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Abstract

Background: Intensive care unit (ICU)-acquired weakness in critically ill patients is a common and significant
complication affecting the course of critical illness. Whole-body vibration is known to be effective muscle training
and may be an option in diminishing weakness and muscle wasting. Especially, patients who are immobilized and
not available for active physiotherapy may benefit. Until now whole-body vibration was not investigated in mechanically
ventilated ICU patients. We investigated the safety, feasibility, and metabolic response of whole-body vibration in critically
il patients.

Methods: We investigated 19 mechanically ventilated, immobilized ICU patients. Passive range of motion was performed
prior to whole-body vibration therapy held in the supine position for 15 minutes. Continuous monitoring of vital signs,
hemodynamics, and energy metabolism, as well as intermittent blood sampling, took place from the start of baseline
measurements up to 1 hour post intervention. We performed comparative longitudinal analysis of the phases before,
during, and after intervention.

Results: Vital signs and hemodynamic parameters remained stable with only minor changes resulting from the
intervention. No application had to be interrupted. We did not observe any adverse event. Whole-body vibration
did not significantly and/or clinically change vital signs and hemodynamics. A significant increase in energy
expenditure during whole-body vibration could be observed.

Conclusions: In our study the application of whole-body vibration was safe and feasible. The technique leads to
increased energy expenditure. This may offer the chance to treat patients in the ICU with whole-body vibration.
Further investigations should focus on the efficacy of whole-body vibration in the prevention of ICU-acquired
weakness.

Trial registration: Applicability and Safety of Vibration Therapy in Intensive Care Unit (ICU) Patients. ClinicalTrials.
gov NCT01286610. Registered 28 January 2011.
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Background

Muscle wasting and intensive care unit-acquired weak-
ness (ICU-AW) are common complications in ICU pa-
tients, leading to longer ICU and hospital stay, higher
morbidity and mortality, as well as a poor long-term
prognosis [1-3]. Sepsis, multiple organ failure, muscle
inactivity, hyperglycemia, as well as the use of corticoste-
roids and neuromuscular blocking agents were identified
as risk factors [1, 4, 5]. ICU-AW diagnosis is often de-
layed during the ICU stay, usually after a reduction of
analgesics and anxiolytics, as the patients first become
fully alert. Decreased muscle protein synthesis and in-
creased protein degradation are involved in the patho-
mechanism, and occur very early during critical illness
[6, 7]. Early mobilization of alert patients reduces the
length of mechanical ventilation and ICU and hospital
stay [8, 9], and leads to better functional independence
at hospital discharge [8]. These results only relate to pa-
tients who are able to participate in active physiotherapy.
Hence follows the idea of closing the gap between onset
of critical illness and active muscle training, using exter-
nal devices during immobilization and sedation phases
to evoke muscle contractions [10-13]. During this time
course of disease there are further options for intensified
passive mobilization by physiotherapists, such as passive
cycling or motorized continuous passive motion for dif-
ferent conditions, which we separate from treatment op-
tions for active muscle training indicated by patients
initiating muscle contraction or from external evoked
ones. A series of investigations with electrical muscle
stimulation (EMS) in critically ill patients therefore com-
menced, and while some EMS studies showed promising
results [11, 14], others could not [13]. From our own ex-
perience we know that application of EMS is time con-
suming, if feasible at all, and effectiveness is inconsistent
[15]. As an alternative, we propose the use of whole-
body vibration (WBV) for muscle activation in the ICU.
First investigations of human tolerance when exposed to
vibration date back to the 1960s [16], and to this day the
use of vibration has become more and more interesting
in many different approaches and popular in the fitness
world. Companies offer devices starting at around
€1000. WBYV is used as a countermeasure to muscle at-
rophy and bone loss during the absence of gravity in
space, as well as a training option for professional ath-
letes [17, 18] and patients with various underlying dis-
eases [19]. The spinal cord reflex function means that
WBV may be suitable for unconscious patients, because
muscle contraction occurs at a spinal level and not at a
cerebral level [20—22]. There is evidence that prolonged
application of WBYV helps to maintain muscular mass
and strength, increases bone density, improves outcome,
and increases glucose metabolism, as shown in healthy
volunteers, athletes, older people, or non-ICU patients
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in the short term [17, 18, 23—-30]. These benefits corres-
pond to the needs of critically ill patients and may sup-
port ICU patient recovery, although thus far there are
no WBV investigations in mechanically ventilated ICU
patients. Our aim is to transfer the application of WBV
to the ICU.

We hypothesize that the use of WBV in mechanically
ventilated ICU patients is safe, feasible, and effective in
inducing skeletal muscle activation.

Methods

Design

During a 12-month period, we recruited patients in a
mixed ICU and a neurosurgical ICU at a university hos-
pital. In our pilot interventional study, we enrolled crit-
ically ill patients who were mechanically ventilated for
more than 48 hours with an estimated ICU stay of at
least 7 days. Our primary outcome was to show safety
and tolerability of WBV by stability of vital parameters
(see Additional file 1). Criteria for noninclusion were:
lack of informed consent, age <18 years, preexisting
neuromuscular diseases, implanted pacemaker or defib-
rillator, pregnancy, acute venous thrombosis, unhealed
fractures or recently attached implants in body region to
be stimulated, recent eye surgery, history of acute herni-
ated discs with acute symptoms, participant in another
study, as well as terminal cases. Informed consent was
obtained from a legal proxy. The local ethics committee
of the Charité (Charité—Universititsmedizin Berlin, Eth-
ics Commission, Charitéplatz 1, 10117 Berlin, Germany)
gave their consent (EA1/017/11). Following a predefined
protocol, enrolled patients received passive physiother-
apy followed by a single session of WBYV. Continuous
monitoring of vital signs, hemodynamics, and energy
metabolism, as well as intermitted blood sampling
(Fig. 1a), took place from the start of baseline measure-
ments up to 1 hour post intervention (for detailed data
processing see Additional file 1). The patients were in
the supine position during the entire intervention, and
no changes in body position took place to avoid any in-
fluence on hemodynamic parameters and vital signs. Fol-
lowing baseline measurements, patients were mobilized
passively by a physiotherapist for 6 minutes as a warm-
up. WBV treatment was then initiated, consisting of a
vibration device placed under the patient’s feet, with re-
sistance to the end of the bed. The patient’s hips and
knees were flexed at about 20°. An elastic strip provided
pressure on the knees, pushing the patient’s feet against
the vibration device (Fig. 1b). WBV sessions took 15 mi-
nutes, with 9 minutes of clear vibration time. We used
two different devices following the manufacturers’ in-
structions for WBYV: one device with synchronous vibra-
tion (Promedi, Vibrosphere®, 26 Hz, nine times for
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extremities if necessary. WBV whole-body vibration
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Fig. 1 Study protocol and visual presentation of study execution. a Visualization of study protocol. Intervention started with 10 minutes of
resting, followed by 6 minutes of physiotherapy (passive range of motion of upper and lower extremity). After physiotherapy there was a short
resting time, followed by WBV. After WBY, a long resting period took place. Serum blood samples and blood gas analyses were performed at
different time points, as shown. Longitudinal analysis of intervals was performed at five different time segments. Analysis was performed at
baseline, at physiotherapy, during WBV, and at early and late rest periods. b Female patient in a supine position. Vibration device positioned at
the end of the bed, with the patient’s feet placed on the middle of the device. An elastic strap is placed around the knee joint to generate
pressure on the vibration device. The aim was to flex the knee joint about 20°. The physiotherapist assisted in the stabilization of the lower

1 minute), and the other with side alternating vibration
(Galileo, home-ICU?®, 24 Hz, three times for 3 minutes).

Termination criteria for WBYV sessions were predefined
as follows: heart rate <40 or > 180 beats per minute; sys-
tolic blood pressure < 80 mmHg or >200 mmHg; mean
arterial blood pressure <60 mmHg or>120 mmHg; in-
crease in intracerebral pressure > 20 mmHg; SpO, < 88%;
or potassium levels < 3.0 mmol/l or > 5.5 mmol/l.

Data assessment

Data collection was performed using ICM+ software (Uni-
versity of Cambridge) with a recording rate of 50 Hz,
where vital signs were monitored using Intellivue (MP30;
Phillips) and hemodynamic parameters using PiCCO,
(Pulsion Medical Systems, Germany). Indirect calorimetry
was performed using Deltatrac (Datex Ohmeda, Finland),
and was recorded with Datex Collect with a frequency of

one mean per minute. Thermodilution for the PiCCO,
system and calibration of all devices took place before
each individual session.

We obtained blood gas analyses (BGA) at four time
points (Fig. 1a), and measured levels of pO,, pCO,,
pH, sodium, potassium, and blood glucose concentra-
tion using a Radiometer ABL 800. Values were used to
describe steady-state conditions during the observa-
tion, and to observe metabolic response to the inter-
vention. We additionally investigated serum levels of
insulin-like growth factor I (IGF-I) and cortisol before
and twice after the intervention, because they repre-
sent systemic anabolic and catabolic hormones with
major influence on the skeletal muscle. Both hor-
mones had been investigated previously within a WBV
setting and showed significant changes in healthy
controls [31, 32].
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Data analyses

Besides evaluating the continuous recordings to exclude
adverse events, we focused our analyses on comparable
time intervals for different parts during the observation.
Furthermore, we selected similar predefined time inter-
vals of 5-minute recordings, so as to have coherent and
comparable longitudinal data for these observations
(Fig. 1a). Testing for equivalence of the multiple primary
endpoint (heart rate and systolic blood pressure) was
performed for the first observations from baseline and
WBV therapy as well as for the mean values of the re-
spective phases. Longitudinal analysis examined data in
phases from the baseline, physiotherapy, WBV therapy,
early resting period (10 minutes after intervention), and
late resting period (50 minutes after intervention).

Statistical analyses

Results are expressed as medians with interquartile range,
or as indicated in the legend. After proof of the multiple
primary endpoint for equivalence using the confidence
interval method and Schuirman’s OST/TOST for means-
paired design [33], we analyzed our time-dependent data
in a multivariate nonparametric analysis of longitudinal
data in a two-factorial design (first factor (dependent):
phases, second factor (dependent): time) [34]. Blood ana-
lyses over phases were tested by paired Wilcoxon rank
tests for depending samples. A two-tailed p value < 0.05
was considered statistically significant. All tests of second-
ary endpoints were conducted in the area of exploratory
data analysis. Therefore, no adjustments for multiple test-
ing have been made. Statistical analyses and graphs were
performed using R i386 software, version 2.15.3, IBM
SPSS statistics, version 22, and SigmaPlot, version 12.

Results

Patients

Patients’ baseline characteristics and medical status on
the intervention day are presented in Table 1. All 19
study participants completed the intervention. During
the entire observation, no patient reached predefined
termination criteria or suffered from related adverse
events. No endotracheal tube, tracheal cannula, drain,
infusion line, ECMO-cannula central venous catheter, or
dialyses catheter was dislocated. The application proced-
ure was simple for a physiotherapist and did not
influence the clinical routine more than standard physio-
therapy. Preparation for WBYV is simple and takes less
than 3 minutes.

Multiple primary endpoint

Equivalence testing for baseline against WBV therapy of
the multiple primary endpoint consisting of heart rate and
systolic blood pressure in a means-paired design (equiva-
lence margins: +20% (mean baseline) each) resulted in
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Table 1 Characterization of study participants

Study participants, n 19
Subgroup Vibrosphere 12
Subgroup Galileo 7

Age, years 54 (52/59)

Gender, male/female 11/7 (57.9%/42.1%)

BMI (kg/m?) 28 (24/31)

Diagnosis
ARDS 9 (47.4%)
Trauma 2 (10.5%)
CNS 8 (42.1%)

Days between ICU admission and intervention 15 (8/18)

lliness severity at ICU admission
SOFA score 10 (9/13)
SAPS-II 53 (35/78)

lliness severity at intervention day
SOFA score 9 (6/10)
SAPS-II 48 (38/52)
GCS at intervention day 5(3/11)
Sedation, RASS at intervention day -4 (-4/0)

Selective medication during intervention, number of patients received
and rate in those

Norepinephrine, 12 of 19 patients 0.100 (0.048/0.140)

(rate pg/kg/min)

0.033 (0.031/0.033
0.002 (0.001/0.003
0.011 (0.003/0.020
0.013 (0.007/0.014,

Results expressed as medians with interquartile range (median (25th/75th), or
as absolute numbers with percentages (%)

BMI body mass index, ARDS acute respiratory distress syndrome, CNS central
nervous system, ICU intensive care unit, SOFA Sequential Organ Failure
Assessment, SAPS-II Simplified Acute Physiology Score-Il, GCS Glasgow Coma
Scale, RASS Richmond Agitation Sedation Scale

Propofol, 3 of 19 patients (rate mg/kg/min) )
Midazoloam, 3 of 19 patients (rate mg/kg/min) )
Sufentanil, 10 of 19 patients (rate ug/kg/min) )
)

Clonidin, 6 of 19 patients (rate pg/kg/min)

significant equivalence (p <0.0001), adjusted for multiple
testing, both using first observations and mean values of
the respective phases.

Longitudinal analyses

Vital signs

Measurements of vital signs did not significantly change
during and after intervention, when compared with
baseline (Fig. 2). Minor changes were observed, but were
never critical for the patients’ safety. Although the base-
line values varied between patients (Fig. 2, gray dots and
lines), individual changes were in a small range (Fig. 2,
black triangles and lines). Diastolic blood pressure was
significantly elevated during the physiotherapy period as
compared with baseline (p = 0.014), which did not occur
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Fig. 2 Vital signs for longitudinal observation. Gray dots and lines, absolute values; black triangles and lines, changes compared with baseline

during the WBYV, early, or late resting periods. Heart
rate, mean arterial pressure, systolic blood pressure, and
oxygen saturation did not differ significantly from base-
line during physiotherapy, WBYV, or the resting periods.

Intracranial pressure

Out of 19 patients, seven had an extraventricular liquor
drain to measure intracranial pressure (Fig. 2). Neither
the physiotherapy intervention, in line with previous in-
vestigations [35], nor the WBYV significantly influenced
intracranial pressure levels.

Hemodynamics

Hemodynamic parameters were measured using the
PiCCO, Medical-System in a total of 15 patients (Fig. 3).
Cardiac output (CO), stroke volume (SV), and stroke vol-
ume range (SV minimum, SV maximum) were not signifi-
cantly influenced by the interventions and remained
stable during resting time. Cardiac power output (CPO)
showed a significant, but clinically irrelevant decrease dur-
ing the WBYV period compared with baseline (p = 0.047),

without significant changes in CO and blood pressure. SV
variability increased significantly during the physiotherapy
period in comparison with the baseline (p <0.001), but
was not significantly influenced by WBYV or during resting
periods when compared with baseline.

Energy metabolism

We measured indirect calorimetry for 16 patients, and
found increased energy expenditure (EE) only during
WBV (Fig. 4). Comparing the WBV period with the
baseline, oxygen uptake levels were significantly in-
creased (p=0.012) and carbon dioxide production was
enhanced (p < 0.001), showing increased energy expend-
iture (p =0.007). In contrast, physiotherapy led to in-
creased elimination of carbon dioxide (p = 0.041) but not
to increased oxygen uptake or increased energy expendi-
tures. During the early and late resting periods, oxygen
uptake and energy expenditure did return to baseline
values. Carbon dioxide elimination values remained in-
creased during the early resting period (p<0.01), and
achieved baseline levels only during the late resting
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period. Physiotherapy (p < 0.01) and WBV (p < 0.001) in-
creased the respiratory rate significantly compared with
baseline. The respiratory quotient (RQ) increase signifi-
cant during physiotherapy (p =0.033), which is caused
by increased carbon dioxide elimination.
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Blood analyses

The BGA (1 =19) show a stable ventilation state for the
patients, indicated by unchanged pO, and pCO,, acid—
base state (pH, bicarbonate (HCO3), base excess), and
oximetry during the entire examination (Fig. 5). WBV
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was associated with a significant increase of potassium
serum levels compared with baseline (p = 0.048). This ef-
fect was not observed during physiotherapy only. The
sodium concentrations within the same blood samples
remained unchanged, indicating no errors in the sam-
pling. Furthermore, expected changes for glucose and
lactate levels could not be observed. Measuring IGF-1
and cortisol levels resulted in a large range of baseline
values, which may have contributed to the fact that no
significant changes could be observed.

Discussion

To the best of our knowledge, this is the first report
about safety and feasibility of WBV in critically ill,
mechanically ventilated patients. We found that WBYV is
safely applicable even to critically ill patients in severe
condition, as indicated by high SOFA and SAPS-II
scores in addition to mechanical ventilation.

Our approach is to induce muscle activation during
early critical illness, when patients are unable to partici-
pate in active physiotherapy due to sedation or uncon-
sciousness due to neurological reasons. WBV might be
an option to evoke muscle activation within a protocol-
based physiotherapy and mobilization plan during the
course of disease. Additionally, WBV may be a treatment
option throughout the ICU stay; that is, may be contin-
ued when patients are awake.

The beneficial effect of physiotherapy and early
mobilization, which has been shown to be safe and feasible,
has been shown in several clinical studies [8, 9, 36, 37].
There are still phases in which patients are not available
for active physiotherapy, and these intervals often coincide
with intervals of severe illness, acute systemic inflamma-
tion, or dependency on norepinephrine for hemodynamic
stability. These early periods of critical illness and inflam-
mation are particularly significant in the development of
muscle wasting and ICU-AW, as we [6, 14] and others [7]
could recently show. Evoked muscle training to avoid
immobilization due to EMS can be an option [10-12, 14],
but application is labored, often not feasible [15], and in
general EMS therapy for ICU patients remains controver-
sial [38]. Alternatively WBV may be able to close the gap
between immobilization and active physiotherapy, hy-
pothesizing that frequently applied early muscle activation
evoked by WBV may support patient recovery.

WBV represents a strong stimulus to the skeletal
muscle, leading to physiological growth adaption in bone
and muscle [39, 40]. Clinically, it was shown that WBV
improves average velocity, average force, and average
power [41] in volunteers and not critically ill patients. The
activation on spinal linkage by WBYV is evident, as pub-
lished in a recent investigation showing increased EMG
activity on the paretic and nonparetic sides of stroke
patients, independent of the intensity of the stimulus [19].
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The physiological principal behind WBYV is a mechan-
ical stretch and reflex mechanism by the peripheral
nerve [20]. Dependent on the frequency of the vibration
stimulus, WBV leads to much more than 1000 muscle
contractions per minute, leading to increased muscle
strength and mass, seen as muscle hypertrophy. This
principle of muscle activation agrees with the metabolic
findings and expected benefits for ICU patients. Our
data show that passive range of motion via physiother-
apy increases carbon dioxide elimination, which can be
explained by the mobilization of resting blood in the
capacity vessels. Absence of active muscle contraction in
passive mobilization is reflected by a missing increase in
oxygen uptake. In contrast, WBV in critically ill patients
increases both carbon dioxide elimination and oxygen
uptake in our patients. This has been shown by others in
overweight and obese women [42]. The physiotherapist
had the subjective impression that, in single cases, pa-
tients had an arousal reaction due to the intervention,
which was not measurable by RASS scoring but may
have an impact on their energy expenditure. We inter-
pret this increased energy turnover as the result of mus-
cular activation. That the increased energy expenditure
is caused by actual muscle activation, and not by meta-
bolic dysregulation, is confirmed by steady-state levels
for pO2, pCO2, pH, HCO3, and base excess. Time delay
between intervention and measurement of the indirect
calorimetry may occur but is improbable due to the se-
lected time frame and no significant changes over time
within each phase (see Additional file 1). Serum potassium
levels were significantly increased only during WBYV, prob-
ably due to muscle contraction, and unchanged serum so-
dium levels underline our interpretation.

Besides the mechanical stretch and reflex mechanism
by the peripheral nerve caused by the vibration stimuli,
there is evidence for an additional, direct impact on dif-
ferent tissues. This could be demonstrated by molecular
findings showing beneficial effects of vibration in vivo
and in vitro on separated stem cells, myoblasts, and
muscle tissue [40, 43, 44]. Ceccarelli et al. [40] showed
an increased synthesis and decreased activation of the ubi-
quitin—proteasome pathway with myostatin and Atrogin-1
suppression in vitro due to vibration. These findings imply
that vibration could have a significant impact on main-
taining muscle in ICU patients because decreased myosin
synthesis and increased myosin degradation is an estab-
lished mechanism in the development of ICU-AW [6].

Repetitive WBV was shown to have a positive effect
on glucose metabolism in type II diabetes patients
[27, 28]. We showed recently that EMS has an impact
on maintaining muscular mass by improving glucose
metabolism in the critically ill [14]. Future studies
could investigate whether a similarly positive effect
can be achieved by WBV.
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We also did not find a serum lactate elevation, which
might be expected during extensive muscle training. Thus,
WBV does not result in substantial anaerobic muscle
activity, which would presumably not be favorable in crit-
ically ill patients. Small changes were probably not meas-
urable in an intervention of this scale. Small changes
would also explain why we could not find any significant
changes in the hormonal regulation of IGF-1 and cortisol,
which were shown earlier for both hormones [31, 32].

This pilot study was limited to investigate safety, feasibil-
ity, and metabolic response of WBV in critically ill patients,
focusing on hemodynamic stability. Thus it was outside the
scope of the study to evaluate aspects such as patient com-
fort, staff workload, and staff acceptance. Further investiga-
tions are also needed to assess the most favorable type,
intensity, frequency, and duration of WBV in ICU treat-
ment. For the first time in critically ill patients, we could
show a safe feasibility of WBYV, as well as measure indicators
for muscle activation and induced metabolism. These results
could be further improved by measuring the muscle activity
by electromyography. The next step would be an investiga-
tion to determine whether WBV could improve short-term
and long-term outcome for ICU patients, by prevention or
treatment, as already shown for non-ICU patients.

Conclusion

We conclude—under consideration of the absolute contra-
indications—that the application of WBYV is safe and feasible
in critically ill patients. Our results support the principle
that WBYV stimulates muscle and improves muscle metabol-
ism, and therefore may have the potential to prevent and/or
treat muscle weakness in critically ill patients. Further clin-
ical trials are needed to investigate beneficial effects.
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