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Abstract

To determine CYP2C19 and CYP2C8 allele frequencies, 28 coding and/or functional variants were 

genotyped in 1250 African-American, Asian, Caucasian, Hispanic and Ashkenazi Jewish (AJ) 

individuals. The combined CYP2C19 variant allele frequencies ranged from ~0.30–0.41; however, 

the CYP2C8 frequencies were much lower (~0.04–0.13). After incorporating previously reported 

CYP2C9 genotyping results from these populations (36 total CYP2C variants), 16 multi-ethnic 

CYP2C haplotypes were inferred with frequencies >0.5%. Notably, the 2C19*17-2C9*1-2C8*2 

haplotype was identified among African-Americans (8%) and Hispanics (2%), indicating that 

CYP2C19*17 does not always tag a CYP2C haplotype that encodes efficient CYP2C-substrate 

metabolism. The 2C19*1-2C9*2-2C8*3 haplotype was identified in all populations except 

African-Americans and additional novel haplotypes were identified in selected populations (e.g., 

2C19*2-2C9*1-2C8*4, 2C19*4B-2C9*1-2C8*1), together indicating that both CYP2C19*17 and 

*2 can be linked with other CYP2C loss-of-function alleles. These results have important 

implications for pharmacogenomic association studies involving the CYP2C locus and are 

clinically relevant when administering CYP2C-substrate medications.
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INTRODUCTION

The hepatic cytochrome P450 (CYP450) superfamily of hemoproteins are the principal 

enzymes involved in human drug metabolism and bioactivation. Over 50 human CYP450 

isozymes have been identified; however, members of the CYP2 and CYP3 families have 
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significant importance as they contribute to the metabolism of the majority of drugs.1 The 

most relevant CYP2C subfamily enzymes are encoded by a cluster of polymorphic genes on 

chromosome 10q23.33, organized as Cen-CYP2C18-CYP2C19-CYP2C9-CYP2C8-Tel.2–4 

Although the sequences of these four isoforms are greater than 80% identical, they can have 

distinct substrate specificities, and together are involved in the metabolism of ~20–30% of 

all medications.3

CYP2C19 contributes to the metabolism of a large number of clinically relevant drugs and 

drug classes such as antidepressants, benzodiazepines, mephenytoin, proton pump inhibitors, 

and the antiplatelet prodrug clopidogrel.5–7 CYP2C9 is involved in the metabolism of 

tolbutamide, phenytoin, S-warfarin, losartan, and numerous anti-inflammatory drugs such as 

ibuprofen.8–9 Some CYP2C9 substrates overlap with CYP2C8, including arachidonic acid, 

several non-steroidal anti-inflammatory drugs, and retinoic acid. CYP2C8 also plays a direct 

role in the metabolism of some important therapeutic drugs, including paclitaxel, 

amodiaquine, troglitazone, amiodarone, verapamil, cerivastatin, and fluvastatin.10 Although 

variant CYP2C18 alleles have been reported,11–12 CYP2C18 expression is not consistent 

with a major role in hepatic drug metabolism and specific CYP2C18-substrates have yet to 

be clearly identified.3 Both common and rare CYP2C19, CYP2C9, and CYP2C8 variant 

alleles have been identified in different populations, which are catalogued by the Human 

Cytochrome P450 (CYP) Allele Nomenclature Committee.13 Many of these variant alleles 

encode reduced or complete loss-of-function, and their frequencies can significantly differ 

between racial and ethnic populations.14–17 Importantly, the ~390 kb of sequence that 

encompasses the CYP2C cluster is in strong linkage disequilibrium (LD),18–19 indicating 

that there is a tendency to jointly inherit alleles that confer specific CYP2C19, CYP2C9, and 

CYP2C8 metabolic phenotypes. Previous studies interrogating selected CYP2C variants 

have identified LD between some CYP2C19, CYP2C9, and CYP2C8 alleles in specific 

ethnic subpopulations;20–24 however, the frequencies of many variant CYP2C alleles and 

relevant haplotypes remain unknown in most populations.

We previously reported the frequencies of important CYP2C9 alleles (*2, *3, *4, *5, *6, *8, 

*11, *13) in the African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish (AJ) 

populations,16, 25 and recently identified the novel CYP2C19*4B allele in the AJ population 

that is defined by both gain-of-function [c.−806C>T (*17)] and loss-of-function [c.1A>G 

(*4)] alleles on the same haplotype.26 To determine the frequencies of additional CYP2C 

alleles in these populations, 28 variant CYP2C19 (*2 – *10, *12 – *17, *22) and CYP2C8 

(*2 – *10, *12 – *14) alleles were genotyped in 250 DNA samples each from healthy 

African-American, Asian, Caucasian, Hispanic, and AJ individuals. These results were then 

combined with the previously reported CYP2C9 data to identify CYP2C haplotypes and their 

multi-ethnic frequencies. These results have important implications for pharmacogenetic 

association studies involving the CYP2C locus and are clinically relevant when 

administering CYP2C-substrate medications. In addition, given the recent interest in clinical 

CYP2C19 genetic testing for clopidogrel response,6, 27–31 we determined the ABCB1 c.

3435C>T32–35 allele and genotype frequencies for all tested populations.
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MATERIALS AND METHODS

Study Population

Peripheral blood samples from healthy donors who indicated their racial background and 

gave informed consent for the use of their DNA for research were obtained from the New 

York Blood Center with IRB approval as previously defined.16, 25 In addition, blood 

samples were obtained with informed consent from unrelated healthy 100% AJ individuals 

from the greater New York metropolitan area.26, 36–38 All personal identifiers were 

removed, and isolated DNA samples were tested anonymously. Genomic DNA was isolated 

using the Puregene® DNA Purification kit (Qiagen, Valencia, CA) according to the 

manufacturer's instructions. Two hundred and fifty samples were genotyped for each of the 

five tested populations (African-American, Asian, Caucasian, Hispanic, and AJ).

Genotyping

The designations of all CYP450 alleles refer to those defined by the Cytochrome P450 

Allele Nomenclature Committee (http://www.cypalleles.ki.se/).13 Eleven variant CYP2C19 

alleles (*2 – *10, *13, *17) were genotyped using the eSensor® 2C19 Test (GenMark 

Diagnostics, Carlsbad, CA) as per the manufacturer's instructions, and five additional variant 

CYP2C19 alleles (*12, *14 – *16, *22) and ABCB1 c.3435C>T were genotyped using a 

custom multiplexed SNaPshot® single base extension assay (Applied Biosystems, Carlsbad, 

CA) as previously described.26 Eight variant CYP2C9 alleles (*2 – *6, *8, *11, *13) were 

genotyped using the Tag-It™ Mutation Detection Kit (Luminex Molecular Diagnostics, 

Toronto, ON) and PCR-restriction fragment length polymorphism (PCR-RFLP) assays as 

previously reported.16

All 12 variant CYP2C8 alleles currently defined by the Cytochrome P450 Allele 

Nomenclature Committee (*2 – *10, *12 – *14) were genotyped using an additional custom 

multiplexed SNaPshot® single base extension assay (Applied Biosystems). Multiplexed 

PCR reactions were performed in 10 μl containing ~50 ng of DNA, 2× PCR buffer 

(Invitrogen, Carlsbad, CA), 1.5 mM MgCl2, 0.2 mM of each dNTP, forward and reverse 

primers (CYP2C8 exon 3: 0.8 μM; exons 4, 5, 7 and 9: 0.6 μM; exon 8: 0.4 μM; 

Supplemental Table S1), and 2.0 units of Platinum® Taq DNA Polymerase (Invitrogen). 

Amplification consisted of an initial denaturation step at 94°C for 5 min followed by 35 

amplification cycles (94°C for 30 sec, 57°C for 30 sec, and 72°C for 1 min) and a final 

incubation at 72°C for 10 min. Amplicons were digested with 3.0 units of shrimp alkaline 

phosphatase (SAP) and 2.0 units of Exonuclease I (both from USB Corporation, Cleveland, 

OH). SNaPshot® primer extension reactions were performed in 10 μl containing 1× 

SNaPshot® Reaction Mix (Applied Biosystems), 0.2 μM of each allele-specific primer 

(Supplemental Table S1) and 3.0 μl of PCR product. Following the recommended thermal 

cycling, samples were treated with 1.0 unit of SAP, electrophoresed on an ABI Prism 3130 

Genetic Analyzer, and analyzed using GeneMarker software v1.95 (SoftGenetics, State 

College, PA). Representative positive control samples for all identified CYP2C alleles were 

confirmed by bidirectional sequencing (Supplemental Figure S1), and wild-type (*1) 

CYP2C19, CYP2C9, and CYP2C8 alleles were assigned in the absence of other detectable 

variant alleles.
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CYP2C19*4B Confirmation

Confirmation of potential CYP2C19*4B carriers was performed by cloning and allele-

specific sequencing of a 1.2 kb fragment encompassing CYP2C19*17 (c.−806C>T) and *4 

(c.1A>G) as previously described.26 For each sample, six to ten colonies were propagated 

and bidirectionally sequenced using M13 and T7 vector-specific primers. All plasmid 

sequence data were analyzed using Mutation Surveyor software v3.30 (SoftGenetics).

Statistical Analyses and Haplotyping

Observed genotype frequencies were compared with those expected under Hardy-Weinberg 

equilibrium using the χ2 test for each racial and ethnic group. The χ2 test was also used to 

detect overall and pairwise differences in allele frequencies between all tested populations. 

Pairwise LD between tested variants was assessed using Lewontin's D' and the squared 

correlation coefficient between allele frequencies (r2) expressed as a function of D'. The 

expectation-maximization (EM) algorithm was implemented to calculate maximum 

likelihood estimates of haplotype frequencies assuming Hardy-Weinberg equilibrium. All 

analyses were conducted using SAS/Genetics software (SAS Institute, Inc., Cary, NC).

RESULTS

CYP2C19 Allele and Genotype Frequencies

The CYP2C19 allele and genotype frequencies are summarized in Tables 1 and 2. All alleles 

were in Hardy-Weinberg equilibrium (p>0.05) and no studied population carried the *4A, 

*5, *7, *10, *16, or *22 allele. The overall across-population difference in CYP2C19 allele 

frequencies was significant for five polymorphic variants (rs12248560 [*17], rs4244285 

[*2], rs4986893 [*3], rs17882687 [*15], rs28399504 [*4]; p<0.02). The CYP2C19*4B allele 

was detected in both the Caucasian and Hispanic populations and confirmed by cloning and 

allele-specific sequencing as previously described.26 The combined frequencies of detected 

variant CYP2C19 alleles were 0.406 (African-American), 0.386 (Asian), 0.304 (Caucasian), 

0.296 (Hispanic), and 0.368 (AJ).

Based on their observed genotypes, the African-American, Asian, Caucasian, Hispanic, and 

AJ predicted CYP2C19 metabolic phenotypes3, 57were distributed as ultrarapid (3%, 2%, 

3%, 2%, 4%), extensive (59%, 42%, 72%, 71%, 67%), intermediate (19%, 44%, 18%, 18%, 

18%), and poor (5%, 8%, 4%, 2%, 4%) metabolizers, respectively (Table 2). Some of the 

variant CYP2C19 alleles (*9, *10, *12 – *16, *22) in the expanded panel currently do not 

have clear phenotypic consequences, as do compound heterozygous genotypes that include 

both gain- and loss-of-function alleles (e.g., *2/*17). As such, the frequencies of individuals 

with unknown predicted metabolic phenotypes using this CYP2C19 genotyping panel in the 

African-American, Asian, Caucasian, Hispanic, and AJ were 14%, 4%, 4%, 7%, and 8%, 

respectively.

ABCB1 Allele and Genotype Frequencies

Some studies have found that clopidogrel-treated patients with cardiovascular disease who 

are homozygous carriers of the synonymous ABCB1 c.3435C>T (p.I1145I) variant have 

higher rates of adverse cardiovascular events than c.3435C carriers during therapy, which 
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was independent from and compounded by CYP2C19 loss-of-function alleles.32–34 

However, conflicting data have been reported regarding which allele (c.3435C or c.3435T) 

was associated with the increased risk.35Supplemental Tables S2 and S3 summarize the 

identified ABCB1 c.3435C>T allele and genotype frequencies, which were statistically 

different between all tested populations (p<0.0001). Of note, the c.3435T/T genotype 

frequencies in the African-American, Asian, Caucasian, Hispanic, and AJ were 6%, 20%, 

29%, 24%, and 8%, respectively. In addition, categorizing the tested subjects based on 

CYP2C19 loss-of-function allele carrier status and ABCB1 c.3435T/T genotype34 indicated 

that 34 – 66% of all tested multi-ethnic individuals carried CYP2C19 and ABCB1 genotypes 

that conferred an increased risk for clopidogrel nonresponsiveness and/or adverse effects 

(Supplemental Table S4 and Supplemental Figure S2).

CYP2C8 Allele and Genotype Frequencies

The CYP2C8 allele and genotype frequencies are summarized in Tables 3 and 4. All alleles 

were in Hardy-Weinberg equilibrium (p>0.05) and no studied population carried the *5 – 

*10, *12, or *13 allele. The overall across-population difference in CYP2C8 allele 

frequencies was highly significant for three polymorphic variants (rs11572080 [*3], 

rs11572103 [*2], rs10509681 [*3]; p<0.0001). The combined frequencies of detected 

variant CYP2C8 alleles were 0.122 (African-American), 0.038 (Asian), 0.130 (Caucasian), 

0.116 (Hispanic), and 0.100 (AJ). The African-American, Asian, Caucasian, Hispanic, and 

AJ CYP2C8 genotype frequencies were distributed as homozygous wild-type (77%, 92%, 

77%, 79%, 80%), heterozygous (22%, 8%, 20%, 20%, 20%), and homozygous variant/

compound heterozygous (0.4%, 0%, 3%, 1%, 0%), respectively.

Linkage Disequilibrium and CYP2C Haplotypes

After combining the CYP2C19 and CYP2C8 genotyping results with the previously reported 

CYP2C9 data, pairwise LD was calculated and visualized using Haploview version 4.1 for 

each racial and ethnic group (Figure 1). Using 13 polymorphic alleles [CYP2C19*2, *3, *4, 

*17; CYP2C9*2, *3, *5, *8, *11; CYP2C8*2, *3 (p.R139K), *3 (p.K399R), *4], 33, 18, 19, 

22, and 23 non-redundant CYP2C haplotypes were inferred in the African-American, Asian, 

Caucasian, Hispanic, and AJ populations, respectively. However, only 16 of all identified 

haplotypes had frequencies greater than 0.5% in at least one population and together 

accounted for ~96 – 99% of the overall CYP2C cluster haplotypic diversity in these 

populations (Table 5).

Estimated haplotype frequencies showed considerable variation across the five populations 

and some of the commonly studied CYP2C19, CYP2C9 and CYP2C8 functional variants 

were found to exist in more than one haplotype. The two most common variant allele-

containing haplotypes were 2C19*2-2C9*1-2C8*1 (12 – 27%) and 2C19*17-2C9*1-2C8*1 

(6 – 19%). Importantly, a 2C19*17-2C9*1-2C8*2 haplotype was also identified among 

African-Americans (7.5%) and Hispanics (1.7%), indicating that CYP2C19*17 does not 

always tag a CYP2C haplotype that encodes efficient CYP2C-substrate metabolism as 

previously reported in Nordic populations.22 The estimated D' and r2 between 2C19*17 and 

2C8*2 were 0.813 and 0.325 among African-Americans, and 0.626 and 0.057 among 

Hispanics, respectively (Table 6). In addition, a haplotype containing two CYP2C loss-of-
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function alleles (2C19*1-2C9*2-2C8*3) was identified in all populations (1.2 – 8.9%) 

except African-Americans. Unique ethnic-specific and/or rare haplotypes were also detected 

at frequencies of 0.5 – 4.8%, including 2C19*3-2C9*1-2C8*1 (Asians), 

2C19*4B-2C9*1-2C8*1 (AJs), 2C19*2-2C9*1-2C8*4 (African-Americans and AJs), and 

2C19*1-2C9*3-2C8*3 (Asians and AJs).

DISCUSSION

The paucity of frequency data for variant CYP2C19 and CYP2C8 alleles beyond those 

commonly tested (e.g., *2 and *3) prompted our genotyping of 28 functional and/or coding 

region variants (CYP2C19*2 – *10, *12 – *17, *22; CYP2C8*2 – *10, *12 – *14) in the 

African-American, Asian, Caucasian, Hispanic, and AJ populations. Although not all alleles 

were detected, the combined variant CYP2C19 allele frequencies ranged from ~0.30 – 0.41 

in the tested populations; however, the combined CYP2C8 frequencies were much lower 

(~0.04 – 0.13). After combining these results with our previously reported CYP2C9 data (36 

total variants),16 16 unique CYP2C haplotypes were inferred in the tested populations with 

frequencies greater than 0.5%. Our haplotype data indicate that CYP2C19*17 does not 

always tag a CYP2C haplotype encoding efficient CYP2C-substrate metabolism as 

previously reported in Nordic populations22 and highlight that, despite largely acting as 

independent loci, CYP2C19*17 and *2 can also be found in LD with other variant CYP2C 

alleles that influence the metabolizer phenotypes.

The first CYP2C19 loss-of-function allele discovered based on its role in impaired 

mephenytoin metabolism was *2 (c.681G>A),39 and since then a number of additional 

variants have been identified in different populations. Some have known effects on 

CYP2C19 enzyme activity, whereas others do not have clear phenotypic effects.7, 13 

Consequently, our study using an expanded panel of 16 CYP2C19 variant alleles identified 

individuals with certain genotypes (e.g., *1/*15, *2/*17) that have unknown consequences 

on CYP2C19-mediated drug metabolism. The identified frequencies of individuals with 

unknown predicted metabolizer phenotypes ranged from 4 – 14% in the tested populations 

(highest in African-Americans), suggesting that further in vivo and/or in vitro phenotyping 

studies with these specific variant alleles are warranted prior to their inclusion in clinical 

genotyping panels. CYP2C19 poor metabolizers typically carry two loss-of-function alleles 

and the frequencies of these genotypes ranged from ~2 – 8% in the tested populations, 

which was highest in Asians due to their higher frequencies of both *2 and *3.

CYP2C19 has recently received considerable attention due to its principal role in the 

bioactivation of the antiplatelet agent clopidogrel. Importantly, CYP2C19 loss-of-function 

alleles have been associated with lower active metabolite exposure,40–41 decreased platelet 

responsiveness ex vivo among clopidogrel-treated subjects,42–45 and increased adverse 

cardiovascular event rates among clopidogrel-treated patients with acute coronary 

syndromes and/or those undergoing percutaneous coronary intervention.33–34, 44–48 The 

increased risk among CYP2C19 loss-of-function allele carriers, particularly for poor 

metabolizers, prompted product insert label revision by the U.S. Food and Drug 

Administration (FDA) and additional interest in implementing CYP2C19 clinical testing to 

guide antiplatelet therapy for some cardiovascular patient populations.28, 30, 49–52 Recently, 
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the CYP2C19*4B allele was discovered in the AJ population which has important 

implications for clinical CYP2C19 testing as the allele harbors both gain-of-function [c.

−806C>T (*17)] and loss-of-function [c.1A>G (*4)] variants on the same haplotype.26 In 

the current study, CYP2C19*4B was also identified in both the Caucasian and Hispanic 

populations at lower frequencies (≤1%); however, no carriers of the *4A allele (c.1A>G 

without c.−806C>T) were detected in any of the tested populations. Importantly, we 

previously identified CYP2C19*4A in the Sephardic Jewish population,26 which confirms 

the independent existence of these two sub-alleles.

Although more controversial than CYP2C19, some studies have found that carriers of the 

ABCB1 (P-glycoprotein) c.3435C>T synonymous variant have higher rates of adverse 

cardiovascular events during clopidogrel therapy,32–35, 53 suggesting that ABCB1 might 

influence clopidogrel efflux and drug bioavailability. However, conflicting data have been 

reported regarding both the relationship between c.3435C>T and P-glycoprotein 

expression54–56 and which allele (c.3435C or c.3435T) is associated with the increased 

cardiovascular risk.35 Despite this discrepancy, large clinical studies found that c.3435T/T 

patients had a higher rate of adverse cardiovascular events than c.3435C homozygotes 

during clopidogrel therapy, which was independent from and compounded by CYP2C19 

loss-of-function alleles.33–34 Our study identified a high frequency of c.3435T/T 

homozygotes in the tested populations (6 – 30%), and when combined with the CYP2C19 

variant frequencies, 34 – 66% of tested individuals harbored a CYP2C19 loss-of-function 

allele and/or ABCB1 c.3435T/T, which could influence their response to clopidogrel.

CYP2C8 is involved in the metabolism of a number of drugs and xenobiotics including 

arachidonic acid, repaglinide, and the anticancer agent paclitaxel.57–59 Although early in 

vitro data suggested that CYP2C8*2 and *3 resulted in impaired activity and decreased 

metabolism of CYP2C8 substrates, some in vivo data on the phenotypic consequences of 

these alleles have yielded contradictory results.58–60 Moreover, the effects of the known 

variant CYP2C8 alleles on activity may be substrate specific.60 We genotyped all 12 

currently defined variant CYP2C8 alleles (*2 – *10, *12 – *14) and only detected *2, *3, *4 

and *14 in the tested populations. All other alleles were originally discovered at low 

frequencies in Japanese individuals,61–64 which may have been an underrepresented 

ethnicity in our heterogeneous Asian population. Together, these results suggest that future 

CYP2C8 pharmacogenetic studies could benefit from additional genotype-phenotype 

correlation data, and further CYP2C8 sequencing of phenotype outliers in different racial 

and ethnic populations.

The CYP2C9*2 (p.R144C) reduced function allele previously was found linked with 

CYP2C8*3 in the Swedish population,20 underscoring the strong LD across the CYP2C 

region.18–19 This finding highlighted the possibility of jointly inheriting multiple CYP2C 

reduced function alleles on individual haplotypes, which has important implications for the 

metabolism of common CYP2C9 and CYP2C8 substrates (e.g., arachidonic acid, 

nonsteroidal anti-inflammatory drugs, etc.). Global variation in CYP2C9-CYP2C8 haplotype 

frequencies, including the 2C9*2-2C8*3 haplotype, has been reported in other worldwide 

populations,21 and very recent reports have extended these haplotype studies to include 

CYP2C19 in selected populations.22–24 For example, in Nordic populations, the 
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CYP2C19*17 gain-of-function allele was found almost exclusively with wild-type 

CYP2C9*1 and CYP2C8*1.22 However, CYP2C19*17 subsequently was reported in LD 

with CYP2C8*2 among Brazilian individuals of African descent, prompting these authors to 

conclude that further multi-ethnic CYP2C haplotype studies including CYP2C19*17 were 

warranted.24

Interrogating 36 variant CYP2C alleles in five major racial and ethnic populations resulted in 

16 inferred CYP2C haplotypes with frequencies greater than 0.5% in our study. Of note, the 

2C19*1-2C9*2-2C8*3 haplotype was identified in all racial and ethnic groups except 

African-Americans. In contrast, the aforementioned 2C19*17-2C9*1-2C8*2 haplotype 

reported among Brazilians of African descent24 was identified in both our African-American 

(8%) and Hispanic (2%) populations. As Hispanics can be three-way admixtures of Native 

American, European and West African populations,65 our data underscore that CYP2C19*17 

should not be used as a sole determinant for extensive CYP2C substrate metabolism in 

populations with African descent.24 However, 2C19*17-2C9*1-2C8*1 was the more 

common CYP2C19*17-containing haplotype among all carriers of this variant allele 

(African-American: 9%; Asian: 6%; Caucasian: 15%; Hispanic: 13%; AJ: 19%). Notably, 

despite the identification of the 2C19*17-2C9*1-2C8*2 haplotype, CYP2C19*17 still 

appears to be a marker of extensive CYP2C9 metabolism, which may be more clinically 

relevant than CYP2C8-mediated drug metabolism.

Other novel haplotypes with multiple variants included 2C19*2-2C9*1-2C8*4 in the 

African-American and AJ populations, and 2C19*1-2C9*3-2C8*3 in the Asian and AJ 

populations. In addition, the 2C19*3-2C9*1-2C8*1 and 2C19*4B-2C9*1-2C8*1 haplotypes 

were found exclusively in the Asian and AJ populations, respectively. Together, these 

haplotype results are consistent with those previously reported in selected ethnic populations 

using fewer alleles and extend their findings by identifying both known and novel rare 

CYP2C haplotypes in other major racial and ethnic groups. Given the vast ethnic diversity 

prevalent among the Asian racial group, future CYP2C haplotype studies that include 

additional and more clearly defined ethnic Asian subpopulations are warranted.

In addition, future haplotype studies are warranted as novel CYP2C variants with clinical 

relevance are identified. For example, an intronic CYP2C9 polymorphism (rs7089580) was 

recently associated with warfarin dose variability in the African-American population; 

however, it is currently unclear if it is a functional non-coding variant with a role in gene 

transcription or if it is in LD with another functional CYP2C9 variant.66 As future studies 

establish which sequence variant of this potentially novel CYP2C9 allele is functionally 

relevant, it will be important to include it in CYP2C haplotype studies of the African-

American and other populations. These studies could be instructive for the warfarin 

pharmacogenetics field as CYP2C haplotypes with loss-of-function variants in both CYP2C9 

and CYP2C19 could influence dosing variability by affecting S- and R-warfarin 

pharmacokinetics, respectively. Although the relationship between CYP2C9 loss-of-function 

alleles and impaired S-warfarin metabolism is well established, a very recent study has 

reported an association between a CYP2C19 promoter variant (rs3814637) and R-warfarin 

clearance.67
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In conclusion, our study determined the frequencies of 28 variant CYP2C19 and CYP2C8 

alleles in the African-American, Asian, Caucasian, Hispanic and AJ populations, which 

highlight the polymorphic nature of CYP2C19 compared to CYP2C8 in all tested 

populations. Additionally, the recently described CYP2C19*4B allele, originally discovered 

in the AJ population, was identified in the Caucasian and Hispanic populations. Combining 

all genotyping results with our previous CYP2C9 data allowed for CYP2C haplotype 

structure analyses on all populations, which identified both previously reported and novel 

haplotypes. Taken together, these results have important implications for pharmacogenomic 

association studies involving the CYP2C locus and are clinically relevant when 

administering CYP2C-substrate medications.
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FIGURE 1. 
Linkage disequilibrium (LD) across the CYP2C locus (10q23.33) in each tested population 

using 13 polymorphic SNPs. Pairwise LD between polymorphisms is expressed as D'. 

Significant linkage (logarithm of the odds, LOD≥2) is illustrated by red shading depending 

on the magnitude of D' (from pink to bright red), and insignificant linkage (LOD<2) is 

illustrated by blue (if D'=1) or white (if D'<1) shading. Haplotype blocks were inferred using 

the `Four gamete of LD' method (Haploview).

Martis et al. Page 14

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 15

T
A

B
L

E
 1

C
Y

P
2C

19
 A

lle
le

 F
re

qu
en

ci
es

A
fr

ic
an

-A
m

er
ic

an
 (

n 
= 

50
0)

A
si

an
 (

n 
= 

50
0)

C
au

ca
si

an
 (

n 
= 

50
0)

H
is

pa
ni

c 
(n

 =
 5

00
)

A
sh

ke
na

zi
 J

ew
is

ha  (
n 

= 
50

0)

C
Y

P
2C

19
 A

lle
le

F
re

q.
95

%
 C

I
F

re
q.

95
%

 C
I

F
re

q.
95

%
 C

I
F

re
q.

95
%

 C
I

F
re

q.
95

%
 C

I

*1
0.

59
4

0.
55

1–
0.

63
7

0.
61

4
0.

57
1–

0.
65

7
0.

69
6

0.
65

6–
0.

73
6

0.
70

4
0.

66
4–

0.
74

4
0.

63
2

0.
59

0–
0.

67
4

*2
0.

19
4

0.
15

9–
0.

22
9

0.
27

6
0.

23
7–

0.
31

5
0.

13
2

0.
10

2–
0.

16
1

0.
12

8
0.

09
9–

0.
15

7
0.

14
6

0.
11

5–
0.

17
7

*3
0.

00
4

0.
00

0–
0.

01
0

0.
04

8
0.

02
9–

0.
06

7
0.

00
4

0.
00

0-
0.

01
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*4
A

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*4
B

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

4
0.

00
0–

0.
01

0
0.

00
2

0.
00

0–
0.

00
6

0.
02

0
0.

00
8–

0.
03

2

*5
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*6
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
2

0.
00

0–
0.

00
6

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*7
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*8
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
2

0.
00

0–
0.

00
6

0.
00

4
0.

00
0–

0.
01

0
0.

00
0

0.
00

0–
0.

00
0

*9
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

2
0.

00
0–

0.
00

6
0.

00
0

0.
00

0–
0.

00
0

*1
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
2

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
3

0.
01

2
0.

00
0–

0.
02

2
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
4

0.
00

0–
0.

01
0

0.
00

0
0.

00
0–

0.
00

0

*1
4

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
5

0.
01

4
0.

00
4–

0.
02

4
0.

00
0

0.
00

0–
0.

00
0

0.
00

2
0.

00
0–

0.
00

6
0.

00
4

0.
00

0–
0.

01
0

0.
00

4
0.

00
0–

0.
01

0

*1
6

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
7

0.
18

2
0.

14
8–

0.
21

6
0.

06
2

0.
04

1–
0.

08
3

0.
15

8
0.

12
6–

0.
19

0
0.

15
2

0.
12

1–
0.

18
3

0.
19

8
0.

16
3–

0.
23

3

*2
2

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

n:
 n

um
be

r 
of

 a
lle

le
s;

 C
I:

 c
on

fi
de

nc
e 

in
te

rv
al

.

a D
at

a 
fr

om
 S

co
tt 

et
 a

l.,
 2

01
1.

26

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 16

T
A

B
L

E
 2

C
Y

P
2C

19
 G

en
ot

yp
e 

Fr
eq

ue
nc

ie
s

O
bs

er
ve

d 
(e

xp
ec

te
da ) 

fr
eq

ue
nc

y 
(%

)

P
re

di
ct

ed
 C

Y
P

2C
19

 m
et

ab
ol

iz
er

 p
he

no
ty

pe
/g

en
ot

yp
e

A
fr

ic
an

-A
m

er
ic

an
 (

n 
= 

25
0)

A
si

an
 (

n 
= 

25
0)

C
au

ca
si

an
 (

n 
= 

25
0)

H
is

pa
ni

c(
n 

= 
25

0)
A

sh
ke

na
zi

 J
ew

is
hb  (

n 
= 

25
0)

U
lt

ra
ra

pi
d 

M
et

ab
ol

iz
er

 (
U

M
)

 
*1

7/
*1

7
2.

8 
(3

.3
)

1.
6 

(0
.4

)
2.

8 
(2

.5
)

2.
4 

(2
.3

)
3.

6 
(3

.9
)

E
xt

en
si

ve
 M

et
ab

ol
iz

er
 (

E
M

)

 
*1

/*
1

38
.4

 (
35

.3
)

36
.4

 (
37

.7
)

49
.2

 (
48

.4
)

50
.4

 (
49

.6
)

41
.6

 (
39

.9
)

 
*1

/*
17

c
20

.4
 (

21
.6

)
5.

6 
(7

.6
)

22
.8

 (
22

.0
)

20
.4

 (
21

.4
)

25
.2

 (
25

.0
)

T
O

T
A

L
:

58
.8

 (
56

.9
)

42
.0

 (
45

.3
)

72
.0

 (
70

.4
)

70
.8

 (
71

.0
)

66
.8

 (
65

.0
)

In
te

rm
ed

ia
te

 M
et

ab
ol

iz
er

 (
IM

)

 
*1

/*
2

18
.4

 (
23

.0
)

37
.2

 (
33

.9
)

16
.4

 (
18

.4
)

17
.2

 (
18

.0
)

16
.0

 (
18

.5
)

 
*1

/*
3

0.
4 

(0
.5

)
7.

2 
(5

.9
)

0.
4 

(0
.6

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

 
*1

/*
4B

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.6

)
0.

0 
(0

.3
)

2.
0 

(2
.5

)

 
*1

/*
6

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
4 

(0
.3

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

 
*1

/*
8

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
4 

(0
.3

)
0.

4 
(0

.6
)

0.
0 

(0
.0

)

T
O

T
A

L
:

18
.8

 (
23

.5
)

44
.4

 (
39

.8
)

17
.6

 (
20

.0
)

17
.7

 (
18

.9
)

18
.0

 (
21

.0
)

P
oo

r 
M

et
ab

ol
iz

er
 (

P
M

)

 
*2

/*
2

4.
8 

(3
.8

)
6.

4 
(7

.6
)

2.
8 

(1
.7

)
2.

0 
(1

.6
)

2.
8 

(2
.1

)

 
*2

/*
3

0.
4 

(0
.2

)
1.

6 
(2

.6
)

0.
4 

(0
.1

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

 
*2

/*
4B

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
8 

(0
.1

)
0.

0 
(0

.1
)

0.
8 

(0
.6

)

 
*3

/*
3

0.
0 

(0
.0

)
0.

4 
(0

.2
)

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

T
O

T
A

L
:

5.
2 

(3
.9

)
8.

4 
(1

0.
5)

4.
0 

(2
.0

)
2.

0 
(1

.8
)

3.
6 

(2
.8

)

U
nk

no
w

n

 
*1

/*
9

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

4 
(0

.3
)

0.
0 

(0
.0

)

 
*1

/*
13

0.
8 

(1
.4

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

8 
(0

.6
)

0.
0 

(0
.0

)

 
*1

/*
15

2.
0 

(1
.7

)
0.

0 
(0

.0
)

0.
4 

(0
.3

)
0.

8 
(0

.6
)

0.
0 

(0
.0

)

 
*2

/*
13

0.
8 

(0
.5

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

0 
(0

.1
)

0.
0 

(0
.0

)

 
*2

/*
15

0.
4 

(0
.5

)
0.

0 
(0

.0
)

0.
0 

(0
.1

)
0.

0 
(0

.1
)

0.
4 

(0
.1

)

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 17

O
bs

er
ve

d 
(e

xp
ec

te
da ) 

fr
eq

ue
nc

y 
(%

)

P
re

di
ct

ed
 C

Y
P

2C
19

 m
et

ab
ol

iz
er

 p
he

no
ty

pe
/g

en
ot

yp
e

A
fr

ic
an

-A
m

er
ic

an
 (

n 
= 

25
0)

A
si

an
 (

n 
= 

25
0)

C
au

ca
si

an
 (

n 
= 

25
0)

H
is

pa
ni

c(
n 

= 
25

0)
A

sh
ke

na
zi

 J
ew

is
hb  (

n 
= 

25
0)

 
*2

/*
17

9.
2 

(7
.1

)
3.

6 
(3

.4
)

3.
2 

(4
.2

)
4.

4 
(3

.9
)

6.
4 

(5
.8

)

 
*3

/*
17

0.
0 

(0
.1

)
0.

0 
(0

.6
)

0.
0 

(0
.1

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

 
*4

B
/*

15
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

4 
(0

.0
)

 
*4

B
/*

17
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

0(
0.

1)
0.

4(
0.

1)
0.

8 
(0

.8
)

 
*8

/*
17

0.
4 

(0
.1

)
0.

0 
(0

.0
)

0.
0 

(0
.1

)
0.

4 
(0

.1
)

0.
0 

(0
.0

)

 
*1

3/
*1

7
0.

8 
(0

.4
)

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.1

)
0.

0 
(0

.0
)

 
*1

5/
*1

7
0.

4 
(0

.5
)

0.
0 

(0
.0

)
0.

0 
(0

.1
)

0.
0 

(0
.1

)
0.

0 
(0

.2
)

T
O

T
A

L
:

14
.4

 (
12

.3
)

3.
6 

(4
.0

)
3.

6 
(4

.9
)

7.
2 

(5
.9

)
8.

0 
(7

.4
)

n:
 n

um
be

r 
of

 s
ub

je
ct

s.

a Pr
ed

ic
te

d 
H

ar
dy

-W
ei

nb
er

g 
fr

eq
ue

nc
ie

s.

b D
at

a 
fr

om
 S

co
tt 

et
 a

l.,
 2

01
1.

26

c A
lth

ou
gh

 s
om

e 
st

ud
ie

s 
cl

as
si

fy
 *

1/
*1

7 
in

di
vi

du
al

s 
as

 u
ltr

ar
ap

id
 m

et
ab

ol
iz

er
s,

 th
e 

ex
te

ns
iv

e 
m

et
ab

ol
iz

er
 c

la
ss

if
ic

at
io

n 
is

 c
on

si
st

en
t w

ith
 L

i-
W

an
-P

o,
 e

t a
l.,

 2
01

0.
68

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 18

T
A

B
L

E
 3

C
Y

P
2C

8 
A

lle
le

 F
re

qu
en

ci
es

A
fr

ic
an

-A
m

er
ic

an
 (

n 
= 

50
0)

A
si

an
 (

n 
= 

50
0)

C
au

ca
si

an
 (

n 
= 

50
0)

H
is

pa
ni

c 
(n

 =
 5

00
)

A
sh

ke
na

zi
 J

ew
is

h 
(n

 =
 5

00
)

C
Y

P
2C

8 
A

lle
le

F
re

q.
95

%
 C

I
F

re
q.

95
%

 C
I

F
re

q.
95

%
 C

I
F

re
q.

95
%

 C
I

F
re

q.
95

%
 C

I

*1
0.

87
8

0.
84

9–
0.

90
7

0.
96

2
0.

94
5–

0.
97

9
0.

87
0

0.
84

1–
0.

89
9

0.
88

4
0.

85
6–

0.
91

2
0.

90
0

0.
87

4–
0.

92
6

*2
0.

10
0

0.
07

4–
0.

12
6

0.
00

4
0.

00
0–

0.
01

0
0.

00
2

0.
00

0–
0.

00
6

0.
02

2
0.

00
9–

0.
03

5
0.

00
4

0.
00

0–
0.

01
0

*3
0.

01
0

0.
00

1–
0.

01
9

0.
02

2
0.

00
9–

0.
03

5
0.

09
4

0.
06

8–
0.

12
0

0.
07

6
0.

05
3–

0.
09

9
0.

07
6

0.
05

3–
0.

09
9

*4
0.

01
2

0.
00

2–
0.

02
2

0.
01

2
0.

00
2–

0.
02

2
0.

03
2

0.
01

7–
0.

04
7

0.
01

8
0.

00
6–

0.
03

0
0.

02
0

0.
00

8–
0.

03
2

*5
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*6
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*7
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*8
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*9
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

*1
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
2

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
3

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

*1
4

0.
00

0
0.

00
0–

0.
00

0
0.

00
0

0.
00

0–
0.

00
0

0.
00

2
0.

00
0–

0.
00

6
0.

00
0

0.
00

0–
0.

00
0

0.
00

0
0.

00
0–

0.
00

0

n:
 n

um
be

r 
of

 a
lle

le
s;

 C
I:

 c
on

fi
de

nc
e 

in
te

rv
al

.

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 19

T
A

B
L

E
 4

C
Y

P
2C

8 
G

en
ot

yp
e 

Fr
eq

ue
nc

ie
s

C
Y

P
2C

8 
G

en
ot

yp
e

O
bs

er
ve

d 
(e

xp
ec

te
da ) 

fr
eq

ue
nc

y 
(%

)

A
fr

ic
an

-A
m

er
ic

an
 (

n 
= 

24
8)

A
si

an
 (

n 
= 

24
9)

C
au

ca
si

an
 (

n 
= 

24
8)

H
is

pa
ni

c 
(n

 =
 2

48
)

A
sh

ke
na

zi
 J

ew
is

h 
(n

 =
 2

49
)

W
ild

-t
yp

e

 
*1

/*
1

76
.6

 (
76

.9
)

92
.0

 (
92

.5
)

77
.2

 (
75

.7
)

78
.6

 (
78

.3
)

80
.0

 (
81

.0
)

H
et

er
oz

yg
ou

s

 
*1

/*
2

18
.1

 (
17

.7
)

0.
8 

(0
.8

)
0.

4 
(0

.3
)

4.
0 

(3
.9

)
0.

8 
(0

.7
)

 
*1

/*
3

2.
0 

(1
.8

)
4.

4 
(4

.3
)

14
.8

 (
16

.4
)

12
.9

 (
13

.6
)

15
.2

 (
13

.7
)

 
*1

/*
4

2.
0 

(2
.1

)
2.

4 
(2

.3
)

4.
4 

(5
.6

)
2.

8 
(2

.9
)

4.
0 

(3
.6

)

 
*1

/*
14

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
4 

(0
.3

)
0.

0 
(0

.3
)

0.
0 

(0
.0

)

T
O

T
A

L
:

22
.2

 (
21

.6
)

7.
6 

(7
.4

)
20

.0
 (

22
.6

)
19

.8
 (

20
.3

)
20

.0
 (

18
.0

)

H
om

oz
yg

ou
s 

V
ar

ia
nt

/C
om

po
un

d 
H

et
er

oz
yg

ou
s

 
*2

/*
2

0.
8 

(1
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)

 
*2

/*
3

0.
0 

(0
.2

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

4 
(0

.3
)

0.
0 

(0
.1

)

 
*2

/*
4

0.
4 

(0
.2

)
0.

0 
(0

.0
)

0.
0 

(0
.0

)
0.

0(
0.

1)
0.

0 
(0

.0
)

 
*3

/*
3

0.
0 

(0
.0

)
0.

0 
(0

.0
)

0.
8 

(0
.9

)
0.

8 
(0

.6
)

0.
0 

(0
.6

)

 
*3

/*
4

0.
0 

(0
.0

)
0.

0 
(0

.1
)

2.
0 

(0
.6

)
0.

4 
(0

.3
)

0.
0 

(0
.3

)

T
O

T
A

L
:

0.
4 

(0
.3

)
0.

0 
(0

.1
)

2.
8 

(1
.5

)
1.

2 
(0

.9
)

0.
0 

(0
.9

)

n:
 n

um
be

r 
of

 s
ub

je
ct

s.

a Pr
ed

ic
te

d 
H

ar
dy

-W
ei

nb
er

g 
fr

eq
ue

nc
ie

s.

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 20

T
A

B
L

E
 5

C
Y

P
2C

 H
ap

lo
ty

pe
 F

re
qu

en
ci

es

H
ap

lo
ty

pe
sa

rs
12

24
85

60
(C

>T
; 

2C
19

*1
7)

rs
28

39
95

04
(A

>G
; 

2C
19

*4
)

rs
49

86
89

3
(G

>A
; 

2C
19

*3
)

rs
42

44
28

5
(G

>A
; 

2C
19

*2
)

rs
17

99
85

3
(C

>%
T

; 
2C

9*
2)

rs
79

00
19

4
(G

>%
A

; 
2C

9*
8)

rs
28

37
16

85
(C

>%
T

; 
2C

9*
11

)
rs

10
57

91
0

(A
>%

C
; 

2C
9*

3)
rs

28
37

16
86

(C
>%

G
; 

2C
9*

5)
rs

10
50

96
81

(A
>;

G
; 

2C
8*

3)
rs

11
57

21
03

(A
>%

T
; 

2C
8*

2)
rs

10
58

93
0

(C
>%

G
; 

2C
8*

4)
rs

11
57

20
80

(G
>%

A
; 

2C
8*

3)

F
re

qu
en

cy
(9

5%
 C

I)

A
fr

ic
an

-A
m

er
ic

an
A

si
an

C
au

ca
si

an
H

is
pa

ni
c

A
sh

ke
na

zi
Je

w
is

h
2C

19
-2

C
9-

2C
8

*1
-*

1-
*1

C
A

G
G

C
G

C
A

C
A

A
C

G
0.

51
3

(0
.4

73
–0

.5
54

)
0.

54
5

(0
.5

05
–0

.5
85

)
0.

47
4

(0
.4

35
–0

.5
13

)
0.

53
4

(0
. 4

94
–0

.5
73

)
0.

40
6

(0
.3

67
–0

.4
46

)

*2
-*

1-
*1

C
A

G
A

C
G

C
A

C
A

A
C

G
0.

17
3

(0
.1

42
–0

.2
04

)
0.

27
2

(0
.2

36
–0

.3
08

)
0.

12
0

(0
.0

94
–0

.1
45

)
0.

12
5

(0
.0

99
–0

.1
51

)
0.

13
2

(0
.1

05
–0

.1
60

)

*2
-*

1-
*4

C
A

G
A

C
G

C
A

C
A

A
G

G
0.

00
5

(0
.0

00
–0

.0
11

)
-

-
-

0.
00

6
(0

.0
00

–0
.0

12
)

*3
-*

1-
*1

C
A

A
G

C
G

C
A

C
A

A
C

G
-

0.
04

8
(0

.0
31

–0
.0

65
)

-
-

-

*4
B

-*
1-

*1
T

G
G

G
C

G
C

A
C

A
A

C
G

-
-

-
-

0.
01

6
(0

.0
06

–0
.0

26
)

*1
7-

*1
-*

1
T

A
G

G
C

G
C

A
C

A
A

C
G

0.
09

1
(0

.0
68

–0
.1

15
)

0.
05

6
(0

.0
37

–0
.0

74
)

0.
15

2
(0

.1
24

–0
.1

80
)

0.
13

4
(0

.1
07

–0
.1

61
)

0.
18

8
(0

.1
56

–0
.2

19
)

*1
7-

*1
-*

2
T

A
G

G
C

G
C

A
C

A
T

C
G

0.
07

5
(0

.0
54

–0
.0

97
)

-
-

0.
01

7
(0

.0
07

–0
.0

28
)

-

*1
-*

2-
*1

C
A

G
G

T
G

C
A

C
A

A
C

G
0.

01
2

(0
.0

03
–0

.0
21

)
0.

01
4

(0
.0

05
–0

.0
24

)
0.

05
9

(0
.0

41
–0

.0
78

)
0.

00
6

(0
.0

00
–0

.0
13

)
0.

06
7

(0
.0

47
–0

.0
87

)

*1
-*

2-
*3

C
A

G
G

T
G

C
A

C
G

A
C

A
-

0.
01

2
(0

.0
03

–0
.0

21
)

0.
08

9
(0

.0
67

–0
.1

12
)

0.
07

0
(0

.0
50

–0
.0

90
)

0.
06

7
(0

.0
47

–0
.0

88
)

*1
-*

3-
*1

C
A

G
G

C
G

C
C

C
A

A
C

G
0.

01
8

(0
.0

07
–0

.0
28

)
0.

02
1

(0
.0

09
–0

.0
32

)
0.

05
4

(0
.0

36
–0

.0
72

)
0.

04
9

(0
.0

32
–0

.0
66

)
0.

08
0

(0
.0

58
–0

.1
02

)

*1
-*

3-
*3

C
A

G
G

C
G

C
C

C
G

A
G

A
-

0.
00

7
(0

.0
00

–0
.0

14
)

-
-

0.
00

6
(0

.0
00

–0
.0

13
)

*1
-*

5-
*1

C
A

G
G

C
G

C
A

G
A

A
C

G
0.

01
2

(0
.0

03
–0

.0
21

)
-

-
0.

01
1

(0
.0

03
–0

.0
19

)
-

*1
-*

8-
*1

C
A

G
G

C
A

C
A

C
A

A
C

G
0.

03
9

(0
.0

23
–0

.0
55

)
-

-
0.

01
0

(0
.0

02
–0

.0
18

)
-

*1
-*

11
-*

1
C

A
G

G
C

G
T

A
C

A
A

C
G

0.
01

5
(0

.0
05

–0
.0

25
)

-
-

0.
00

5
(0

.0
00

–0
.0

11
)

-

*1
-*

1-
*2

C
A

G
G

C
G

C
A

C
A

T
C

G
0.

00
8

(0
.0

01
–0

.0
15

)
-

-
0.

00
8

(0
.0

01
–0

.0
15

)
-

*1
-*

1-
*4

C
A

G
G

C
G

C
A

C
A

A
G

G
-

0.
01

0
(0

.0
02

–0
.0

19
)

0.
02

2
(0

.0
10

–0
.0

33
)

0.
00

9
(0

.0
01

–0
.0

16
)

0.
00

8
(0

.0
01

–0
.0

15
)

n:
 n

um
be

r 
of

 s
ub

je
ct

s;
 C

I:
 c

on
fi

de
nc

e 
in

te
rv

al
.

a Sh
ad

ed
 b

ox
es

 r
ep

re
se

nt
 v

ar
ia

nt
 n

uc
le

ot
id

es
.

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martis et al. Page 21

T
A

B
L

E
 6

L
in

ka
ge

 d
is

eq
ui

lib
ri

um
 b

et
w

ee
n 

C
Y

P
2C

19
*1

7 
an

d 
C

Y
P

2C
8*

2

P
op

ul
at

io
n

C
Y

P
2C

19
*1

7 
(r

s1
22

48
56

0)
 F

re
qu

en
cy

C
Y

P
2C

8*
2 

(r
s1

15
72

10
3)

 F
re

qu
en

cy
D

'
r2

2C
19

*1
7-

2C
9*

1-
2C

8*
2 

F
re

qu
en

cy

A
fr

ic
an

-A
m

er
ic

an
0.

18
2

0.
10

0
0.

81
3

0.
32

5
0.

07
5

A
si

an
0.

06
2

0.
00

4
0.

47
1

0.
01

8
N

D

C
au

ca
si

an
0.

15
8

0.
00

2
1.

00
0

0.
02

8
N

D

H
is

pa
ni

c
0.

15
2

0.
02

2
0.

62
6

0.
05

7
0.

01
7

A
sh

ke
na

zi
 J

ew
is

h
0.

19
8

0.
00

4
1.

00
0

0.
01

7
N

D

N
D

: n
ot

 d
et

ec
te

d.

Pharmacogenomics J. Author manuscript; available in PMC 2014 February 01.


