ashkenazi jewish subpopulation as compared to
the global allele frequency of gnomAD dataset. The variant
athogenic variants in ATP7A protein.
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rs374162669 shows a frequency of 0.0003 in 1000 Genomes and
0.0001 in gnomAD and ExAC datasets. The variant rs138958687
shows frequency of 0.0006 in the 1000 Genomes and 0.0007 in
the gnomAD and ExAC datasets. This variant has significantly dif-
Fig. 3. Allele frequency distribution of pathogenic ATP7A variants in different population
Asian; AMR, American; AFR, African; OTH, Other; ALL, All Samples. 1KG_ALL, 1000 geno

Fig. 4. A. Heatmap of the stability predictions using 9 different tools, where tool 1–9 re
SDM, iMutant 2.0 and POPMUSIC. B. Apo form of the sixth soluble domain of ATP7A, the
WT (blue) and A629P (orange). D. Potential energies of the WT (blue) and A629P (or
interpretation of the references to colour in this figure legend, the reader is referred to
ferent allele frequency in the South Asian, Non-Finnish european
and Finnish subpopulations as compared to the global allele fre-
quency in the gnomad dataset, while in the ExAC dataset, it
showed a significant difference in the Finnish subpopulation as
datasets. SAS, South Asian; NFE, Non-Finnish European; FIN, Finnish; EAS, Eastern
mes. ESP6500si_ALL, ESP6500 All Samples.

presents FoldX, Schrödinger-OPLS2005, Schrödinger-OPLS3, MOE, CUPSAT, mCSM,
position of the A629P mutation is labeled and marked with spheres. C. RMSD of the
ange). E and F. RMSF of WT and A629P throughout 50 ns MD simulations. (For
the web version of this article.)
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compared to the global allele frequency. The variant rs781995242
shows frequency of 0.00001 in the gnomAD and ExAC datasets
while it was absent in the 1000 Genome dataset. Fig. 3 shows
the distribution of pathogenic variants in the population datasets.
3.5. Molecular modeling studies

After systematically matching the respective positions of muta-
tions, we selected 6 variants for our studies; A629P, R844C, R844H,
P852L, G876R and V1180D. These variants lie in three different
domains of the ATP7A structure. In our stability predictions, we
found FoldX predicted all of them as ‘neutral’. Similarly, when
applied to two different force fields, i.e., OPLS2005 and OPLS3,
Schrödinger predicted as ‘stabilizing’ for variants R844C, R844H,
P852L, G876R. In the same way, SDM predicted A629P and
Fig. 5. A. Structure of the actuator domain of ATP7A, position of the mutations is label
(grey), P852L (yellow) and G876R (pale blue). C. Potential energies of the WT (dark blue),
WT, R844C, R844H, P852L and G876R respectively throughout 50 ns MD simulations. (For
to the web version of this article.)
R844H as ‘stabilizing’. Also, POPMUSIC predicted R844C, R844H
as ‘stabilizing’. The iMutant 2.0 was unable to predict any effect
for V1180D. However, most of the tools in our consensus-based
stability prediction predicted the variants as ‘destabilizing’. The
stability prediction heatmap is shown in Fig. 4A.

Since the majority of the tools predicted these variants as desta-
bilizing, we assumed that our MD simulations would provide more
insights into the reasons for the destability. To elucidate the
mutation-structure relationships we mainly computed and com-
pared the root mean square deviation (RMSD) of the Ca and root
mean square fluctuations (RMSF) of individual residues of mutant
and WT protein over a 50 ns simulation time. The potential energy
of mutant and WT was also calculated and compared between the
mutants and WT.

In the case of A629P (Fig. 4B), the RMSD of the mutant does not
deviate much when compared to the WT (Fig. 4C). There was only
ed and marked as spheres. B. RMSD of the WT (dark blue), R844C (orange), R844H
R844C (orange), R844H (grey), P852L (yellow) and G876R (pale blue). 5D-H. RMSF of
interpretation of the references to colour in this figure legend, the reader is referred
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0.10 KJ difference between potential energies of mutant (4.25 � 10
4 KJ) and WT (4.15 � 104 KJ) throughout the 50 ns MD simulations
(Fig. 4D). We found that the RMSF of mutant has deviated signifi-
cantly at one of the flanking regions when compared to the WT
(Fig. 4E and F). Our analysis revealed that the side chains of lysine
and glutamic acid at the flanking regions were fluctuating drasti-
cally. It is known that RMSF calculations also include the side chain
flexibility. When comparing the ensembles of the experimental
structures, the RMSF of lysine and glutamic acid at the flanking
region are also highly distorted as we observed in our MD simula-
tions. From our simulation studies, we could conclude that the
A629P mutation didn’t impart any structural changes when com-
pared to the WT. Our results are in good agreement with the pre-
viously reported experimental studies [20].

In the case of R844C, R844H, P852L and G876R (Fig. 5A), the
RMSD of all the mutants agree with that of WT (Fig. 5B). RMSDs
of all the proteins including WT were stabilized between 2 and
4 Å. Similarly, the potential energies (Fig. 5C) of the mutants and
WT were between 6.35 � 104 KJ to 6.45 � 104 KJ which indicate
the energies of the systems are well maintained throughout the
MD simulations irrespective of the mutation. We then
computed the RMSF of the mutants and compared with that of
WT and found that the RMSF of both mutants and WT are stable
(Fig. 5D–H). These results lead us to think that any of these muta-
tions do not impose detectable structural changes when compared
to the WT.

Finally, for V1180D (Fig. 6A), we found that the RMSD does not
deviate much for the mutant when compared to the WT. For both
mutant and WT, the RMSD was stabilized between 10 and 12 Å
(Fig. 6B). To understand the drastic jump in RMSD, we critically
analyzed the distortions in the structures throughout the MD sim-
ulations and found that most of the structural distortions hap-
pened in the region that connects b3 and b4. High flexibility for
this region was previously reported in the experimental studies
Fig. 6. Structure of the nucleotide binding domain of the ATP7A, position of the mutatio
(orange). C. Potential energies of the WT (dark blue), V1180D (orange). D and E. RMSF
references to colour in this figure legend, the reader is referred to the web version of th
[22]. The potential energy and RMSF of both mutant and WT were
almost the same throughout the MD simulations (Fig. 6C and D).
However, when we compared the overall secondary structural ele-
ments, we found that there was a 5% reduction in the beta strands
for the mutant. The mutation V1180D was located at the b4 strand.
When valine is replaced with aspartic acid, there is not sufficient
space to accommodate the side chain of the aspartic acid and
due to that there is structural rearrangement which is reflected
in the reduction in the secondary structural elements.
3.6. Database interface and features

The ATP7A genetic variant resource features a user friendly web
based interface which allows query and browsing the compendium
of variants. The search interface allows query of the compendium
using variant, ACMG, AAchange and dbSNP ID. Variants can be
queried by formatted queries containing the chromosome, variant
position, reference and alternate alleles. The query retrieves the list
of all the matching entries from the database in a tabular form with
an option to open the variant details. The variant details are com-
piled in 4 broad sections The first section includes basic informa-
tion of the variant i.e. Gene name, Chromosome, Genome Build,
HGVS Nomenclature, genomic locus, reference and alternate bases
and the amino acid change. The second panel provides more infor-
mation on the variant with respect to the functional effect of the
mutation, and the classification as per the ACMG & AMP guidelines.
This section also provides information on the disease along with
the inheritance patterns, technique used for identification of the
variant, ethnicity from which the variant has been reported and
links to the variant in dbSNP database. The last sections provide
information on the geographical / population information from
where the variant was reported and the publication from which
the variant information was retrieved.
n is labeled and marked with spheres. B. RMSD of the WT (dark blue) and V1180D
of WT and V1180D throughout 50 ns MD simulations. (For interpretation of the
is article.)
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4. Conclusions

The ATP7A Genetic Variant Resource is a comprehensive com-
pendium of genetic variants in the ATP7A gene. The variant com-
pendium indexes 404 variants in the ATP7A gene. The database
also provides the annotations as per the ACMG & AMP guidelines
putting together the disease associations and evidence to qualify
the pathogenicity as derived from integrative analysis of datasets
and published literature to aid clinicians and researchers in the
clinical interpretation of variants.

Our MD studies revealed no large changes in the local structures
of the protein. However, it may be possible that even the small
structural distortions that we observed in our studies may affect
the stability of the global structure. Also changes in the microenvi-
ronment of the mutations that we could not detect could play an
important role in protein destabilization. We also admit that
longer-timescale simulation may reveal more significant structural
changes which could lead to the destabilization of the protein. We
agree that our MD simulation studies have limitations in terms of
time duration. Due to the incomplete structure of ATP7A, the pre-
dictions may not be fully indicative of the global stability of ATP7A.
Additionally, the lack of experimental support to corroborate the
simulation results (or vice versa) means further studies are
necessary.
4.1. Genotype to phenotype correlation

Molecular diagnosis of MD can play a vital role in better prog-
nosis and thus resulting in better disease management. In order
to overcome the problem of clinical heterogeneity in MD patients,
the defects should be properly characterized. Mutations like non-
sense, frameshift-insertion, deletions which are truncating can
cause complete disruption of the protein function, such mutations
can lead to severe clinical phenotype. A young patient harboring
ATP7A Q1168X mutation showed severe manifestation of MD
[83]. Patients showing classical MD phenotype have shown to har-
bor ATP7A R201X, Q303X, R980X, R986X but exceptionally K1408X
was found in a patient with milder phenotype of MD. ATP7A
N1304S variant was observed in patient with mild form of MD
i.e. OHS. It is observed that MD with milder form are characterized
by mutations showing some residual activity while mutations with
no residual activity manifested classical form of MD [41].

To the best of our knowledge, this is the most comprehensive
collection of genetic variants in ATP7A gene and central point of
information for the genetic epidemiology, carrier screening and
functional genomics in MD and OHS.
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