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Abstract

The biodegradation of lignin, one of the most abundant carbon compounds on Earth, has important biotechnological
applications in the derivation of useful products from lignocellulosic wastes. The purple photosynthetic bacterium
Rhodopseudomonas palustris is able to grow photoheterotrophically under anaerobic conditions on a range of
phenylpropeneoid lignin monomers, including coumarate, ferulate, caffeate, and cinnamate. RPA1789 (CouP) is the
periplasmic binding-protein component of an ABC system (CouPSTU; RPA1789, RPA1791–1793), which has previously been
implicated in the active transport of this class of aromatic substrate. Here, we show using both intrinsic tryptophan
fluorescence and isothermal titration calorimetry that CouP binds a range of phenylpropeneoid ligands with Kd values in the
nanomolar range. The crystal structure of CouP with ferulate as the bound ligand shows H-bond interactions between the 4-
OH group of the aromatic ring with His309 and Gln305. H-bonds are also made between the carboxyl group on the ferulate
side chain and Arg197, Ser222, and Thr102. An additional transport system (TarPQM; RPA1782–1784), a member of the
tripartite ATP-independent periplasmic (TRAP) transporter family, is encoded at the same locus as rpa1789 and several other
genes involved in coumarate metabolism. We show that the periplasmic binding-protein of this system (TarP; RPA1782) also
binds coumarate, ferulate, caffeate, and cinnamate with nanomolar Kd values. Thus, we conclude that R. palustris uses two
redundant but energetically distinct primary and secondary transporters that both employ high-affinity periplasmic
binding-proteins to maximise the uptake of lignin-derived aromatic substrates from the environment. Our data provide
a detailed thermodynamic and structural basis for understanding the interaction of lignin-derived aromatic substrates with
proteins and will be of use in the further exploitation of the flexible metabolism of R. palustris for anaerobic aromatic
biotransformations.
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Introduction

Almost one third of the world’s dry plant mass is made up of the

complex compound lignin, which is formed by the polymerisation

of a wide range of aromatic phenylpropeneoid monomers [1]. In

the environment, the biodegradation of lignin occurs through

a mixed population of microorganisms that co-operate to break

down the individual constituents at the various stages of

degradation. A population of bacteria and white-rot fungi such

as Phanerochaete chrysosporium secrete a combination of laccases and

peroxidases that help to cleave the majority of the more stable

bonds, particularly the b-aryl ether linkages that are a key part of

the polymeric structure [2]. This results in a mixture of aromatic

monomers that are more accessible for degradation [3]. Among

the most numerous of these aromatic monomers are a range of

structurally related cinnamic acids [4], including cinnamate itself

((E)-3-phenyl-2-propenoic acid), p-coumarate ((E)-3-(4-hydroxy-

phenyl)-2-propenoic acid), caffeate ((E)-3-(3,4-dihydroxyphenyl)-2-

propenoic acid) and ferulate ((E)-3-(4-hydroxy-3-methoxyphenyl)-

2-propenoic acid). The structures of these compounds are shown

in Fig. 1.

Rhodopseudomonas palustris is a purple non-sulphur Gram-negative

photosynthetic bacterium that is found in a wide variety of

environments and which has an extremely complex and flexible

metabolism, as highlighted by the genome sequence of the best

studied strain, CGA009 [5]. It can degrade a wide variety of

aromatic compounds under both aerobic and anaerobic condi-

tions [6] and has become a model organism for the study of

aromatic catabolism under anaerobic conditions. It has long been

established that anaerobic breakdown of such compounds by R.

palustris is carried out through the central intermediate benzoyl-

CoA [7,8] and a downstream ring cleavage pathway [9]. In more

recent studies, a range of lignin-derived phenylpropenoic acids

have been shown to be degraded anaerobically by R. palustris via

initial conversion to a Coenzyme A (CoA) derivative followed by

metabolism to benzoyl-CoA and the subsequent ring cleavage

pathway [10].

Initial studies into the peripheral pathways that degrade these

phenylpropeneoid monomers began with the proposition of two
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possible routes of degradation derived from studies into ferulate

degradation carried out in other organisms such as Pseudomonas

acidovorans [11] and Delfitia acidovorans [12]; the non-b-oxidation

and b-oxidation pathways [13]. In the non b-oxidation pathway

the CoA derivative is first converted to an aldehyde with the loss of

acetyl-CoA, thus shortening the side chain by a C2 unit. The

aldehyde is then oxidised to a carboxylic acid, which is derivatized

with CoA once more before conversion to benzoyl-CoA. In

contrast, in the b-oxidation pathway the CoA remains attached to

the intermediates, which undergo chain shortening by hydration

and oxidation with a C2 unit removed as acetyl-CoA in the last

step before conversion to benzoyl-CoA via an acyl-transferase. A

b-oxidation pathway was originally proposed in R. palustris for the

side-chain degradation of saturated phenylalkane carboxylic acids

[14].

To investigate which of these two mechanisms was most likely to

be involved in coumarate degradation in R. palustris, Pan et al. [13]

carried out a transcriptomic and proteomic study on coumarate or

succinate supplemented R. palustris cells growing in steady-state

chemostat culture. This revealed that a cluster of genes encoding

candidate enzymes of the non b-oxidation pathway were highly

up-regulated in the presence of coumarate [13], suggesting that

this was likely to be the major pathway used for coumarate

degradation. The p-coumarate CoA ligase (CouB) and enoyl-CoA

Figure 1. Structures of lignin derived aromatic monomers and related compounds used in this study. Key: 1; cinnamate, 2; p-coumarate,
3; caffeate; 4; ferulate, 5; sinapate, 6; 4-hydroxyphenylpyruvate, 7; 4-hydroxybenzoate.
doi:10.1371/journal.pone.0059844.g001
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hydratase (CouA) encoded in this cluster were then biochemically

characterised in a later study [10] and shown to be regulated in

expression by CouR (RPA1794), a MarR type regulator that

responds specifically to p-coumaroyl CoA rather than p-coumarate

itself.

Other genes in the non b-oxidation pathway cluster suggest two

distinct types of aromatic transport systems might be involved in

growth on coumarate and related compounds. These genes

encode an ABC-type uptake system (rpa1789 and rpa1791-1793)

and a tripartite ATP-independent periplasmic (TRAP) transporter

[15] encoded by rpa1782-1784. It has recently been shown that the

genes encoding these specific TRAP and ABC systems are up-

regulated in the presence of p-coumarate under the control of the

CouR regulator [10,16]. In a study comparing thermal de-

naturation profiles in the absence and presence of potential

ligands, the purified periplasmic binding-protein RPA1789 from

the ABC system was initially suggested to bind several cinnamic

acid derivatives [17]. A further investigation [18] characterised the

binding of coumarate to RPA1789 by isothermal titration

calorimetry (ITC) but reported a Kd value of 8.6 mM for this

ligand, which is much higher than would be expected for a typical

periplasmic binding-protein of an ABC transporter. Pietri et al.

[18] also reported some initial structural studies of RPA1789 using

X-ray scattering data, which showed the protein to have an overall

shape similar to other periplasmic binding-proteins.

In this paper we compare the ligand specificity and binding

affinities of the periplasmic binding proteins RPA1782 and

RPA1789 from the TRAP and ABC systems of the non b-

oxidation pathway gene cluster respectively. Data from a combi-

nation of fluorescence spectroscopy and ITC clearly show that

both proteins have binding affinities in the nanomolar range for

coumarate, caffeate and ferulate, with weaker (but still high

affinity) binding of cinnamate. We also report a structural study of

RPA1789. An initial structure of RPA1789 we had obtained after

crystallisation in the absence of any added ligands had revealed the

presence of 4-hydroxyphenylpyruvate (4-HPP) (a tyrosine meta-

bolic intermediate) in the binding cleft of the protein, and we

subsequently confirmed by fluorescence titration that the protein

binds 4-HPP with high-affinity. After a denaturation and refolding

protocol that removed this endogenous ligand contaminant,

a 2.5 Å structure with coumarate bound and a 1.9 Å structure

with ferulate bound were determined. In view of the functions of

the cognate transporters, we propose the designations CouPSTU

(Coumarate transport by RPA1789 and RPA1791-RPA1793) and

TarPQM (TRAP transporter for aromatic compounds;

RPA1782-RPA1784) for the components of the ABC and TRAP

transporters respectively.

Materials and Methods

Construction of Overexpression Plasmids
The rpa1789 gene was amplified from R. palustris CGA009

genomic DNA via PCR using primers rpa1789_F (59-ATTAAC-

TACATATGGAAACTAACGAAATCACCATC-39 NdeI site un-

derlined) and rpa1789_R (59-ATATTTTAGCGGCCGCCTT-

CACCATCACGTATTT -39 NotI site underlined), which

excluded the N-terminal signal sequence (protein residues 1–26).

Amplified DNA was then cloned into the pET21a (+) vector via

NdeI and NotI restriction sites to add a C-terminal His6x-tag to the

recombinant protein. The construct pET1789 was transformed

into E. coli DH5a and then subsequently into E. coli BL21 (DE3)

for overproduction of protein. The rpa1782 gene was amplified

from R. palustris CGA009 genomic DNA via PCR using primers

rpa1782_F (59-ATTGTACTCGAGACAGGACAAAACTGT-

CAACTGG-39, XhoI site underlined) and rpa1789_R (59-ATC-

GAATTCTTACAGCCCCGCGTCGTACTT-39, EcoRI site un-

derlined), which excluded the N-terminal residues 1–19 of the

protein signal sequence. Amplified DNA was then cloned into the

pBAD/HisB vector via XhoI and EcoRI restriction sites to add an

N-terminal His6x-tag to the recombinant protein. The construct

pBAD1782 was then transformed into the E. coli TOP10

expression strain for protein overproduction.

Overproduction and Purification of RPA1789
The rpa1789 gene was over-expressed under the control of the

isopropyl-b-D-thiogalactopyranoside (IPTG)-inducible T7 pro-

moter contained in the pET1789 vector. E. coli BL21 (DE3)

(pET1789) was grown to an OD600 nm of 0.6 in LB medium

containing carbenicillin (50 mg/ml) (Melford Laboratories, UK) at

37uC. Then, 0.4 mM IPTG was added and cells were incubated at

37uC with shaking at 250 rpm for a further 5 hours before being

harvested by centrifugation (10,0006g, 10 mins, 4uC). Pelleted

cells were resuspended in 20 mM sodium phosphate buffer pH 7.4

and broken by sonication (MSE soniprep; 4620 s bursts). Soluble

protein was then isolated by centrifugation (15,0006g, 25 min

4uC) to produce a cell-free extract (CFE). The CFE was loaded

onto a Hitrap-HP Nickel affinity column (GE healthcare, UK) in

binding buffer (20 mM sodium phosphate buffer pH 7.4, 500 mM

sodium chloride, 20 mM imidazole). Bound protein was then

eluted in a pure form (see Fig. 2) from the column by an imidazole

gradient using elution buffer (20 mM sodium phosphate buffer

pH 7.4, 500 mM sodium chloride, 500 mM imidazole).

Overproduction and Purification of RPA1782
RPA1782 was overproduced in E. coli TOP10 (pBAD1782)

cells. After growth at 37uC to an OD600 nm of 0.6, cells were

induced by addition of 0.002% (w/v) arabinose and shaken at

250 rpm for 3 hours before harvesting by centrifugation

(10,0006g, 10 mins, 4uC). Cell-free extracts were prepared as

above. Initial protein purification by His-trap affinity chromatog-

raphy resulted in a ,57 kDa protein predominating over the

,38 kDa RPA1782. This contaminant was N-terminally se-

quenced and identified as the E. coli chaperone protein GroEL. In

order to remove contaminating GroEL, CFE was bound to a His-

trap column and washed with 6 M urea, which eluted GroEL

from the column; recombinant RPA1782 remained bound due to

its N-terminal His 6x-tag. RPA1782 was refolded on the column by

washing with 75 ml 20 mM sodium phosphate buffer pH 7.4 and

was then eluted via a 0–0.5 M imidazole gradient.

Unfolding and Refolding of RPA1782 and RPA1789
Pure protein was unfolded by dialysis against 1 L of 6 M urea

for 16 hours at 4uC. Refolding was effected by dialysis against 2 L

of refolding buffer (50 mM Tris-HCl pH 7.2 plus 100 mM NaCl)

for 8 hours, the buffer being changed every 2 hours with a final

overnight dialysis. Once removed from the dialysis tubing, protein

was centrifuged (13,0006g, 10 mins, 4uC) to remove any pre-

cipitated misfolded protein.

Fluorescence Spectroscopy
Changes in the UV fluorescence of intrinsic tryptophan residues

in RPA1782 and RPA1789 were measured using a Cary Eclipse

fluorimeter (Varian Ltd, UK) in 10 mM Tris-HCl buffer pH 7.4

at 30uC in a 3 ml volume. Excitation of samples was at 280 nm

(5 nm slit width) and emission was recorded at 300–400 nm

(20 nm slit width). Ligand titrations were performed with 0.2 mM

protein with lex 280 nm lem 340 nm using 5 nm excitation and
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20 nm emission slit widths respectively. Except where indicated,

data from three independent titrations was used to calculate Kd

values, by fitting to the quadratic equation for tight binding as

previously described [19].

Isothermal Titration Calorimetry (ITC) with RPA1789
ITC experiments were carried out using a VP-ITC calorimeter

(Microcal, Inc., UK). Ligand stock solutions for ITC experiments

were made up in aliquots of the final refolding buffer that

RPA1789 was dialysed against (50 mM Tris-HCl pH 7.2 plus

100 mM NaCl) and all reactions used the same buffer. The

reaction cell contained 1.8 ml of 50 mM protein in refolding

buffer. Ligand titrations were carried out at 20uC (except caffeate

which was carried out at 25uC) by the injection of 20615 ml

aliquots of 400 mM ligand, from a 300 ml syringe, for a duration of

35 seconds at 7 minute intervals. After taking into account the

baseline and any heats of dilution by the ligand, all titrations were

integrated using the ORIGIN software programme associated

with the calorimeter then exported to in-house numerical routines

for data fitting to the Weissman isotherm.

Crystallisation of RPA1789
For crystallization, the purified RPA1789 was concentrated to

6 mg ml21 in 10 mM Tris-HCl buffer, pH 7.4 and tested for

crystallization with a variety of commercial screens. Subsequent

optimization resulted in the growth of X-ray diffracting crystals in

a condition comprising 0.1 M sodium acetate, pH 4.5, 25% w/v

PEG3350. The crystals formed with a thin needle-like morphology

at 17 uC overnight. Ligand containing crystals were obtained in

the same manner, with ligand (coumarate or ferulate) being added

to the protein sample at 5 mM prior to crystallisation.

Data Collection and Structure Determination
Data were collected from all crystals at the Diamond Light

Source (near Oxford, UK) on beamline station I02 having been

flash-cooled in a N2 gas stream at 100 K with prior cryo-

protection via the addition of 15% v/v glycerol to the mother

liquor. The data were processed with XDS and merged using

Xscale [20] before molecular replacement was carried out using

PHASER [21] as implemented in the Collaborative Computa-

tional Project, Number 4 (CCP4) software suite [22] with a model

Figure 2. Changes in intrinsic tryptophan fluorescence of (A) CouP (RPA1789) and (B) TarP (RPA1782) upon addition of equimolar
p-coumarate. Purified protein (0.2 mM final concentration in each case) in Tris-HCl buffer pH 7.4 was excited at 280 nm and the emission spectrum
obtained (traces labelled 1). After addition of equimolar p-coumarate, the emission spectrum was obtained again (traces labelled 2). In (A) the
coumarate induced quench was , 30% while in (B) it was , 5%. In (C) and (D) are shown Coomassie blue stained gels of the purified CouP (6 mg
protein) and TarP (2.5 mg protein) respectively.
doi:10.1371/journal.pone.0059844.g002
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constructed using the Phyre2 server [23] based upon PDB entry

3UK0 for R. palustris RPD1889 extracellular binding receptor

protein. The resultant maps were examined using COOT [24]

and adjustments made to the models before refinement with

REFMAC [25]. Solvent molecules were added to all the structures

in the latter stages of refinement and ligand coordinate and

description files for use in refinement created using JLIGAND.

The structures were validated using COOT [24] and MOL-

PROBITY [26]. The final models are complete for each form of

the protein apart from residues 27 in the ferulate complex, the

latter residues of the C-terminal hexahistidine tags and the signal

sequence (residues 1–26), which had been deleted from the

expression construct. Structure factors and coordinates have been

deposited at the PDB with the accession codes 4JB2 (ligand free)

and 4JB0 (ferulate bound). Structure figures were generated using

Pymol or Ligplot+ [27].

Results

Tight Binding of Lignin-derived Aromatic Compounds to
RPA1789 Revealed by Fluorescence Spectroscopy

To characterise the binding of lignin-derived aromatic com-

pounds to RPA1789, the intrinsic fluorescence of tryptophan

residues was monitored to measure ligand induced conformational

changes, as used in our previous work [19,28]. Excitation of

unfolded, refolded and extensively dialysed RPA1789 at 280 nm

resulted in an emission maximum at 335 nm. Addition of 0.2 mM

of coumarate, ferulate, cinnamate or caffeate to 0.2 mM of

RPA1789 resulted in a large (,25–50%) quench for each ligand

and a shift in the emission maximum to ,340 nm; Fig. 2a shows

typical changes upon coumarate binding. 4-hydroxybenzoate did

not produce any fluorescence change with RPA1789, indicating

that possession of the propanoid side chain is essential for ligand-

binding to this protein (see Fig. 1). The potential ligands 3,4-

dihydroxyhydrocinnamate (hydrocaffeate), 4-methoxycinnamate

and vanillate were so autofluorescent that no firm conclusions

about binding could be made. However sinapate (3-(4-hydroxy-

3,5-dimethoxyphenyl)-2-propenoic acid) produced a , 5%

quench indicating it might bind to the protein, but this ligand

auto-oxidised easily in solution to a coloured product and titrations

to obtain a Kd were unreliable.

Titrations of RPA1789 with those aromatic ligands producing

a consistent fluorescence change are shown in Fig. 3. In each case

a binding stoichiometry of approximately 1:1 is apparent. For

coumarate, caffeate and ferulate the shape of the plot indicates

tight binding with calculated Kd values of 2.6 nM, 2.4 nM and

15 nM respectively (Table 1). The titration with cinnamate, which

has no additional functional groups on the aromatic ring, showed

a smaller total fluorescence change and a much higher calculated

Kd of 88 nM (Table 1).

Figure 3. Fluorescence titrations of CouP (RPA1789) with lignin-derived aromatic ligands. The fluorescence emission of 0.2 mM CouP was
followed at 340 nm during titrations with the indicated compounds; (A) coumarate, (B) ferulate (C) caffeate (D) cinnamate. In each case, data were fit
to a single-site binding model and dissociation curves were plotted. The figure shows an individual representative titration.
doi:10.1371/journal.pone.0059844.g003

Table 1. Comparison of Kd values determined from
fluorescence titrations with CouP and TarP.

Kd (nM)

Ligand CouP (RPA1789) TarP (RPA1782)

Coumarate 2.660.09 865

Caffeate 2.460.8 1467

Ferulate 1566 1563

Cinnamate 8868 50, 33

The values shown are averages plus errors from three independent titrations.
The fluorescence changes during cinnamate titrations with TarP were highly
variable, so the Kd values from two independent titrations are shown.
doi:10.1371/journal.pone.0059844.t001
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Thermodyamic Analysis of Ligand Binding to RPA1789 by
Isothermal Titration Calorimetry

Fluorescence spectroscopy highlighted four structurally related

aromatic ligands that have sub-micromolar binding constants with

RPA1789. The interactions of these ligands were also investigated

by ITC methods. As well as giving additional information on the

thermodynamics of the binding interactions, as ITC is a non-

optical method it was particularly useful for aromatic ligands given

their potential for inner filter effects and background emission

artefacts in fluorescence studies. ITC titrations were carried out at

20uC (apart from caffeate which had a negligible enthalpy of

binding at 20uC) and for each ligand it was apparent that

endothermic heat changes occurred as ligand was bound (Fig. 4).

This is expected of hydrophobic interactions where the entropy

change associated with the displacement of water molecules from

the binding site is the dominant favourable effect. The thermo-

dynamic data are presented in Table 2. The Kd values measured

by ITC are in general slightly weaker than those measured by

fluorescence, but report a very similar range. Furthermore, the

order of preference for the ligands detected by the two techniques

is the same.

In view of the tight binding of coumarate to RPA1789

evidenced by both ITC and fluorescence spectroscopy, the

genome context of the rpa1789 and rpa1791-1793 transporter

genes, their clustering with coumarate catabolic genes and their

common regulation by CouR [10,16], we propose that the

components of this ABC transporter be designated CouP

(RPA1789), CouS (RPA1791), CouT (RPA1792) and CouU

(RPA1793).

The Crystal Structure of Ferulate Bound CouP
Crystallographic studies were undertaken to elucidate the

mechanism of ligand binding by CouP. An initial 1.5 Å resolution

structure was obtained with protein that was not subjected to

unfolding and refolding. Electron density that fitted 4-hydro-

xyphenylpyruvate (4-HPP; see Fig. 1) was found in the binding-

cleft (data not shown) despite no ligand being added to the

crystallisation reaction. Fluorescence titrations with 4-HPP con-

firmed that refolded CouP can bind this ligand with a determined

Kd of 1563 nM. The importance of removing endogenously

bound ligand was shown in experiments with CouP that was not

urea treated, where we found no evidence for cinnamate binding,

and Kd values for coumarate, caffeate and ferulate that were 200-

1,000-fold higher (by fluorescence titrations) than with refolded

protein. Crystallisation experiments were repeated using protein

that was subjected to extensive unfolding and refolding dialysis as

described in Materials and Methods and the X-ray diffraction data

revealed a structure with only solvent molecules in the expected

binding pocket. Crystal trials and data collection were also carried

out with the protein in the presence of a number of different

ligands including coumarate and ferulate. There was clear electron

density in the maps for the coumarate and ferulate ligands. The

coumarate-bound structure was determined to 2.5 Å resolution

and is identical to a 1.6 Å structure of CouP with coumarate

recently deposited in the PDB (entry 4F8J), apart from minor

changes at the termini. Thus, we will not discuss its structure

further here, other than to note that the mode of ligand binding is

identical to that for ferulate. A summary of the relevant data

processing and refinement statistics for the ferulate complex and

the ligand free form are presented in Table 3, and the 1.9 Å

structure of CouP with ferulate bound is shown in Figure 5. The

structure displays all the features expected of an ABC-bacterial

periplasmic binding protein; namely a two-domain structure in

which an intrinsic cleft positioned between the two domains forms

the ligand-binding pocket (Fig. 5a).

Analysis of the interactions in the binding cleft show that the

aromatic ring of the ligand is bound most deeply. Key H-bond

interactions are formed between the 4-OH group of the aromatic

ring of ferulate with His309 and Gln305 residues (Fig. 5b and

Fig. 6). H-bond interactions are also made between the carboxyl

group on the ferulate side chain and Arg197, Ser222 and Thr102.

These latter interactions explain why compounds such as 4-

hydroxybenzoate showed no evidence of binding; they lack the 3-

carbon chain that ensures optimal bond distances on each side of

the binding cleft are formed.

Cinnamate had the weakest binding affinity to CouP of the four

major aromatic ligands used in this study, and the structural data

show that as cinnamate does not possess a functional group on its

aromatic ring it would not be able to form the H-bond interactions

with His309 and Gln305 that the other compounds can, which is

reflected in its higher Kd value (Table 1) and less favourable

enthalpy of binding (Table 2). The methoxy-group possessed by

ferulate sits in a pocket bounded by the side chains of Leu46,

Phe306 and His309 and the main chain carbonyl oxygen atoms of

Figure 4. Isothermal titration calorimetry of ligand binding to CouP (RPA1789). Purified CouP (50 mM final concentration in dialysate
reaction buffer) was titrated with (A) caffeate (B) coumarate (C) ferulate (D) cinnamate by automated ligand injections into the ITC reaction cell as
described in Materials and Methods. The thermograms are shown in the top panel of each ligand dataset and the corresponding binding isotherms
are shown in the lower panels. The solid lines in the lower panels are the fits to the data points, which were calculated using the ORIGIN software
associated with the calorimeter. The resulting thermodynamic parameters are listed in Table 2. Molar ratio refers to moles of injectant per mole of
protein.
doi:10.1371/journal.pone.0059844.g004

Table 2. Thermodynamic data derived from ITC of CouP (RPA1789) with the four lignin-derived aromatic ligands.

Ligand Temp (uC)
DH
(kcal mol21)

DHdil
(kcal mol21) n

DS
(cal mol21 K21) Kd (nM)

Coumarate 20 3.2360.03 20.26 0.99360.003 46 1760.06

Caffeate 25 1.7860.05 20.28 0.77660.005 40 2760.07

Cinnamate 20 7.4560.08 20.43 0.75760.003 56 22060.46

Ferulate 20 3.1860.03 20.24 0.80360.002 43 8460.02

DH is the binding enthalpy, DHdil refers to the heats of dilution of the ligands, n is the ligand binding stoichiometry and DS is the binding entropy.
doi:10.1371/journal.pone.0059844.t002
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Ser100 and Leu122. There are also close ligand contacts with

Glu50, Phe306 and His309 (Fig 5b and Fig. 6).

These structural data satisfactorily explain the relative binding

affinities of the lignin-derived aromatic monomers, whereby the

functional groups they possess (particularly the 4-OH group) on

their aromatic rings dictate strength of binding. The data also

explain how structurally similar ligand contaminants like 4-HPP

can be incorporated into the binding pocket.

Fluorescence Spectroscopy Shows that RPA1782 Binds
the Same Range of Aromatic Ligands as CouP

The location of the rpa1782-1784 genes in the same locus as the

catabolic genes for the non-b oxidation pathway led to an

investigation of the role of this TRAP transporter in the uptake of

aromatic compounds. RPA1782 was much harder to overproduce

in a soluble form compared to CouP, and although expression in

the pBAD system was successful, it gave low yields of protein

contaminated with GroEL. This was successfully removed as

described in Materials and Methods. Purified recombinant

RPA1782 was initially screened for potential ligands in the same

manner as CouP and evidence was obtained that coumarate,

caffeate, ferulate and cinnamate could all bind to the protein, as

shown by a ,5% quench in fluorescence with equimolar protein

and each ligand in each case; Fig. 2b shows a typical example of

the coumarate-induced quench. Like CouP, 4-hydroxybenzoate

showed no evidence of binding. Ligand titrations were performed

with coumarate, caffeate, ferulate and cinnamate by monitoring

fluorescence emission at 340 nm (Fig. 7 and Table 1). Due to the

much smaller fluorescence quench compared to CouP, these

titrations had larger errors, but from the set of Kd values calculated

for RPA1782 the data clearly indicate sub-micromolar binding

affinities for each ligand (Table 1). These results are strikingly

similar to those gained for CouP; the relative Kd values for each

ligand are of the same order and follow the same pattern for both

proteins. Thus, RPA1782 shows the tightest binding for

coumarate, caffeate and ferulate, with cinnamate displaying the

weakest binding (Table 1). Like CouP, RPA1782 was also found to

bind 4-HPP, with a Kd of 4267 nM. Problems with the yield,

solubility and stability of recombinant RPA1782 protein meant

that further analysis by ITC was precluded. However, it is clear

that this protein also functions in the binding of aromatic

compounds as part of a TRAP transporter, so following the

original nomenclature introduced by Forward et al. [15], we

propose to designate the components of this transporter TarP

(TRAP transporter for aromatic compounds, periplasmic protein,

RPA1782), TarQ (small transmembrane transport protein,

RPA1783) and TarM (large transmembrane transport protein,

RPA1784).

Discussion

In this study we have demonstrated that the periplasmic

binding-proteins from two genetically and structurally distinct

transport systems in R. palustris have identical substrate specificity

for key lignin-derived aromatic compounds that this bacterium can

use as growth substrates. Most strikingly, these proteins display

remarkably similar Kd values for the substituted cinnamic acids

studied here, all of which were in the nanomolar range as

measured by fluorescence spectroscopy (and additionally ITC in

the case of CouP). It is important to note that while CouP is

homologous with proteins in the LivK family of ABC-type

periplasmic binding-proteins, TarP is homologous with the DctP

family of periplasmic binding-proteins [15]. While their overall

fold is likely to be similar, they possess insignificant sequence

similarity, which indicates that such high affinity binding of the

same ligands has been achieved by the evolution of different

binding mechanisms. Evidence for this in relation to TarP is

discussed below.

The measured Kd values for CouP were well determined and

obtained in experiments with protein:ligand stoichiometries

approaching unity. However, it was important to remove any

endogenously bound ligand by unfolding and refolding the

protein, as it was clear from our initial crystallographic data that

4-HPP can occupy the binding cleft. This ligand is a metabolic

intermediate in tyrosine metabolism [29] and we assume that it

becomes incorporated during recombinant protein production in

the E. coli cytoplasm. In this context, the binding data obtained

with CouP and coumarate was especially interesting, as a recent

study on this protein reported a coumarate Kd value of 8.6 mM as

measured by ITC [18]. In our study, we independently confirmed,

using both fluorescence and ITC methods that CouP has a much

higher affinity for this key ligand.

With both proteins the highest affinities were observed for

coumarate, caffeate and ferulate, while cinnamate itself had

Figure 5. The 1.9Å resolution crystal structure of CouP (RPA1789) with bound ferulate. (A) Representation of the overall fold with ferulate
positioned in the binding cleft. Alpha helices are represented by red cylinders, loops by blue strands and beta-sheets by yellow arrows. (B) Ferulate
binding site. A stereo image is shown of ferulate (green carbon atoms & bonds) in the substrate binding pocket of CouP (dark grey carbon atoms &
bonds). The end of the pocket proximal to the exterior solvent is uppermost and closed off by the sidechain of R197. Hydrogen bonds between the
ferulate and protein are shown as dashed orange lines. The molecules are shown in ball-and-stick representation coloured by atom type.
doi:10.1371/journal.pone.0059844.g005

Table 3. Crystallographic data and refinement parameters.

Ligand free Ferulate bound

Data collection

Space group P 212121 P 212121

Unit Cell (Å) a = 42.9 b = 66.4
c = 100.5

a = 43.0 b = 70.7
c = 105.3

Resolution range (Å) 43.0–2.1
(2.15–2.10)

44.3–1.9
(1.96–1.91)

No of measured reflections 61078 (4579) 90559 (6819)

No of unique reflections 31821 (2389) 46986 (3551)

Completeness (%) 98.0 (99.3) 97.5 (98.9)

R-meas * (%) 10.5 (66.4) 9.9 (65.2)

Mn,I/sd. 8.1 (1.9) 8.8 (1.6)

Refinement

R/Rfree
2,3 0.17/0.23 0.18/0.23

Overall B-factor (Å2) 29.4 20.3

RMSD in bond distances (Å) 0.019 0.021

RMSD in bond angles (u) 1.8 1.7

Ramachandran

% most favored 96 97

% additionally allowed 4 3

*Rmeas is a multiplicity weighted R-factor measure of the agreement of
symmetry related reflections as reported by XSCALE.
doi:10.1371/journal.pone.0059844.t003
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Figure 6. Ligplot representations of the interactions of (A) ferulate and (B) 4-hydroxyphenylpyruvate with CouP (RPA1789). The key
interactions are the H-bonds formed by His309 and Gln305 to the 4-OH group on the aromatic ring and also the H-bonds formed by Arg197/Thr102/
Ser222 to the oxygen atoms of the carboxyl group of the ligand side-chain.
doi:10.1371/journal.pone.0059844.g006

Figure 7. Fluorescence titrations of TarP (RPA1782) with lignin-derived aromatic ligands. The fluorescence emission of 0.2 mM TarP was
followed at 340 nm during titrations with (A) coumarate, (B) ferulate, (C) caffeate and (D) cinnamate. In each case, data were fit to a single-site
binding model and dissociation curves were plotted. The figure shows individual representative titrations.
doi:10.1371/journal.pone.0059844.g007
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a rather lower affinity. These data indicate that the possession of

a 4-OH group on the aromatic ring considerably enhances ligand

binding, which is reinforced by the structural evidence gained

from X-ray crystallographic studies with CouP. This revealed

interactions of the 4-OH group on the aromatic ring of ferulate

with His309 and Gln305 residues in the binding cleft. As expected,

these hydrogen bonds contribute favourably to the enthalpy of

binding, resulting in the considerably less favourable enthalpy of

binding for cinnamate (DHbind.4 kcal mol21), which lacks the 4-

OH moiety, thus resulting in a much weaker affinity with CouP.

The introduction of a second hydroxyl, as in caffeate, further

decreases the enthalpy of binding, such that at 20uC there is no net

contribution from changes in bonding, strongly suggesting that

further hydrogen bonds are made to the 3-OH moiety (as

supported by a crystal structure of this complex recently deposited

in the PDB, code 4FB4). Caffeate also has the least favourable

entropy of binding of the four ligands (Table 2), indicating that the

third H-binding moiety considerably increases the order of the

system, possibly related to the ordering of a water molecule to

form the H-bond to the 3-OH. Altering this group to a methoxy,

as in ferulate, removes its H-bonding potential and thus the

favourable enthalpy component, to give the same DH of binding

as coumarate. The entropy of binding is not altered, resulting in

weaker dissociation constant for ferulate than either coumarate

(which has a more favourable DS) or caffeate (which has more

favourable DH). In conclusion, electrostatic contributions from

ring substituents contribute substantially to the binding energy,

above a fairly constant favourable entropic contribution, driven by

the hydrophobic effect. It should be noted that this thermody-

namic analysis refers only to single temperature measurements and

conclusions may be significantly altered if the heat capacities of

binding for the ligands vary significantly.

Interestingly, although the ABC-type and TRAP transport

systems studied here both use a periplasmic binding protein as the

initial solute receptor, they otherwise represent structurally and

mechanistically different solutions to the problem of the uptake of

aromatic compounds from the environment. While ABC systems

are primary systems powered by ATP hydrolysis, TRAP systems

are secondary transporters energised by either a proton or sodium

gradient across the cytoplasmic membrane [15,30,31]. The first

TRAP transporter to be identified and characterised was the Dct

system in the related purple photosynthetic bacterium Rhodobacter

capsulatus, for the uptake of the C4-dicarboxylates malate,

succinate and fumarate [15]. Subsequently, TRAP transporters

Figure 8. Multiple sequence alignment of TarP with selected homologues with solved crystal structures. The alignment was generated
with CLUSTAL W; identical residues are highlighted white in red boxes, similar residues are highlighted red. A conserved arginine that was first shown
[32,33] to form a salt bridge with the carboxylate of sialic acid bound to SiaP (Arg147) is indicated with an arrow and a region of sequence
conservation surrounding this residue is indicated within the boxed area. This arginine residue is thought to be crucial in all TRAP transporter
binding-proteins that interact with a ligand cotaining a carboxylate group. The proteins are: SiaP – Haemophilus influenzae (sialic acid); DctP6–
Bordetella pertussis (pyroglutamate); TakP – Rhodobacter sphaeroides (pyruvate); TarP- Rhodopseudomonas palustris (cinnamic acids). The N-terminal
signal sequences have been removed for this alignment (predicted with the SignalP server) and the residue numbering shown corresponds to that of
SiaP. The conserved arginine in the mature TarP is Arg149, corresponding to Arg168 in the pre-protein.
doi:10.1371/journal.pone.0059844.g008

Transport of Aromatic Compounds by R. palustris

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e59844



have been found to be extremely widespread in many groups of

bacteria and archaea [30] but a common characteristic that is

exemplified by the R. palustris system described here, is their

transport of carboxylic acid substrates [30,32]. From structural

studies and sequence alignments of members of the DctP-type

binding protein family it has become clear that the formation of

a salt bridge between a highly conserved arginine residue in the

binding pocket and the carboxylate group of the ligand is crucial to

defining this substrate preference [32]. Several determined

structures of DctP-type binding proteins with bound ligand clearly

reveal this salt bridge [33–35]. For example, SiaP from Haemophilus

influenzae forms a salt bridge with its favoured ligand sialic acid at

Arg147 [33] and a sequence alignment (Figure 8) between

SiaP,TarP and other homologues highlights Arg149 in TarP as

the conserved residue (mature protein numbering). Although no

phenylpropeneoid aromatic compounds have yet been visualised

in the binding pocket of a DctP-type binding protein, the cinnamic

acid derivatives used as ligands in this study all possess

a carboxylate group positioned on the alpha carbon of their side

chain so would have the ability to form a salt bridge with this

conserved arginine residue. We therefore propose that these

compounds would be bound in the TarP binding pocket with the

carbon chain buried most deeply; this would be in opposition to

CouP, which buries the aromatic ring most deeply in the binding

pocket (Fig. 5). Only structural studies of TarP will confirm this; so

far we have been unsuccessful in obtaining diffracting crystals of

ligand-bound protein.

Our results with these two binding-proteins are consistent with

evidence that both the genes for the TRAP and ABC transport

systems are inducible by p-coumarate [13] and are members of the

same regulon, controlled by CouR, along with the genes encoding

the enzymes of the non b-oxidation pathway with which they are

clustered on the R. palustris chromosome [10,16]. Such regulation

underlines the intimate coupling of transport of aromatic

substrates into the cell with their metabolism. These phenylpro-

peneoid monomers are clearly too polar to diffuse through the

cytoplasmic membrane and the existence of aromatic transport

systems indicates that R. palustris needs active import of such

metabolites in order to achieve competitive growth rates on such

compounds in its natural environment. The nanomolar affinities of

the binding proteins of these systems would, moreover, allow the

bacterium to scavenge very low environmental concentrations of

a range of substituted cinnamic acids derived from lignin. It is not

obvious, however, why R. palustris employs two such systems with

an essentially identical substrate range and similar regulation of

expression. The answer to this transporter redundancy may lie in

their different energy coupling mechanisms, so that aromatic

substrate uptake is still guaranteed, for example, in times of

fluctuating ATP availability or transiently low membrane poten-

tial.
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