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Abstract 

Background:  Plant variety identification is the one most important of agricultural 
systems. Development of DNA marker profiles of released varieties to compare with 
candidate variety or future variety is required. However, strictly speaking, scientists did 
not use most existing variety identification techniques for “identification” but for “dis-
tinction of a limited number of cultivars,” of which generalization ability always not be 
well estimated. Because many varieties have similar genetic backgrounds, even some 
essentially derived varieties (EDVs) are involved, which brings difficulties for identifica-
tion and breeding progress. A fast, accurate variety identification method, which also 
has good performance on EDV determination, needs to be developed.

Results:  In this study, with the strategy of “Divide and Conquer,” a variety identifica-
tion method Conditional Random Selection (CRS) method based on SNP of the whole 
genome of 3024 rice varieties was developed and be applied in essentially derived 
variety (EDV) identification of rice. CRS is a fast, efficient, and automated variety iden-
tification method. Meanwhile, in practical, with the optimal threshold of identity score 
searched in this study, the set of SNP (including 390 SNPs) showed optimal perfor-
mance on EDV and non-EDV identification in two independent testing datasets.

Conclusion:  This approach first selected a minimal set of SNPs to discriminate non-
EDVs in the 3000 Rice Genome Project, then united several simplified SNP sets to 
improve its generalization ability for EDV and non-EDV identification in testing datasets. 
The results suggested that the CRS method outperformed traditional feature selec-
tion methods. Furthermore, it provides a new way to screen out core SNP loci from 
the whole genome for DNA fingerprinting of crop varieties and be useful for crop 
breeding.
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Background
Fast, accurate, and efficient varieties or cultivars identification and characterization 
are essential for crop varieties’ breeding, registration process, seed production, trade, 
inspection, and patents protection [1]. As a staple food, rice is consumed by more than 
3.5 billion people worldwide. Therefore, breeders must continuously develop high-yield 
and elite-quality rice varieties to meet the demands of the increasing population and 
food consumption. Identifying, screening, and utilizing the rice germplasm resources are 
the first steps of rice introduction and improvement programs. At present, more than 
780,000 rice germplasm are available in gene banks worldwide, theoretically retaining 
all the gene resources of rice [2, 3]. However, many varieties have similar genetic back-
grounds, even some essentially derived varieties (EDVs) involved, resulting in difficulties 
for identification and breeding progress [4, 5]. Thus, it is urgent to establish a varieties 
fingerprint map based on a sufficient number of varieties in the germplasm resource, 
assess variety distinctness as we can [6], and especially apply it for EDV identification for 
prompting crops breeding [7]. Only through this way can the genetic relationship among 
varieties be effectively analyzed and then effectively guide the breeding parents’ selec-
tion, providing valuable information for further rice breeding [8, 9].

The traditional species or variety identification approach involves observing and 
recording morphological characters [1, 6]. Since morphological characters are influ-
enced by the environment and not available at all growth stages, the traditional approach 
is not practical for rapidly separating extensive collections. It also has compromised pre-
cision and is time-consuming. The use of molecular markers is a modern and suitable 
approach to cultivar and variety identification [10]. Molecular markers can save the time 
of routine field investigation and data collection and have the advantages of being unaf-
fected by the environment and extremely rich in variation. Moreover, it is especially suit-
able for closely related varieties identification [11]. SSR and SNP markers were identified 
as the most widely used marker system for plant variety characterization for stability 
and effectiveness and recommended their use as an additional marker system in con-
junction with morphological characters by the International Union for the Protection of 
New Varieties of Plants (UPOV) [12, 13]. Generally, a SSR contains more polymorphic 
information content (PIC) than does a SNP since SSRs are often multi-allelic while SNPs 
are mostly bi-allelic. However, the nomenclature of SNP is much simpler than that of 
SSR, which makes the analysis and sharing of results much more accessible [14]. Fur-
thermore, SNPs are more abundant and stable in genomes than SSRs and evenly distrib-
uted in a whole genome, while lots of SSRs trends located in the non-coding region of 
genes [15, 16].

In 2010, Jung et al. [17] first reported the development of a panel of SNP markers for 
variety identification in peppers. With 40 SNPs, they could discriminate 97.5% of the 81 
commercial hot cultivars and 100% of the 17 sweet pepper cultivars. Cabezast et al. [18] 
selected a set of 48 stable SNP markers with a high discrimination power and a uniform 
genome distribution, which was proposed as a standard set for grapevine genotyping. 
Hinze et  al. [19] analyzed the diversity of cotton (Gossypium hirsutum L.) germplasm 
using the CottonSNP63K Array and screened out SNPs to efficiently discern differ-
ences among cultivars. In 2018, fifty core markers from 2.54 million SNPs obtained by 
aligning resequencing data of cabbage inbred lines were selected and used to establish 
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a DNA fingerprint database of 59 cabbage varieties. An artificially mixed population 
validated the core SNP markers. The SNP fingerprinting constructed with core markers 
could identify the cabbage variety’s distinctness and authenticity [20]. Almost of pre-
vious studies of varieties identification ordered SNPs with PIC at first, then manually 
screened out the SNPs with high PIC that evenly distributed on the chromosomes and 
constructed a fingerprint map [10, 15]. The manual screening process often was not easy 
to repeat. Meanwhile, when the sample size was large, selecting an optimal SNP combi-
nation set was hard to distinguish all the varieties in a specific study with this strategy. 
This dilemma is possible due to the inefficient screening approaches and/or limitation of 
polymorphic markers.

Recently, with the development of sequencing technology, high-throughput SNPs have 
been widely generated in lots of crops [21]. Zhang et al. [22] developed target SNP-seq 
and established a DNA fingerprint of 261 cucumber varieties by target SNP-seq with 163 
perfect SNPs from 4,612,350 SNPs based on 182 cucumber resequencing datasets. In 
2018, the 3000 Rice Genome Project (3 K RGP) had publicly released the sequence data 
of 3024 rice germplasm from the 780,000 rice materials in the global rice germplasm 
library, with an average sequencing depth of 14×. It shared more than 3 million SNP 
markers, providing a great genetic resource for identifying rice varieties [2, 3]. However, 
to save cost, selecting a minimal set of features from enormous SNP markers to accu-
rately identify varieties is a significant problem in constructing a rice fingerprint map. 
Besides that, scientists should take EDVs and non-EDVs (or distinct varieties) discrimi-
nation account into varieties identification research for the EDVs impacted breeding 
innovation negatively [8, 22, 23].

The objectives of this study were to (1) develop a fast, cost-effective screening SNP 
markers procedure for varieties identification without manual operation process; (2) 
construct a rice fingerprint map and apply it for EDV and non-EDV discrimination with 
independent test datasets; (3) code the method with R language for easy application.

Materials and methods
Genotype dataset of materials

There are three rice SNP genotype datasets involved in this study. We downloaded the 
first dataset from the 3000 Rice Genome Project (https://​snp-​seek.​irri.​org/), includ-
ing ~ 4.04 million core SNPs of 3024 rice accessions from 89 different countries or 
regions [2]. The core SNPs passed quality control were maintained by removing SNPs 
with > 20% missing calls and MAF < 1% and using a two-step linkage disequilibrium 
pruning procedure with PLINK (version 1.9) [24]. Then SNP genotype imputation 
was performed with beagle software (version 5.0) [25]. The genome sequences of the 
3,024 accessions represent various varietal types of diverse origins and the availability 
of additional high-quality rice reference genomes. Rice gene annotation information 
was obtained from the Genome database of NCBI GenBank (http://​www.​ncbi.​nlm.​nih.​
gov/, update to Nov. 6th, 2020). Then 99,253 SNP markers located in the genes’ coding 
region (cSNPs) were extracted and used following rice fingerprint mapping modeling. 
The training dataset contains 3024 varieties with 99,253 SNPs, denoted as Train_Data 
(99,253 × 3024).

https://snp-seek.irri.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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The second dataset contains 1568 rice varieties genotyped using a genome-wide high-
density rice array (HDRA). Wang et al. [2] imputed the SNP genotype of these differ-
ent 1568 rice varieties with above 3024 rice genomes as reference. We downloaded the 
imputed SNP genotype dataset with 404 k core SNPs from the 3000 Rice Genome Pro-
ject (https://​snp-​seek.​irri.​org/). The same 99, 253 cSNPs as in Train_Data were extracted 
to form the first independent test dataset, denoted as Test_Data1 (99,253 × 1568).

The third dataset contains 401 rice varieties. Their seeds were obtained from the 
China rice breeders and planted in Wuhan in 2013. On average, these materials were 
sequenced on the Illumina HiSeq2500 platform at 11 × genome coverage. By quality con-
trol, 1,894,012 high quality SNPs with minor allele frequency (MAF) > 5% and missing 
rate < 20% were obtained. Among them, there are 319,624 SNPs also detected in 3K-RGP, 
respectively. The 85, 860 cSNPs that were also identified in Train_Data were extracted to 
form the second independent test dataset, denoted as Test_Data2 (85, 860 × 401).

The composition of the training dataset and two independent test datasets are shown 
in Fig.  1. The varieties in Test_Data1 are different from those in Train_Data, denoted 
as external varieties. The varieties in Test_Data2 were collected from some breeding 
experts and have the same variety name as some varieties in Train_Data, denoted as 
internal varieties.

Marker polymorphism analysis

The software R language was used to calculate each cSNP marker’s polymorphism infor-
mation content (PIC) in the Train_Data. The calculation formula is

where fi is the genotype frequency of the given SNP site i [26, 27].

Genomic similarity testing of varieties in Train_Data

Identity scores (IS) of SNPs were used to calculate the genomic similarity of varieties 
[28], which assists in discriminating essentially derived variety (EDV) from non-essen-
tially derived variety (non-EDV) [23]. The IS was the total accumulated score within a 
20-kb window divided by the total number of SNPs. The formula of IS was as below:

(1)PIC = 1−
∑

fi

Fig. 1  Venn diagram of the composition of the training dataset and two independent test datasets

https://snp-seek.irri.org/
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In this formula, Dsi refers to the distance value of sample allele to the reference allele 
at a given SNP site i; Dsi is 0, 0.5, and 1, separately for the homozygous allele that same 
as the reference allele, heterozygous allele, and homozygous allele that different from the 
reference allele at given SNP site i. N is the total number of SNPs within a 20-kb window. 
In this study, taking Oryza Sativa L. cv. Nipponbare as reference genome, IS between 
every two varieties in the Train_Data were calculated with the 404 k core SNPs. Accord-
ing to Longping Yuan’s suggestion, IS = 97.5% was set as the threshold for EDVs’ deter-
mination of rice varieties with SNPs on the whole genome [23]. If two or more varieties 
are regarded as EDVs in Train_Data, only one is randomly retained for following distinct 
varieties analysis.

Selecting SNPs from the training dataset to construct fingerprint map

Concept of conditional random selection (CRS) method

This study proposed a new method, Conditional Random Selection (CRS), for fast and 
accurate identifying varieties. The flowchart of the CRS method was shown in Fig. 2. To 
explain the concept of the CRS method clearly, we took the dataset with seven varieties 
(V1–V7) and seven SNPs as an example with a schematic diagram (Fig. 3).

Stage 1: SNPs Preliminary screening. At first, randomly selected three SNPs to sepa-
rate accessions by constructing specific haplotypes. Assuming that SNP2, SNP3 and 
SNP4 were selected in the first round. The genotype combinations of the three SNPs 
were different from each other among varieties V1(0, 0, 1), V2(0, 1, 0), and V3(1, 0, 1), 
which denoted as specific haplotypes. In contrast, the situation is different in V4–V7. 
The three SNPs’ genotype combination for V4 and V5 was (0, 1, 0), and for V6 and V7 
were (1, 1, 1), referred to as a non-specific haplotype (Fig. 3). Then the specific haplotype 
of the remaining varieties (V4–V7) was constructed by randomly selecting three SNPs 
from the remaining markers (SNP1, SNP5–SNP7), repeated this procedure until all vari-
eties had specific haplotypes.

Stage 2: Redundant SNP deletion. Randomly shielded one SNP at a time, if the remain-
ing SNPs combination can still discriminate all varieties from each other, indicating 
the shielded SNP was a redundant one. We filtered out this redundant SNP. Otherwise, 
kept the SNP. We repeated this step several times until all the marks were checked. As 
shown in Fig. 3, SNP 3, 4, and 7 are redundant SNPs. The haplotype constructed by the 
genotype combination of SNP2, SNP5, and SNP6 can still distinguish all seven varieties, 
forming a simplified SNP combination.

Varieties identification in training set by using the CRS method

Compared with the 404 k SNPs covering the whole genome of 3024 varieties in Train_
Data, 99,253 cSNPs located in the gene coding region are significantly reduced. To 
make the selected cSNPs for varieties identification in Train_Data also be able to 
identify EDVs effectively, we prefer to choose cSNPs that be polymorphic in EDVs for 
other distinct varieties (non-EDVs) identification with the CRS method. Since there 

(2)
IS =

N∑
i

(1− |Ds1i − Ds2i|)

number of SNPs in the window
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were multiple random selection procedures involved in the CRS method, multiple 
simplified SNP combination sets can distinguish all distinct varieties in Train_Data 
in theory. Then the CRS method was applied five times to obtain five simplified SNP 
combination sets without duplicating SNP.

Fig. 2  Flow chart of the Conditional-Random-Selecting SNP method
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Identification ability comparison of multiple sets of SNP combination

Uniting multiple sets of SNP combinations can improve independent identification reli-
ability and fault tolerance. Still, on the other hand, to save the identification cost as much 
as possible, it is necessary to determine the optimal number set of SNP combinations. It 
should contain a relatively small size of markers and can well distinguish EDV and non-
EDV in practical application.

Compared with the 404 k SNPs, the number of selected SNPs with CRS has been dra-
matically reduced. There would result in a high false-positive if we still use IS = 97.5% as 
the threshold to judge whether the variety in Train_Data was EDV or not. Testing multi-
ple IS value levels is necessary to determine the optimal IS threshold for selected SNPs in 
EDV and non-EDV identification. In this study, one to four SNP combination sets from the 
above five simplified SNP combination sets were selected to form a union SNP combina-
tion set. The threshold of IS 95.5% to 99.5% by the step of 1% was set to identify EDV for 
the optimal threshold of IS determination. At each threshold of IS, all varieties can be parti-
tioned into four categories, which are quantified as the numbers of true positives (TP), true 
negatives (TN), false positives (FP), or false negatives (FN). By comparing the results with 
EDV identified with 404 k SNPs, the parameters Precision (PR) (formula (1)), Recall (RC) 
(formula (2)), and F-score (F1) (formula (3)) [29] were used to comprehensively determine 
the most suitable union SNP combination set for varieties identification.

(3)PR =
TP

TP + FP

(4)RC =
TP

TP + FN

Fig. 3  Schematic of the two stages of the Conditional-Random-Selecting SNP workflow
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Meanwhile, the reference methods Random Selection (randomly select SNPs from 
Train_Data, denoted as RS) and high PIC selection (randomly select SNPs with PIC 
more than 0.4 from Train_Data, denoted as HPS) were also applicated for results com-
parison. After that, we calculated the optimal union SNP combination’s PIC value and 
their distribution on the chromosome with R language.

Independent testing of variety identification

To test the varieties’ identification ability of the three methods CRS, RS, and HPS, with 
the optimal IS threshold obtained from the above analysis, we separately used the opti-
mal union SNP combination set, the same amount of SNPs selected by RS or HPS, for 
independent datasets’ EDV identification. Then by comparing these results with EDV 
and non-EDV discriminated with 404 k SNPs under the threshold of IS = 97.5%, the PR, 
RC, and F1 of CRS, RS, and HPS methods were calculated. The RS and HPS methods 
were repeated applicated five times, and the highest PR, RC, and F1 of them were kept 
for comparing with that of the CRS. Test_Data1 and Test_Data2 were separately used for 
independent external varieties and internal varieties identification.

Data availability

The CRS method was compiled with the R language and could be downloaded free on 
Github (https://​github.​com/​Kness​Kness/​Li_1).

Generation of 2D barcode

We used an online tool (available at www.​barco​de-​gener​ator.​org) [13] to generate the 2D 
barcode for each distinct variety (non-EDV) in Train_Data with the most suitable union 
SNP combination set obtained in 2.3.3 part. The genotype-based on the SNP barcode 
was entered, and the 2D barcode was automatically generated. Once the barcode was 
scanned, it confirmed the information used for creating the 2D barcode.

Results
Characteristics of SNPs in Train_Data

The 99, 253 cSNPs in the Train_Data were uniformly distributed on 12 chromosomes 
(Fig. 4B). The PIC value of these cSNPs ranged from 0.096 to 0.652. The frequency of 
most intervals of PIC of cSNPs was similar. The frequency of intervals of 0.10 < PIC < 0.15 
and 0.45 < PIC < 0.50 were relatively higher than that of other intervals (Fig.  4A). 
Genomic similarity comparisons of varieties in Train_Data showed that the IS of each 
two varieties among 2629 varieties were less than 97.5%, with 404 k core SNPs in Train_
Data. These 2629 varieties were deduced as non-EDV and were used for further varieties 
distinction in Train_Data.

Training set modeling

By application of the CRS method five times, at last, we obtained five simplified SNP 
combination sets separately involving 118, 136, 121, 116, and 136 SNPs, without any 

(5)F1 = 2
PR · RC

PR+ RC

https://github.com/KnessKness/Li_1
http://www.barcode-generator.org
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duplicate SNP among these SNP combination sets. In order to improve the generaliza-
tion and robustness of a single SNP combination set, one to four simplified SNP com-
bination sets were united to determine EDV with different IS levels (Fig. 5). The EDV 
determination results showed that the PR increased as the threshold of IS increased 
(Fig. 5A), while it was the opposite for RC (Fig. 5B). The more simplified SNP combina-
tion sets involved, the higher precision was observed at the same level of the IS thresh-
old. However, this was not true for RC. F-score is a measure of a model’s accuracy on a 
dataset, which is denoted as the harmonic mean of PR and RC. Our results showed that 
when the threshold of IS = 98.5%, the union of three simplified SNP combination sets 
(118 + 136 + 136 = 390) has the best performance with F-score 85.4% (Fig. 5C), precision 
91.7%, and recall 80.0%. Thus, the optimal IS threshold for the optimal united SNP com-
binations (390 SNPs) was determined as 98.5%.

Fig. 4  The PIC value of cSNPs in Train_Data and their distribution on chromosomes. A The histogram of PIC 
value of cSNPs in Train_Data; B The chromosome distribution of cSNPs in Train_Data

Fig. 5  The performance of united SNP combinations screened out from CRS on EDV determination in 
Train_Data. A–C Separately represents the precision, recall and F-score of united SNP combinations screen 
out from CRS on EDV determination in Train_Data at different IS threshold. Note Legend refers to the 
Method-the number of simplified SNP combination set. For example, CRS-2 denoted as the union of two SNP 
combination sets that screened out from CRS method. Full combination of one to four combination sets from 
five simplified SNP combination sets were displayed. The detailed information of the united SNP combination 
sets was listed in Additional file 1: Table S1
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EDV and non‑EDV determination performance with CRS, RS, and HPS methods

EDV determination performance with CRS, RS, and HPS methods is shown in Fig. 6. 
As the number of SNP combination set increased, the precision of EDV determina-
tion increased in all three methods, while there was no significant difference in the 
recall of EDV determination. As the threshold of IS increased, the overall precision 
of EDV determination increased, and the recall decreased as a whole in all the three 
methods. When the IS threshold was less than 98%, the precision of the HPS and 
RS method were higher than that of the CRS method, while IS threshold was more 
than 98.5%, there was no significant difference in the precision of the three meth-
ods (Fig.  6A). The recall of the CRS method was higher than that of the other two 
methods (Fig.  6B). F-score showed that at the threshold of IS = 98.5% and 99.5%, 
the performance of CRS was better than HPS and RS. Especially at the threshold of 
IS = 98.5%, the average F-score of CRS with three and four SNP combination sets sep-
arately were 83.2% and 82%, which showed very similar good EDV determination per-
formance in this study. Moreover, the union of three simplified SNP combination sets 
(118 + 136 + 136 = 390) has the best performance with F-score (Fig. 6C) as described 
in the above part.

Meanwhile, the PIC value of the 390 SNPs with the best performance in EDV deter-
mination selected with the CRS method ranged from 0.096 to 0.652. The 390 SNPs 
were distributed on 12 chromosomes, and most of them with relatively low PIC value 
(Fig.  7), less than 0.2. Our results showed that the SNP combination set with high 
polymorphic information (PIC) of individual SNP was not necessarily better at EDV-
discrimination than that with low polymorphic information (PIC) of some SNPs. This 
is possible due to the redundancy among these high PIC SNPs. With the same num-
ber of SNPs (390) selected with HPS or RS methods, all non-EDV in Train_Data also 
can be distinguished from each other. However, when the number of SNPs decreased, 
the CRS method showed significantly better performance on non-EDV discrimina-
tion than HPS and RS methods (data not shown).

At last, the SNPs of the union of three simplified SNP combination sets 
(118 + 136 + 136 = 390) were selected for rice fingerprint map construction of 3024 
varieties in Train_Data. The united SNP combination sets of 3024 varieties were listed 
in Additional file 2: Table S2. Furthermore, Additional file 3: Table S3 lists the meta-
data information for the 3 K RG accessions. The 2D-barcode of each variety can be 

Fig. 6  The average performance of united SNP combination sets screened out from CRS, HPS and RS on EDV 
determination in Train_Data. A–C Separately represents the average precision, recall and F-score of united 
SNP combinations screen out from the three marker selecting methods on EDV determination in Train_
Data at different IS threshold. Note Legend refers to the Method-the number of simplified SNP combination 
set, as described in Fig. 3
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obtained with the unique ID of variety in the 3  K rice genome project and the 390 
SNPs information with online software (available at www.​barco​de-​gener​ator.​org).

The detecting power of external variety identification

By comparing the varieties in Test_Data1 and Train_Data with 404 k SNPs, there were 263 
varieties in Test_Data1 determined as EDV of the varieties in Train_Data at the threshold 
of IS = 97.5%. While with the 390 SNPs selected with the CRS method, 129 varieties were 
determined as EDV at the threshold of IS = 98.5%. The precision and recall of the EDV 
determination with the CRS method were 83.72% and 41.06%, respectively. While there 
were 21 and 41 EDVs determined by HPS and RS method, respectively. The order of the 
F-score of the three methods is CRS (56.5%) > RS (27.0%) > HPS (14.8%) (Fig. 8A). For the 
1305 non-EDVs in the Train_Data1, the three methods showed similar precision, recall, 
and F-score, and the CRS method showed relatively better performance (Fig. 8B). These 
results indicated CRS method was better than HPS and RS method in independent external 
varieties identification.

The detecting power of internal variety identification

By comparing the varieties in Test_Data2 and Train_Data, with 404 k SNPs, there were 371 
varieties among 401 in Test_Data2 determined as EDV to the varieties in Train_Data at 
the threshold of IS = 97.5%. While with the 390 SNPs selected with the CRS method, 368 
varieties were determined as EDV at the threshold of IS = 98.5%. Only 302 and 353 EDVs 
were determined by HPS and RS method, respectively. And the order of the precision, 
recall and F-score of the three methods were HPS (100%) > RS (99.9%) > CRS (99.5%), CRS 
(99.2%) > RS (95.2%) > HPS (81.4%), CRS (99.3%) > RS (97.5%) > HPS (89.8%), respectively 
(Fig. 8C). For the 30 non-EDVs in the Train_Data2 determined with 404 k SNPs, the CRS 
method has higher precision and F-score than HPS and RS. The order of the F-score of the 
three methods was CRS (91.8%) > RS (76.6%) > HP (46.5%) (Fig. 8D). These results suggested 
that the CRS method was significantly better than the other two methods in identifying 
independent internal varieties.

Fig. 7  The PIC value of the 390 SNPs screened out with CRS and their distribution on chromosomes. A The 
histogram of PIC value of 390 SNPs screened out with CRS; B The chromosome distribution of 390 SNPs 
screened out with CRS

http://www.barcode-generator.org
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Discussion
A rapid and effective crop variety identification method should meet the high-resolution 
requirements of distinct variety discrimination, easy operation, standardization, and 
automation. Because most SNPs’ genotype is bi-allelic (inbreeding lines) or tri-allelic 
(including hybrid lines), in theory, if there were n distinct varieties in the training data-
set, at least p (2p = n or 3p = n) makers needed for distinguishing all varieties. For exam-
ple, the combination of at least ten bi-allelic SNPs can discriminate 3024 rice varieties 
in the ideal situation. However, because of the enormous SNP markers contained in the 
genome sequencing data (m), selecting p markers from m is too large to obtain the opti-
mal SNP combination set. Except for this big challenge, accurate identifying varieties 
in independent tests is another crucial challenge for crop variety identification[30]. It is 
well known that DNA fingerprinting has been applied for cultivar identification in vari-
ous crop species, including cereals, vegetables, fruits, oilseeds, and nuts [1, 28]. However, 
strictly speaking, these techniques were not used for “identification” but for “distinction 
of a limited number of cultivars,” since, in most cases, they were applied for a limited 
number of definitive cultivars [28]. Even some strategies cannot distinguish all varieties 
in certain studies due to the close relationship among the non-distinguished accessions 
and/or the limitation of identification methods. Only a few researchers recently devel-
oped specific Indel or target-SNP for successfully new varieties identification in soybean 
[31] and cucumber [22].

With the development and wide application of machine learning methods [32, 33], 
several scientists recently interested in combining near-infrared hyperspectral imaging 

Fig. 8  The performance of 390 SNPs screened out from CRS, RS and HPS on variety identification in Testing 
datasets. A, B Separately represents EDV and non-EDV identification performance in Test_Data1; C, D 
separately represents EDV and non-EDV identification performance in Test_Data2
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and deep learning methods (such as convolutional neural network (CNN), Residual 
Network (ResNet)) to identify crop varieties. Because of that, different varieties of crop 
seeds have different characters and values [34–36]. Zhou et al. proposed a novel convo-
lutional neural network-based feature selector (CNN-FS) for wheat variety identification 
with a large spectral dataset of more than 140,000 wheat kernels in 30 wheat varie-
ties [34], and this method achieved a high accuracy (93.01%) and kept high precision 
(90.02%) with 60-channel features. Although deep learning methods showed powerful 
prediction ability in variety identification with seed near-infrared hyperspectral images, 
they may not be suitable for variety identification with genotype data at the present stage 
since each variety (class) has only one sample in the training set. Maybe these methods 
could be used in genotype data for variety identification soon when the cost of sequenc-
ing is greatly reduced.

In this study, we proposed the Conditional Random Selection (CRS) method for effec-
tively identifying rice variety. This method screened out a few SNPs evenly distributed 
in the coding region of the whole genome of rice varieties in the 3 K rice project with 
the strategy of "divide and conquer" could discriminate all distinct varieties successfully, 
which greatly save the cost of variety distinction in the Training set. Compared to the 
SNP located in the non-coding region, the SNP in the coding region (cSNP) are more 
stable and trend related to genes and traits of crops, which will facilitate the varieties 
discrimination [37]. Meanwhile, we coded the method with R language to reduce the 
manual operation and realize identification automation. In practical application, with 
the optimal threshold of IS searched in this study, the SNP combination selected from 
the CRS method also showed sound performance on EDV and non-EDV identification 
in independent testing datasets.

There were three advantages of the CRS method compared to traditional methods. 
First, we chose a SNP combination set that can distinguish all training set samples as 
much as possible. Previous studies often kept several high polymorphic SNPs and then 
clustered the samples to check the resolution of these SNPs. If some samples could not 
be distinguished, then find out those SNPs with the highest resolution for particular 
sample pairs and add them to the original list of SNPs to improve the resolution [10]. 
However, redundancy may exist among these high PIC SNPs. In this study, the CRS 
method with the strategy of "divide and conquer" first randomly selected a few markers 
to distinguish a small number of samples several times, kept the highest resolution SNP 
combination among them, and then selected markers from the remaining markers to 
distinguish other samples several times, kept the highest resolution SNP combination 
and added it to the previous SNP combination, step by step, until all samples were dis-
tinguished. The selected SNP combination was then de-redundant to obtain a simplified 
marker combination that can distinguish samples as much as possible quickly. With R 
code written by ourselves, the discrimination of 2629 non-EDVs in Train_Data was fin-
ished within 3.5 h (Compute parameters: x86_64 CPU, 12-core Intel® Xeon® Processor 
E5-2650 v4, 30 MB Intel® Smart Cache, 2.20 GHz).

Second, by uniting multiple sets of simplified SNP combinations and searching the 
optimal threshold of IS, the set with a suitable number of SNPs showed sound perfor-
mance on variety identification (EDVs and non-EDVs determination) in the training set. 
IS of SNP on the whole genome was a good index for estimating the genomic similarity 
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[22]. Compared to the 404 k SNPs, the SNP in the simplified marker combination was 
greatly reduced. In order to grant the accuracy of variety identification with the small 
amount of SNPs, among 20 sets of united SNP combinations, the set with 390 SNPs 
(three sets of simplified SNP combinations united together) that screened out with the 
CRS method showed the best EDVs and non-EDVs determination at the threshold of 
IS = 98.5% than that of other sets. It also outperformed HPS or RS method when with 
the same number of SNPs (390). This further confirmed the superior practicability of the 
CRS method on variety identification in the Training dataset.

Third, the SNPs selected with the CRS method showed good performance on vari-
ety identification in the testing set. As well-known as that, the constancy of a variety 
is provided by a set of genes specific to it, while variations of genes make the variety 
is different from generation to generation. In other words, the constancy of a variety 
is not stable. Thus, the SNP combinations even performed well on distinguishing EDV 
and non-EDV in the Training dataset but not necessarily well on identifying EDV and 
non-EDV in the testing set. With the CRS method, we initially retained the polymorphic 
markers in EDVs, then screened out the optimal SNP combination to distinguish non-
EDVs in the training set. This strategy possibly significantly reduced the probability of 
mis-determination on EDVs and non-EDVs in the testing set.

Although CRS methods showed well performance on variety identification in both 
Training and Testing datasets, it still could not grant 100% of identification accuracy in 
the testing set due to the limitation of sample size in the training set. As more and more 
varieties are developed, the need to properly identify and categorize them increases. 
Besides that, according to the International Union for the Protection of New Varieties of 
Plants (UPOV) convention, a variety is deemed to be essentially derived from an initial 
variety if it is (1) predominantly derived and (2) clearly distinguishable from the initial 
variety and (3) genetically conform to the initial variety (UPOV1991) [38]. Although in 
this study, we through the genomic similarity to judge a variety whether it is an EDV, this 
was only conforming to the third rule. The accurate EDV identification is better to be 
further determined in combination with other information (etc., morphological traits in 
field trail) in the application.

Conclusion
In this study, we developed an effective variety identification method. We first selected 
a minimal set of SNPs to discriminate non-EDVs in the 3000 Rice Genome Project, then 
united several sets of simplified SNP combinations to improve its generalization abil-
ity for EDV and non-EDV identification in testing datasets. The method outperformed 
traditional feature selection methods. Furthermore, it provides a new way to screen out 
core SNP loci from the whole genome for DNA fingerprinting of crop varieties and be 
useful for crop breeding.
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