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TOPICAL REVIEW

Glucocorticoids and renal Nat transport: implications for
hypertension and salt sensitivity

Robert W. Hunter, Jessica R. Ivy and Matthew A. Bailey

British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK

Abstract The clinical manifestations of glucocorticoid excess include central obesity, hyper-
glycaemia, dyslipidaemia, electrolyte abnormalities and hypertension. A century on from
Cushing’s original case study, these cardinal features are prevalent in industrialized nations.
Hypertension is the major modifiable risk factor for cardiovascular and renal disease and reflects
underlying abnormalities of Na® homeostasis. Aldosterone is a master regulator of renal Na*t
transport but here we argue that glucocorticoids are also influential, particularly during moderate
excess. The hypothalamic—pituitary—adrenal axis can affect renal Na™ homeostasis on multiple
levels, systemically by increasing mineralocorticoid synthesis and locally by actions on both
the mineralocorticoid and glucocorticoid receptors, both of which are expressed in the kidney.
The kidney also expresses both of the 11 8-hydroxysteroid dehydrogenase (11 SHSD) enzymes. The
intrarenal generation of active glucocorticoid by 118HSD1 stimulates Na™ reabsorption; failure
to downregulate the enzyme during adaption to high dietary salt causes salt-sensitive hyper-
tension. The deactivation of glucocorticoid by 11HSD2 underpins the regulatory dominance
for Na' transport of mineralocorticoids and defines the ‘aldosterone-sensitive distal nephron’
In summary, glucocorticoids can stimulate renal transport processes conventionally attributed
to the renin—angiotensin—aldosterone system. Importantly, Na™ and volume homeostasis do not
exert negative feedback on the hypothalamic—pituitary—adrenal axis. These actions are therefore
clinically relevant and may contribute to the pathogenesis of hypertension in conditions associated
with elevated glucocorticoid levels, such as the metabolic syndrome and chronic stress.

(Received 2 November 2013; accepted after revision 14 February 2014; first published online 17 February 2014)
Corresponding author Matthew Bailey, PhD: University/BHF Centre for Cardiovascular Science, The Queen’s Medical
Research Institute, 47 Little France Crescent, Edinburgh EH16 4T], UK. Email: matthew.bailey@ed.ac.uk

Introduction (Cushing, 1912) and although this syndrome remains rare,
the cardinal features of central obesity, dyslipidaemia,
impaired glucose metabolism and hypertension are
increasingly prevalent in Western society (Batsis et al.

It is over 100 years since Harvey Cushing described
the clinical consequences of severe glucocorticoid excess
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Table 1. The integrated renal effects of glucocorticoids. The
effects of glucocorticoids on renal haemodynamics and tubular
transport function can oppose one another. This is discussed
further in the main text

The effects of glucocorticoids on integrated renal function
haemodynamic
4 renal blood flow
variable effect on renal vascular resistance
4 filtration fraction
4 glomerular filtration rate
water and electrolyte metabolism
diuresis
natriuresis or antinatriuresis — see main text
plasma volume contraction (or sometimes volume
expansion — see main text)
kaliuresis
4 renal acid excretion and metabolic alkalosis
phosphaturia
4 amino acid transport
4 sulphate transport
intermediate metabolism within the kidney
gluconeogenesis
ammoniagenesis

2007). These traits of the ‘metabolic syndrome’ end-
anger cardiovascular health. Indeed, hypertension is the
major modifiable risk factor for both cardiovascular
and renal disease and reflects impaired Na® homeo-
stasis and a diminution of the pressure natriuresis
mechanisms (Mullins et al. 2006). Here, we review
recent studies that provide a mechanistic framework for
regulation of renal Nat transport by glucocorticoids:
two overarching themes are developed. First, that
defining glucocorticoid action within the kidney is
challenging due to the pleiotropic actions of systemic
glucocorticoids. Second, that there are multiple instances
where the hypothalamic—pituitary—adrenal axis (HPAA)
can influence Na™ transport processes that are classically
regulated by the renin—angiotensin—aldosterone system
(RAAS). Such ‘crosstalk’ may have a physiological context
but there is an implicit capacity for aberrant renal Na™
transport as the HPAA is not regulated by Na*/volume
homeostasis.

Integrated responses to glucocorticoids

The renal response to systemic glucocorticoid
administration is well characterized (Table 1) but attempts
to resolve these actions into specific tubular and vascular
components are confounded by two phenomena: the
pleiotropic effects of glucocorticoids and the promiscuity
of steroid receptor—ligand interactions (Fig. 1).

The glucocorticoid receptor (GR) is ubiquitously
expressed and systemic administration of glucocorticoids
therefore changes many variables, including inter-
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mediary metabolism, cardiac output and systemic vascular
resistance. This integrated response to glucocorticoids
is clinically relevant but it is challenging to identify
primary renal events (i.e. those occurring as a direct
result of glucocorticoid signalling within the kidney) from
secondary responses that are indirect and often counter-
vailing. Thus, in some circumstances glucocorticoids
promote renal Na™ retention. This is particularly evident
for endogenous glucocorticoids and reflects activation of
both GR and mineralocorticoid receptors (MR) in the
renal tubule.

In other cases, glucocorticoids — particularly synthetic
compounds — induce a powerful natriuresis (Table 1).
The conventional explanation for this phenomenon is
that the haemodynamic actions of glucocorticoids impair
autoregulation, increase glomerular filtration rate (GFR)
and, despite the best efforts of glomerulotubular balance,
promote natriuresis and kaliuresis. The mechanisms
that underpin these haemodynamic effects are not
fully defined. Endogenous glucocorticoids certainly exert
permissive effects that help maintain both renal blood flow
(RBF) and GFR: both are reduced in adrenal insufficiency.
Such underperfusion does not relate exclusively to hypo-
tension as RBF is restored by steroid replacement
but not by volume replacement alone (Mangos et al.
2003). The effect on renal haemodynamics of exogenous
glucocorticoids is more complex and the mechanisms
not resolved. Micropuncture evidence in rats found
that prednisolone increased single nephron GFR due
to dilatation of the glomerular arterioles, with the
ultrafiltration coefficient and Starling forces across the
glomerular capillary being unaffected (Baylis et al. 1990).
Similar data were obtained in dogs (Hall et al. 1980).
However, in humans, the glucocorticoid-induced increase
in GFR must reflect an increased filtration fraction as
RBF remains stable or even falls, causing increased renal
vascular resistance (Connell et al. 1987). It is not clear
what accounts for these differences but one possibility is
differential sensitivity to the catabolic effect of synthetic
glucocorticoids as increased renal delivery of amino acids
can directly increase RBF (Baylis et al. 1990).

The second confounding phenomenon is the capacity
for glucocorticoids to activate MR, exerting effects
often antagonistic to their haemodynamic actions. For
example, dogs infused with noradrenaline and adreno-
corticotrophic hormone (ACTH) become hypertensive
and enter a negative Na™ and water balance. However,
if the renal perfusion pressure is servo-controlled, hyper-
tension is accompanied by Na™ retention (Woods et al.
1988). Similarly, chronic ACTH infusion into mice
increases Na® excretion (Dunbar et al. 2010) despite
the fact that activation of MR and GR promotes Na™
reabsorption in the distal tubule (Bailey ef al. 2009). These
data underscore the dualistic effect of glucocorticoids, with
the direct action on the renal tubules being over-ridden

© 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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by haemodynamic processes that cause an increase in net
urinary Na™ excretion.

Why do glucocorticoids exert these countervailing
influences? Glucocorticoids induce a catabolic effect
on systemic metabolism, promoting the conversion of
protein, glycogen and triglyceride stores to amino acids,
glucose and free fatty acids. The increase in GFR meets
an increased demand for the excretion of waste products
and contributes to the stress response. Teleologically,
any direct stimulatory effect of glucocorticoids on
tubular Na™ reabsorption would stabilize net excretion
in the face of increased GFR, preserving salt and
water balance in response to physiological stresses that
threaten plasma volume. This effect is analogous to that
induced by angiotensin II when activated in response to
dietary Na* restriction or hypovolaemia. Angiotensin II
constricts the efferent arteriole to stabilize GFR in the
face of reduced perfusion pressure and promotes Na™
retention by activation of transport proteins, including
the thiazide-sensitive cotransporter (Ashek et al. 2012)
and the epithelial Nat channel (ENaC; Zaika et al. 2013).

Glucocorticoids and renal Na*t transport
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However, the full extent of the physiological (and
pathophysiological) role of glucocorticoids is both sub-
tle and complex (Fig. 1). Glucocorticoids influence
kidney development and the in wutero programming
of cardiovascular and renal phenotypes (Habib et al.
2011); they influence the pathogenesis of kidney injury
(Rafiq ef al. 2011) and they contribute to circadian
variation in renal function: the glucocorticoid responsive
protein, glucocorticoid-induced leucine zipper (GILZ),
which features in the regulatory pathways of key Na™
transporters in the distal nephron (see Fig. 5), shows
strong circadian oscillations in the kidney (Zuber et al.
2009).

Interaction between the hypothalamic—pituitary-
adrenal axis and the renin-angiotensin-aldosterone
system

The HPAA can influence the RAAS at both systemic
and local levels. For example, ACTH excess increases

/ GLUCOCORTICOIDS \
CARDIOVASCULAR o
VASCULAR ®
adrenoceptors 1. development
NOS electrolytes ==
ROS water balance 8 metabolism
prostaglandins blood pressure e
cytokines = , .
- immune é
ENDOCRINE T ‘l' uzj
4 tubular 14
AVP RENAL FUNCTION [< T
ANP € transport
catecholamines €« =
glomerulus a
RAAS proximal tubule I filtration
HPAA distal tubule <=
insulin € —
diuresis
natriuresis
kaliuresis
acid excretion
phosphaturia

Figure 1. Model of glucocorticoid effects on integrated renal function

Glucocorticoids act pervasively and therefore their net effect on renal function is determined by extrarenal,
haemodynamic and renal tubular factors. The local action of glucocorticoids within the kidney is subject to
fine-tuning by the 118HSD isoforms. The net result is usually a natriuresis, but under some conditions antinatriuresis
predominates (see main text). ANP, atrial natriuretic peptide; AVP, arginine vasopressin; GR, glucocorticoid receptor;
11B8HSD1/2, 11B-hydroxysteroid dehydrogenase 1/2; HPAA, hypothalamic-pituitary-adrenal axis; NOS, nitric oxide
synthase; RAAS, renin—angiotensin—aldosterone system; ROS, reactive oxygen species.

© 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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the circulating mineralocorticoid ‘load’ in several ways.
First, ACTH increases secretion of aldosterone by
promoting cholesterol delivery to the mitochondria in
the zona glomerulosa cells (Hattangady et al. 2012)
and by enhancing CYP11B2 transcription (Takeda
et al. 1996). Second, ACTH stimulates production of
deoxycorticosterone, a weak mineralocorticoid that is
physiologically significant when in excess (Mullins et al.
2009). The stimulatory effect of ACTH on aldosterone
seems to be transient, but that on deoxycorticosterone
sustained (Dunbar et al. 2010). Finally, ACTH may
stimulate renin production in the juxtaglomerular
apparatus (Oelkers et al. 1982), although this concept lacks
much empirical support.

At a receptor level, glucocorticoids have equal, or
perhaps greater, affinity for the MR than does aldosterone
(Arriza et al. 1987). This concept is implicated in the hypo-
kalaemia and hypertension of Cushing’s syndrome and is
discussed in more detail below.
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Glucocorticoid signal transduction in the renal tubule

Pre-receptor steroid metabolism governs receptor
specificity. GR and MR share a high in vitro affinity
for both classes of steroid (Arriza et al. 1987), but
differ in their binding kinetics. The renal MR constitutes
a high-affinity, low-capacity corticosteroid-binding site
(formerly designated ‘type I'), K4 0.5-3 nMm for both
aldosterone and cortisol. GRs offer a low-affinity,
high-capacity ‘type IT site, K4 20—65 nM, for both steroids.
The in vivo specificity of the GR and MR for their
cognate ligands is, at least in part, a property conferred
by the pre-receptor metabolism of glucocorticoids by
the 118-hydroxysteroid dehydrogenase isozymes: type
1 (11BHSDI1) converts inactive 11-keto derivatives
of glucocorticoids into physiologically active cortisol
(corticosterone in rodents), and type 2 (11B8HSD2)
catalyses the reverse reaction (Chapman et al. 2013). Thus
11BHSD2 confers upon MR specificity for aldosterone
that is inherently lacking: cortisol activates MR whereas

direct physical interaction of 11HSD2 with MR (?)

................................................

MR inhibition by 11-keto glucocorticoids or NAPH (?)

aldosterone

progesterone (?)

PR

High affinity
(Ky=0.5-3.0 nM)

/

@EDC#

MR/GR heterodimer

MR homodimer

cortisol
11BHSD2
11BHSD1 cortisone

R

Low affinity
(Ky=20-65nM)
/

/
l

GR homodimer

Figure 2. Glucocorticoid signal transduction apparatus

In the kidney, glucocorticoids activate a set of receptors, GR, with low affinity and high capacity. However, they
also have the capacity to activate high-affinity MR, but are prevented from doing so in vivo by 118HSD2, which is
expressed in mineralocorticoid-sensitive tissues. GR and MR may form heterodimers but the influence these have
on Na* transport is unknown. Progesterone can influence electrolyte transport by binding MR and/or its cognate
receptor. GR, glucocorticoid receptor; 118HSD1/2, 118-hydroxysteroid dehydrogenase 1/2; MR, mineralocorticoid

receptor; PR, progesterone receptor.
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cortisone does not (Fig. 2). Inhibition of 118HSD2
activity (using derivatives of glycyrrhetinic acid, the active
ingredient of liquorice) promotes Na™ reabsorption and
potassium secretion in the distal nephron (Bailey et al.
2001). Genetic ablation of the enzyme, as occurs in
apparent mineralocorticoid excess syndrome, causes low
renin hypertension and hypokalaemia due in part to
increased Na™ reabsorption in the distal nephron (Stewart
et al. 1996; Bailey et al. 2008).

Nevertheless, the physiological role of 118HSD2 in the
kidney is more complex. The pre-receptor metabolism
of glucocorticoids by the enzyme will protect MR but
cells of the distal tubule also express GR. It is unlikely
that these receptors are physiologically redundant and
their activation will be influenced by 11 HSD2-mediated
metabolism of cortisol. In heterologous expression
systems, 118HSD2 appears able to influence the sub-
cellular localization of MR, possibly through a direct
physical interaction. Furthermore, cortisone blocks the
interaction between aldosterone and MR, suggesting
that the ‘inactive’ 11-keto-glucocorticoids generated by
11BHSD2 may act as autocrine or paracrine MR
antagonists (Odermatt et al. 2001). NAPH generation
by 11BHSD2 can also alter the intracellular redox
potential, locking MR—cortisol complexes in an inactive
state (Funder, 2010). Thus, glucocorticoids can bind

Key: s 113HSD1 expression
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MR but the receptor is not physiologically activated
unless excess reactive oxygen species are present. This
adverse redox environment is generated in the kidney
of salt-sensitive animals after a period of high Na*t
intake: glucocorticoid-induced activation of MR promotes
inflammation and fibrosis (Luther et al. 2012).

There is also the potential for interaction with sex
steroids, as progesterone acts as a partial agonist for
MR and GR (Arriza et al. 1987). Moreover, bona fide
progesterone receptors are also expressed in the distal
nephron, where they probably participate in the regulation
of solute transport. Progesterone derived from the adrenal
gland promotes renal potassium retention in male and
ovariectomized female potassium-depleted mice (Elabida
et al. 2011). This probably reflects direct signalling via the
progesterone receptor as activation of GR or MR would be
kaliuretic. Moreover, the potassium retention was blocked
by RU486, an antagonist of the progesterone receptor.
RU486 also antagonizes GR but the progesterone-induced
potassium retention was not associated with induction of
classic GR response genes.

Renal expression of glucocorticoid receptor,
mineralocorticoid receptor and 118-hydroxysteroid
dehydrogenase isozymes. The expression patterns of
MR and 11BHSD within the kidney are depicted in Fig. 3:

e

— 1 1BHSD2 / MR expression (consensus)

seseses 11BHSD2/ MR expression (disputed)

i

=

14

o]

Q
Figure 3. Renal sites of MR and 118HSD z%
expression . ;
Gluocorticoid receptors are expressed throughout 4 3
the renal tubule and in the glomerulus and are not é ------------
shown on this figure. See main text for details. z
aff., afferent; CCD, cortical collecting duct; CNT, E §
connecting tubule; DCT, distal convoluted tubule; 2 é
eff., efferent; 118HSD1/2, 118-hydroxysteroid £
dehydrogenase 1/2; IMCD, inner medullary
collecting duct; LOH, loop of Henle; MD, macula
densa; MR, mineralocorticoid receptor; OMCD, e
outer medullary collecting duct; PCT, proximal INNER
convoluted tubule; PST, proximal straight tubule; MEDULLA

TALH, thick ascending limb of Henle’s loop.

medullary ray

IMCD
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GR is widely expressed in the kidney, with mRNA being
detected in most cells. In contrast, MR and 118HSD2
have a more restricted distribution: co-localization of
these in the connecting tubule and principal cells of the
collecting duct defines the ‘aldosterone-sensitive distal
nephron’ (ASDN). The expression of 118HSD2 in the
distal convoluted tubule (DCT) is less certain and it
is probable that the enzyme is not expressed at high
levels, if at all (Bostanjoglo et al. 1998; Campean et al.
2001). Although DCT cells express both GR and MR and
are responsive to both corticosteroids, the conventional
model of the ASDN does not apply in this segment. This
is an important concept as the DCT reabsorbs more of
the filtered Na™ load (~7%) than does the collecting
duct (<5%). Abnormal glucocorticoid status could, via
activation of the thiazide-sensitive transporter in the
DCT, imperil Na* and blood pressure homeostasis.

Several groups have proposed that 11 SHSD2 abundance
decreases along a gradient as one moves proximally from
the cortical collecting duct, through the connecting tubule,
to DCT. This has led to speculation that there may be an
‘ASDN proper’ in which aldosterone dominates regulation
of Na® transport through MR, and an intermediate
segment expressing low levels of 118HSD2 in which
MR is activated by aldosterone under basal conditions
and/or by glucocorticoids if they are present in excess,
during activation of the HPAA or at certain periods
during the circadian cycle (Gaeggeler et al. 2005). It is
also possible that 11HSD2 expression/activity is physio-
logically regulated by Na™ and K* status (Thompson et al.
2000): DCT and the connecting tubule are plastic, homeo-
statically responsive epithelia capable of rapid remodelling
of the molecular apparatus for Na* transport.

11B8-Hydroxysteroid dehydrogenase 1 and the
glucocorticoid-amplified proximal nephron. 118HSD1
is located in the S3 proximal tubule (Fig. 3) and macula
densa (Gong et al. 2008; Odermatt & Kratschmar,
2012). It has also been detected in the interstitial cells
of the renal medulla (Castello et al. 1989; Rundle
et al. 1989). As these cells lack the hexose-6-phosphate
dehydrogenase and cannot generate NADPH, 118HSD1
may therefore act as a dehydrogenase here, catalysing
the same reaction as 11SHSD2 (Gomez-Sanchez et al.
2008). The urinary steroid profile following siRNA
knockdown of medullary 118HSDI1 suggests that this
is not correct and 11BHSDI1 acts predominantly as a
reductase (Liu et al. 2008). This leads to the concept of a
‘glucocorticoid-amplified proximal nephron’ and detailed
physiological examination of 118HSDI activity in the
renal tubule is required. Data are surprisingly scarce but
downregulation of renal 11 8HSD1 is an adaptive response
to either salt loading or increased blood pressure (Dunbar
et al. 2010). Failure to transcriptionally repress the

Hunter and others
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encoding gene, hsd11b1, contributes to the pathogenesis
of salt-sensitive hypertension. This phenomenon was
demonstrated in innovative studies using the Dahl
salt-sensitive (DSS) rat and a consomic control strain
(DSS-13BN) with attenuated salt sensitivity of blood
pressure. Renal medullary expression of 118HSDI
was downregulated in response to high dietary salt in
DSS-13BN but not in DSS rats. The authors hypothesized
that failure to downregulate 118HSD1 contributed
to renal Na™ retention and hypertension. To test this
hypothesis, knockdown of 118HSD1 expression/activity
was induced by injecting siRNA into the renal medulla
in vivo: hsdl11bl knockdown attenuated salt-sensitive
hypertension in the DSS rats (Liu et al. 2008). The
molecular mechanism underpinning the rescue of
salt-sensitive blood pressure was not determined. It may
be that 118HSD1 knockdown had a direct impact on Na*
transport processes in the medullary tubular epithelium
(i.e. on NKCC2 function in the thick ascending limb of
Henle’s loop). There is no consensus in the literature
concerning the effect of glucocorticoids on NKCC2
activity, with both transcriptional repression of slci2al
(Bailey et al. 2009) and increased abundance of the protein
(Frindt & Palmer, 2012) being reported. Nevertheless,
hsd11b1 knockdown in the renal medulla resulted in
a reduction in the concentration of corticosterone in
the urine. This raises the possibility that 11HSDI in
the interstitial cells of the medulla exerts a paracrine
effect on transport processes in the distal nephron by
altering the concentration of active glucocorticoids
in the downstream tubular fluid and/or peritubular
capillaries.

Glucocorticoid receptor in the distal nephron. Classical
studies of receptor—ligand interactions in collecting duct
cells in vitro demonstrate that mineralocorticoids can bind
to the GR. Indeed, binding assays indicate that physio-
logical concentrations of aldosterone would induce a low
level of GR occupancy, but the biological significance
of this is not clear (Gaeggeler et al. 2005). An inter-
action between aldosterone status and the GR has been
demonstrated in mouse and rat kidneys (Ackermann
et al. 2010), using nuclear translocation as a proxy for
receptor activation. Contrary to our understanding of
the ASDN, suppression of aldosterone by dietary NaCl
loading resulted in a reduction in the nuclear localization
of GR in the ASDN whereas MR localization was not
affected. Conversely, adrenalectomy resulted in the loss
of nuclear MR and GR in all nephron segments. The
nuclear MR signal was restored in all nephron segments
by physiological doses of corticosterone. The GR signal
was restored in most nephron segments but not in the
ASDN. Furthermore, in a colonic cell line expressing both
receptors (an unusual phenomenon in epithelial cell lines),

© 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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GR activation did not itself induce ENaC but was a pre-
requisite for the full MR-mediated response to aldosterone
(Bergann et al. 2011). Similar findings have been reported
in neuronal cell lines (Tsugita et al. 2009). The interaction
between the receptors is not understood but GR may be
sine qua non for formation of the MR/MR homodimer
or may even form a heterodimer with MR (Fig. 2), as is
suggested by FRET microscopy (Nishi et al. 2004).

These data challenge our conventional view of the
steroid control of Na' transport in the ASDN and
the consequences for Na™ transport are not clear. If
glucocorticoids, via GR, physiologically regulate MR, an
important homeostatic role for 118HSD2 may be to
control intracellular glucocorticoid concentration and
thereby govern GR activation.

Signal transduction downstream of steroid receptor
activation

Activated steroid receptors translocate to the nucleus,
where they act as transcription factors. There is
considerable overlap in the GR and MR response genes,
providing an additional mechanism through which both
classes of steroid can activate a common set of biological
effector pathways.
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Genomic responses to glucocorticoids: well-characterized
pathways. GRactivation in the collecting duct stimulates
the transcription of Sgkl and GILZ (Muller et al.
2003; Nguyen Dinh Cat et al. 2009). However, the
role of Sgkl in the renal response to glucocorticoids
in vivo remains obscure. Dexamethasone increases the
abundance of Sgkl transcripts in whole kidney homo-
genates. Our data indicate that Sgkl is physiologically
active: dexamethasone increases the phosphorylation of
the Sgkl target NDRG1 (Fig. 4). Dexamethasone does
not, however, increase Sgk1 expression in isolated cortical
collecting ducts (Muller ef al. 2003); Sgkl expression in
the distal renal tubule was not altered in response to over-
expression of GR in the collecting duct (Nguyen Dinh
Cat et al. 2009). These observations suggest that whereas
Sgkl participates in the response to glucocorticoids in
some kidney cells, it does not do so in the ASDN, where
some (yet unknown) mechanisms preserve Sgkl as an
aldosterone-responsive gene. Dexamethasone upregulates
NHE3 activity in cultured renal cells in an Sgk1-dependent
fashion, providing in vitro evidence that Sgkl-dependent
pathways may participate in glucocorticoid-regulated
solute transport in the proximal nephron (Wang et al.
2007).

Both Sgk1 and GILZ are also classic MR response genes
(Fig. 5). The Sgkl-Nedd4-2-ENaC pathway provides
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Figure 4. Dexamethasone increases the abundance of phosphorylated NDRG1 (P-NDRG1-Thr346:356.366)
in whole mouse kidney, indicative of increased SgK1 activity

C57BL6 mice were treated with dexamethasone (1 mg kg=") or vehicle (0.9% saline) and kidneys collected after
6 h. A, kidneys were probed with antibodies to the phosphorylated form of NDRG1 (P-NDRG 1-Thr346.356.366) o
total NDRG1 (T-NDRG1). NDRG1 is a substrate for SGK1 and this phosphoprotein is a surrogate indicator of SGK1
activity. B, densitometry analysis indicated P-NDRG1 was significantly increased in the dexamethasone-treated
group but there was no change in the T-NDRG1. Data are means =+ s.e.M., n = 6. P < 0.05, by Student’s t test.

Dex, dexamethasone.

© 2014 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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the canonical mechanism whereby aldosterone stimulates
Na™ reabsorption in the principal cell (Snyder et al. 2002);
the Sgk1-Nedd4-2 pathway also operates in the DCT to
stimulate NCC (Arroyo ef al. 2011). In cultured collecting
duct (mpkCCD) cells, GILZ participates in the regulation
of ENaC activity by aldosterone (Soundararajan et al
2005).

Genomic responses to glucocorticoids: an unbiased
approach. We have made a systematic attempt to identify
the renal transcriptional response to glucocorticoids
in mice exposed to 12 days of exogenous ACTH.
mRNA prepared from whole kidneys was hybridized
with an Affymetrix GeneChip (Santa Clara, CA,
USA), and the results subjected to a pathway analysis
(Dunbar et al. 2010). This model predominantly reflects
glucocorticoid-mediated signalling, the stimulation by

Lumen

ROMK
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ACTH of aldosterone production (vide supra) being trans-
ient (Dunbar et al. 2010). A large number of genes were
differentially regulated, including known targets such as
Sgkl as well as novel gene pathways concerned with
organic anion/cation transport, vitamin D, calcium and
xenobiotic metabolism.

The WNK-SPAK cascade. The WNK-SPAK kinase
network acts as a master regulator of electrolyte trans-
port in the distal renal tubule, and can transduce
mineralocorticoid signals (Hoorn et al. 2011). Sgkl
phosphorylates WNK4 at ser!'®”, thus relieving inhibition
by WNK4 of downstream targets, including NCC, ENaC
and ROMK (Ring et al. 2007; Rozansky et al. 2009).
However, GR can also regulate WNK signalling. WNK4
expression is reduced when GR is overexpressed in the
collecting duct (Nguyen Dinh Cat ef al. 2009) and GR

Na*

K+

PIP,

/

NEDD4/.

PDK1

TORC2

ENaC T
Gz {5GK1-p-p* *ENaC
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K* \
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Figure 5. Paradigm of mineralocorticoid signalling: regulation of ENaC in the principal cell

Aldosterone regulates ENaC through MR-binding dependent promotion of SGK-1 expression and ENaCea
expression. Two phosphorylation steps, mediated by TORC2 and PDK1, activate SGK1 (SGK1-P-Px). These kinases
are activated by the PI3K system. SGK1 phosphorylates Nedd4/2, which is an ubiquitin ligase enzyme that binds
ENaC and marks it for withdrawal from the apical membrane and subsequent degradation. SGK1-dependent
phosphorylation inhibits Nedd4/2-ENaC binding and promotes the maintenance of ENaC in the membrane.
Glucocorticoids are prevented from activating MR in the presence of high levels of 118HSD2. GILZ expression
is also increased upon aldosterone stimulation and is thought to stabilize SGK1. Red connectors represent
inhibition through phosphorylation or ubiquitinylation, while green arrows indicate stimulation by phosphorylation
or otherwise. Black arrows indicate movement of ions or change to phosphorylated state. A, aldosterone;
ENaC, epithelial Na* channel; G, glucocorticoids; 118HSD1/2, 11B-hydroxysteroid dehydrogenase 1/2; MR,
mineralocorticoid receptor; P, phosphorylation; U, ubiquitinylation.
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negatively regulates WNK4 transcription in mpkDCT cells
and in the murine DCT in vivo (Mu et al. 2011) (vide
infra). Basal WNK4 mRNA expression is higher in mice
lacking GR in the distal nephron, suggesting that end-
ogenous glucocorticoids exert a tonic antinatriuretic effect
through their effects on WNK signalling (Mu et al. 2011).

Glucocorticoid effects on tubule Na* transport

The systemic administration of glucocorticoids induces
effects on solute transport processes along the length of
the renal tubule. For example, dexamethasone treatment
in rats causes an increase in the abundance of NHE3,
NCC, NKCC2, the full-length isoform of «-ENaC
and the cleaved isoform of y-ENaC in whole kidney
homogenates (Frindt & Palmer, 2012). Glucocorticoids
influence cellular morphology and proliferation in the
distal renal tubule, causing amplification of the basolateral
membranes of the principal cells in the cortical collecting
tubules in the rabbit (Wade et al. 1979). However,
these studies are unable to discriminate between the
specific effects of glucocorticoid signalling in renal tubular
cells and a ‘passive’ response to glucocorticoid-induced
changes in systemic haemodynamics and/or intermediate
metabolism.

Glucocorticoid effects in the proximal tubule

Regulation of NHE3 and Na*-P; cotransporter 2. Intherat
glucocorticoids stimulate Na™ bicarbonate reabsorption
by activating NHE3 (Zallocchi et al. 2003) and suppress
sodium phosphate cotransport by Nat-P; cotransporter
2 (Loffing et al. 1998). These events contribute to
glucocorticoid-induced increases in the renal excretion of
acid and phosphate (Table 1).

Glucocorticoid effects in the distal convoluted tubule

Glucocorticoids stimulate NaCl reabsorption in the DCT.
The underlying molecular mechanisms show the DCT
to be a site at which several key natritropic signals
interact. In a mouse model of salt-sensitive hyper-
tension with sympathetic activation, an epigenetic inter-
action between adrenergic and glucocorticoid signalling
is indicated. This effect is mediated by the WNK
kinases and results in the regulation of NCC expression,
phosphorylation and transport activity (Mu ef al. 2011).
B-adrenergic stimulation activated NCC by suppressing
WNK4 expression through a GR-dependent mechanism.
Activated f2-adrenoreceptors induced histone acetyl-
ation at negative glucocorticoid response elements in
the WNK4 promoter, enhancing GR binding. There was
corresponding negative regulation of Wnk4 by GR in the
DCT in vivo: adrenalectomy or a GR antagonist abolished
the inhibitory effect of noradrenaline on Wnk4 mRNA
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expression (and this was restored by dexamethasone in
the case of adrenalectomy).

As WNK4 is itself a negative regulator of NCC activity,
these findings support a model in which GR activation
in the DCT tonically stimulates NaCl reabsorption.
Consistent with this, basal Wnk4 mRNA abundance was
higher in mice lacking GR in the distal nephron.

Glucocorticoid effects in the aldosterone-sensitive
distal nephron: in vitro and in vivo data

The ability of glucocorticoids to stimulate electro-
genic Na' transport in the collecting ducts has been
demonstrated in vitro using cultured cell lines that
faithfully maintain many of the in vivo characteristics
of principal cells (Naray-Fejes-Toth & Fejes-Toth, 1990;
Laplace et al. 1992; Bens et al 1999; Gaeggeler
et al. 2005). In mCCDy; cells, corticosterone stimulates
amiloride-sensitive transport even in the presence of
intact 118HSD2 (Gaeggeler et al. 2005), albeit at
higher concentrations than aldosterone (Ki, = 18 nm
for corticosterone; 0.52 nMm for aldosterone). High
concentrations of dexamethasone stimulate this current
via an RU486-sensitive pathway, suggesting that this is a
consequence — at least in part — of GR activation. The
mechanisms whereby GR stimulates Na™ transport in
the collecting duct remain to be established: regulation
of endothelin-1 expression has been implicated in vitro
(Stow et al. 2012).

Glucocorticoid effects on Nat transport in the
‘aldosterone-sensitive distal nephron’ in vivo. Despite
the robust in vitro data, a direct demonstration that
glucocorticoids physiologically activate ENaC in vivo has
been lacking. Seven days of treatment with dexamethasone
increased the abundance of the full-length isoform of
a-ENaC in rat kidney, but had no effect on electro-
genic Na't transport in split open collecting ducts
(Frindt & Palmer, 2012). Mice heterozygotes for a null
mutation in Hsd11b2 (the gene encoding 118HSD2) have
salt-sensitive blood pressure associated with elevated
levels of circulating glucocorticoids (Bailey et al. 2011).
Salt loading induced hypokalaemia in hsd11b2*/~
mice, and the trans-tubular potassium gradient >7
indicated enhanced ‘mineralocorticoid’ activity in the
distal nephron. The salt sensitivity and hypokalaemia
were both corrected by GR antagonism but not by MR
antagonism, suggesting that GR activation might exert a
pathophysiological role in the ASDN.

The MR knockout mouse provides further evidence
of glucocorticoids exerting mineralocorticoid effects in
the distal nephron. Global constitutive knockout in MR
is fatal; the animals die from excessive urinary solute
losses at about day 10, indicating that GR is not able
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to completely compensate for the lack of MR (Berger
et al. 1998). However, glucocorticoids are capable of a
partial compensation: triamcinolone treatment enhanced
ENaC expression and activity in salt-supplemented MR
knockout mice (Schulz-Baldes et al. 2001).

The direct effects of GR signalling in the distal nephron
has been investigated using two transgenic mouse models:
Ksp-Cret GRI"1® mice, in which GR was specifically
and constitutively deleted in the AQP2-positive distal
nephron (Goodwin et al. 2010), and Hoxb7-tetON2-hGR
mice in which GR was conditionally overexpressed in
cells of collecting duct lineage (Nguyen Dinh Cat et al
2009). Loss of GR from the distal nephron had no
effect on the response to chronic dexamethasone, which
induced a rise in blood pressure and a natriuresis that was
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indistinguishable from that in wild-type mice (Goodwin
et al. 2010). However, basal blood pressure was higher
in Ksp-Cre* GRIP1o mjce, raising the possibility that
GR activity in the ASDN participates in blood pressure
homeostasis in the ‘normal healthy’ adult. This being a
constitutive knockout, a developmental effect cannot be
discounted. Overexpression of GR in the distal nephron
had no effect on net urinary Na™ or K* excretion, although
there was a reduction in urinary aldosterone indicative of
compensatory RAAS inhibition (Nguyen Dinh Cat et al.
2009). There was a clear transcriptional response to GR
overexpression (discussed above). Taken together, these
data suggest that GR-mediated signalling may modulate
Na™ transport in the collecting duct, but the regulation
of net renal Na™ excretion is physiologically dominated
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Figure 6. Interactions between the RAAS and the HPAA

Dashed arrows (with filled circles at the head) represent negative feedback loops. Red arrows are potential
sites of crosstalk between the RAAS and the HPAA. Interactions arise at multiple levels: pre-receptor (changes in
ligand availability), receptor (receptor—ligand promiscuity) and post-receptor (common second messenger systems).
HPAA activation can increase the activity of 118HSD2 and inhibit 118HSD1. The other potential routes of cross-
talk are discussed in the main text. ACTH, adrenocorticotrophic hormone; Angll, angiotensin Il; CRH, cortico-
trophin releasing hormone; DOC, deoxycorticosterone; HPAA, hypothalamic—pituitary-adrenal axis; 118HSD1/2,
11B-hydroxysteroid dehydrogenase 1/2; MR, mineralocorticoid receptor; RAAS, renin—angiotensin—aldosterone

system.
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by the RAAS. Moreover, it is possible that some of
the effects of mineralocorticoids in the distal nephron
may be mediated independently of MR and GR. In rats
chronically infused with aldosterone, combined MR and
GR blockade did not prevent the increase in ENaC protein
abundance and trafficking to the apical cell membrane
(Nielsen et al. 2007). The physiological effect of this is
uncertain: spironolactone did rescue the hypokalaemia
and prevented the increase in Na™/K*-ATPase abundance,
suggesting that electrogenic Na™ transport in the principal
cell was reduced, despite the continued presence of ENaC
in the apical membrane.

Implications for hypertension and salt sensitivity in
humans

The renal tubules possess the molecular apparatus
requisite for glucocorticoid-responsive Na™ transport.
The expression of 118HSD1 and 118HSD2 will influence
these processes by regulating local glucocorticoid
concentrations. Several lines of evidence challenge
the conventional role of renal 118HSD2 as a mere
enzymatic guardian of the MR. Equally compelling, is
evidence showing stimulation by glucocorticoids of Na*
reabsorption at several sites along the nephron. More
provocatively, experiments in cell lines and in native
kidney indicate that GR has an important permissive
role for aldosterone signalling at MR. The HPAA is thus
able to influence renal Na™ excretion at multiple levels
(Fig. 6) — and such regulation escapes the negative feed-
back mechanisms inherent within the RAAS.

However, is this relevant for human health? Many of
the mechanisms whereby glucocorticoids cause hyper-
tension reside in the vasculature, and central and auto-
nomic nervous systems, but there is a clear contribution
from an antinatriuretic effect in the renal tubules. This
is clinically important: salt-sensitive humans have an
enhanced stress-induced activation of the HPAA (Weber
et al. 2008) and attenuated glucocorticoid clearance
(Kerstens et al. 2003). Glucocorticoids stimulate electro-
genic Na™ transport in humans when present in excess,
as in Cushing’s syndrome. We do not know, however,
if this contributes to hypertension in states of moderate
glucocorticoid excess or in the metabolic syndrome, where
the tissue availability of active glucocorticoid is enhanced
(Pereira et al. 2012). Hsd11b2 gene polymorphisms are
associated with salt sensitivity in blood pressure in
normotensive and hypertensive subjects, suggesting that
glucocorticoids can breach the 118HSD2 barrier even
when they are not present in vast excess.

The molecular pathways whereby glucocorticoids
contribute to salt-sensitive hypertension have been
elucidated in mice. These studies provide a mechanistic
explanation for the long-recognized ability of combined
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glucocorticoid and adrenergic stimulation to exert tubular
antinatriuretic effects. Mechanisms in the distal nephron
predominate: the NCC is activated during sympathetic
stimulation (Mu et al. 2011) and ENaC is increased
in 11BHSD2 heterozygotes (Craigie et al. 2012). These
pathways are attractive therapeutic targets to ameliorate
the salt-sensitive hypertension associated with chronic
stress and other states of sympathetic and HPAA activation
in humans. There is also a pressing clinical need to
develop a mechanistic understanding of the effects of renal
11BHSD1 activity on Na™ transport. Systemic 118HSD1
inhibitors are in development for use as modifiers of
cardiovascular risk in obesity, type 2 diabetes mellitus and
the metabolic syndrome (Hughes et al. 2008; Hadoke et al.
2009), conditions in which salt-sensitive hypertension
is prevalent (Hall, 2003; Fujita, 2010). One potential
side-benefit of 11 SHSD1 inhibition in such cases might be
an improvement in salt sensitivity because of diminished
active glucocorticoid generation in the renal medulla. An
antihypertensive effect of 11 BHSD1 inhibitors has recently
been reported in a clinical trial and in the spontaneously
hypertensive rat (Bauman et al. 2013).

Conclusion

Conditions associated with modest elevations in
circulating glucocorticoids are common. Moreover, the
widespread therapeutic use of GR agonists may flatten
the dynamic regulation of the HPAA with deleterious
consequences for renal Na™ homeostasis. Glucocorticoids
regulate Na™ transport in the proximal and distal renal
tubule and, in particular, can stimulate Na* reabsorption
in the post-macular segments. 118HSD2 activity is
low in the DCT, which is emerging as a critical site
for the regulation of renal Na' excretion by various
signalling pathways, including glucocorticoids. These
effects have implications for human health and disease,
with the potential to contribute to the pathogenesis of
Na*-sensitive hypertension in the metabolic syndrome
and in chronic stress.
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