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The metabolic changes associated with intrauterine growth restriction
(IUGR) particularly affect the liver, which is a central metabolic organ and
contributes significantly to the provision of energy and specific nutrients
and metabolites. Therefore, our aim was to decipher and elucidate the mol-
ecular pathways of developmental processes mediated by miRNAs and
mRNAs, as well as the metabolome in fetal liver tissue in IUGR compared
to appropriate for gestational age groups (AGA). Discordant siblings repre-
senting the extremes in fetal weight at day 63 post conception (dpc) were
selected from F2 fetuses of a cross of German Landrace and Pietrain. Most
of the changes in the liver of IUGR at midgestation involved various lipid
metabolic pathways, both on transcript and metabolite levels, especially in
the category of sphingolipids and phospholipids. Differentially expressed
miRNAs, such as miR-34a, and their differentially expressed mRNA targets
were identified. Sex-specific phenomena were observed at both the transcript
and metabolite levels, particularly in male. This suggests that sex-specific
adaptations in the metabolic system occur in the liver during midgestation
(63 dpc). Our multi-omics network analysis reveals interactions and changes
in the metabolic system associated with IUGR and identified an important
biosignature that differs between IUGR and AGA piglets.
1. Introduction
Approximately 15–20% of piglets in each litter are affected by growth restriction
in the uterine horn, resulting in low piglet birth weight [1]. Intrauterine growth
restriction (IUGR) is a process caused by an inadequate supply of nutrients and
oxygen to the fetus due to maternal malnutrition or placental insufficiency
resulting in a fetal weight that is two or more standard deviations lower than
the mean at the corresponding gestational age [1,2]. All these processes directly
affect metabolic organs, including muscle and liver. Our previous study uncov-
ered the molecular pathways involved in skeletal muscle growth and
development and their role in IUGR fetus and in fetal weight [3,4]. In addition,
transcriptomic analysis in longissimus dorsi muscle (LDM) from pig fetuses at 63
days post conception (dpc) revealed miRNAs and their target genes that corre-
late with fetal weight [5]. Metabolic dysfunction in skeletal muscle and liver of
IUGR fetuses, including mitochondrial function, was reported [6]. The impact
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Figure 1. (a) Fetal weight at 63 days post conception (dpc) comparing between groups (AGA versus IUGR), sex (male versus female) and the interaction between
groups and sex. Fetal weight value (lsmean ± s.e.) are given in grams (g). **p < 0.0001 and *p < 0.001. (b) Histogram of relative fetal weight. The dark shadows
indicate the proportion of males in this range of relative fetal weight.
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of IUGR also affects the proteomes of the small intestine,
intermediate metabolism in the liver and energy production
in skeletal muscle of fetuses and newborns [7,8]. Higher
activity of glutamate oxaloacetate transaminase and lower
activity of lipoprotein lipase were reported in the liver of
IUGR fetus than the normal fetuses [7]. Insights into shifts
of the lipid metabolism in both normal-grown and IUGR
fetuses are still limited particularly in pig. Hepatic lipid con-
tent in IUGR fetal sheep is similar to controls [9], whereas
some studies demonstrate increased hepatic lipid accumu-
lation in preterm human neonates [10]. Fetal sheep
exhibiting IUGR showed activation of hepatic glucose pro-
duction (HGP), increased hepatic gluconeogenic gene
expression and resistance to the normal suppression of
HGP by insulin [9,11]. Moreover, the use of a sheep model
of maternal malnutrition revealed a disturbance in fetal
liver lipid metabolism and impact on oxidative stress
[12,13]. Compared with other metabolic processes, lipid
metabolism remains relatively unexplored in both normally
developing fetuses and fetuses with IUGR. All fetuses are
capable of synthesizing lipids, but the large differences in
neonatal lipid content between species suggest that placental
transfer of fatty acids and/or their rate of synthesis by fetuses
differs. Fatty acid uptake is low in pigs with an epithelio-
chorial placenta compared with primates and rodents with
hemochorial placentas [14]. In addition, fetal pigs have lim-
ited synthesis of fatty acids and triacylglycerols (TAG),
resulting in a body fat content of only 1% at birth [15,16].
In pigs, previous studies have shown that the majority of
fatty acids in fetuses are not directly derived from maternal
free fatty acids (FFA). The increase in plasma-free fatty
acids in pregnant sows due to fasting did not affect the
percentage of body fat in the fetus [17].

The role of miRNAs in the pathophysiology of pregnancy-
associated disorders and potential miRNAs biomarkers for
pregnancy complications were reported in our recent studies
[3,5,18]. We found fetal weight correlated abundances of mus-
cular miRNAs with potential involvement in IUGR [5].
MiR-34a and miR-210 are the most commonly reported
miRNAs involved in the pathophysiology of IUGR, targeting
genes for muscle growth and fetal development [3,19,20].
MicroRNAs including miR-29a were shown to trigger the
impairment of intestinal epithelial integrity during IUGR in
pig [21]. Furthermore, let-7 miRNA family members were
shown to be closely related to metabolic processes and
serum glucose and insulin content [22,23].

However, liver metabolic and transcriptomic adaptations
in IUGR are expected to differ from those in muscle tissues.
The liver represents the central metabolic organ and contrib-
utes significantly to the supply of energy and specific
nutrients, metabolites and also bioactive molecules to the per-
ipheral organs. In pigs, a critical time point for myogenesis
was determined at about 63 dpc, where the formation of pri-
mary myotubes and secondary fibres overlapped [24]. As for
the liver, ultrastructural studies revealed that the fetal pig
liver exhibits specific hepatic metabolic competence and hepa-
topoietic activity at 40–80 dpc, followed by strong glycogen
accumulation [25]. Therefore, this time point was chosen for
muscle in our previous study [3,4] and for liver in this study.

In pigs, a polytocus animal distinct from sheep and
humans, litter size and offspring weight act antagonistically.
IUGR occurs in a discrete subset of fetuses that are substan-
tially smaller than their littermates. These universal IUGR
effects occur in modern pig breeds where selection for
larger litters applies to sows from commercial dam lines. In
our study, sibling pairs of IUGR or AGA fetuses of the
same sex from the same sow were selected. Applications of
metabolomics for the study of animal physiology and bio-
chemistry, especially in IUGR, are still limited. Therefore,
we aim to use metabolomics and mRNA and miRNA
expression analyses to obtain a holistic view of metabolic
changes during midgestation in fetuses with IUGR. The
analysis of the metabolome and mRNA and miRNA tran-
script profiles from liver samples of fetuses with 63 dpc,
representing growth-restricted and adequately developed
phenotypes, aims to identify liver molecular features associ-
ated with intrauterine development. Moreover, the mRNA
and miRNA expression data and metabolome data were
integrated to infer regulatory networks in the liver and to
elucidate their contribution to IUGR.
2. Results
The mean weight of the IUGR fetuses was significantly lower
than that of the AGA fetuses (115.77 ± 5.5 g versus 175.64 ±
5.5 g; p < 0.0001) (figure 1a). A significant difference was
also found when comparing fetal weight between AGA and
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Figure 2. Venn diagrams showing the number of (a) transcripts and (b) metabolites associated with fetal groups, sex and the interaction of group and sex.
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IUGR groups in both males and females. No significant
difference in weight was found between the sexes across all
fetuses, nor between the sexes within the AGA group. By
contrast, a weight difference was found between the sexes
in the IUGR fetuses ( p < 0.008), with the mean weight of
the male fetuses being lower than that of the females. The
histogram of relative fetal weight (%) used to explain the
risk of piglet death is shown in figure 1b.

2.1. Differential expression of mRNA and pathways
analysis

A total of 10 086 probe sets passed quality filtering and were
used for further analyses. Mixed-model analysis of expression
levels between IUGR and AGA groups, sexes and interaction
of the groups and sex in the model revealed 1040 probe sets,
showing significant differences in at least one of the comparison
groups (FDR< 0.1).

We found that 282 of 914 transcripts were upregulated in
IUGR, whereas 632 were upregulated in AGA groups. Few
transcripts differed between sexes, including 17 that were
upregulated in females and 41 that were upregulated in
males. The interaction between sex and fetal outcome
revealed interesting aspects. In males, 465 transcripts chan-
ged between the AGA and IUGR groups, whereas in
females, 314 transcripts changed between the AGA and
IUGR groups. Full details of these data can be found in elec-
tronic supplementary material, table 1. The number of
differentially abundant transcripts between groups and
their overlap were shown in figure 2a.

The differentially expressed genes from each comparison
were subjected to DAVID (version.6.8) for Gene Ontology
(biological processes) (figure 3a) and KEGG pathway
(figure 3b) enrichment analysis. Liver transcripts differen-
tially expressed between IUGR and AGA were enriched in
biological processes such as cell cycle, cell death, apoptotic
processes and lipid metabolic processes. When comparing
IUGR and AGA in females, the differentially expressed
genes were enriched in cellular processes, whereas in males
they were more enriched in metabolic processes.

In KEGG pathways, the genes differentially expressed
between IUGR and AGAwere enriched in metabolic processes
such as glycolysis/gluconeogenesis, PPAR signalling pathway,
fatty acid degradation, ribosome, ferroptosis and lysine degra-
dation. Other pathways such as the HIF-1 signalling pathway
and the Hippo signalling pathway were also prominent when
comparing between IUGR and AGA, particularly in males.
Metabolic pathways of interest such as glycolysis/gluconeo-
genesis, citrate cycle (TCA cycle), ribosome and ferroptosis
were more enriched in males than in females when comparing
IUGR and AGA. Figure 4a shows some selected KEGG path-
ways. Upregulated transcripts in the IUGR group were
enriched in ribosome, HIF-1 signalling pathway, protein pro-
cessing, glycolysis/gluconeogenesis, apoptosis and Cushing’s
syndrome. By contrast, the downregulated transcripts in the
IUGR groups were enriched in Hippo signalling, PPAR signal-
ling and fatty acid degradation. We selected some of the
transcripts of these pathways for validation by qPCR
(figure 4b).The microarray and qPCR data show high level of
correspondence with Pearson correlation coefficient (r) of:
ACAA2 (r = 0.94, p < 0.0001), ACADL (r = 0.85, p < 0.0001,
ACADM (r = 0.70, p = 0.0001), ACADSB (r = 0.55, p = 0.0052),
ACSL4 (r = 0.69, p = 0.0002), ARG2 (r = 0.75, p < 0.0001), DLD
(r = 0.62, p = 0.0011), FH (r = 0.58, p = 0.0027), GCLM (r = 0.75,
p < 0.0001) and TF (r = 0.65, p = 0.0006).

2.2. Differential expression of miRNA and their mRNA
targets

The miRNAs were selected based on our previous study on
fetal muscle samples involving fetuses [3]. A total of 40
miRNAs were used for liver miRNA profiling. Two miRNA
(miR-885-3p and miR-34a) were upregulated in the IUGR
group compared with the AGA group, while six miRNA
(miR-216, miR-188-5p, miR-144, miR-10a-5p, let-7 g-5p and
miR-182) were downregulated in the IUGR groups. Only
miR-155-5p was significantly upregulated in males compared
with females. The miRNAs ssc-miR-216, miR-188-5p, miR-
885-3p and miR-34a were significantly different between AGA
and IUGR groups in males, whereas ssc-miR-216, miR-188-5p,
miR-144 andmiR-10a-5pwere significantly different in females.
All details of differentially expressedmiRNA are shown in elec-
tronic supplementary material, table 2. Using RNAhybrid, we
found potential target genes of two upregulated and six down-
regulated miRNAs with their negatively correlated genes,
which were also differentially expressed between IUGR and
AGA. Finally, 631 mRNA-miRNA pairs were used for further
analysis. Our analysis showed that two upregulated miRNAs
(miR-885-3p and miR-34a) can potentially target 108 and 145
downregulated genes, respectively. Some of these transcripts
belong to important pathways such as HIF-1 signalling path-
way (TF, HIF1A, PIK3R1, IGF1R, PIK3CB), ferroptosis (TF),
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citrate cycle, glycolysis/gluconeogenesis, PPAR signalling
pathway (ACADM, PCK1, PGM1 and SUCLA2), regulation of
lipolysis in adipocytes (ABHD5, PIK3CB and PIK3R1) and
TGF-beta signalling pathway (ROCK1 and SMAD6) (figure 5).
Six other miRNAwhich were downregulated in IUGR groups
may potentially target 378 transcripts which are enriched in
many pathways including citrate cycle (TCA cycle), HIF-1 sig-
nalling pathway, ferroptosis, glycolysis/gluconeogenesis,
sphingolipid metabolism, ErbB signalling pathway, PPAR sig-
nalling pathway, fatty acid elongation and biosynthesis of
unsaturated fatty acids (figure 5).

2.3. Metabolome analysis
Finally, 742 hepatic metabolites were used for further analy-
sis. Annotation of these metabolites based on KEGG and
the Human Metabolome Database (HMDB) identified 599
of 742. The nine most enriched metabolic pathways were
arginine biosynthesis, aminoacyl-tRNA biosynthesis, histi-
dine metabolism, arginine and proline metabolism, taurine
and hypotaurine metabolism, glycerophospholipid metab-
olism, sphingolipid metabolism, lysine degradation and
linoleic acid metabolism. At a 10% FDR threshold, 83 of
742 metabolites were significantly different in at least one
of the group comparisons (see electronic supplementary
material, table S3). Most of these metabolites belong to the
categories of sphingolipids (33/83), phospholipids (31/83),
diglycerid/triglycerids (4/83) and amino acids (3/83).

Forty-one metabolites were differentially altered between
the AGA and IUGR groups, including 16 metabolites that
were more abundant in the IUGR group, whereas 25 were
more abundant in the AGA group. A particular metabolite,
omega-linoleoyloxy cer(t18:1(6OH)/26-28:0) with different for-
mulaes, belonging to the sphingolipid category, was frequently
found in higher abundance in the IUGR group. Most of the sig-
nificant metabolites with higher abundance in the IUGR
group belong to the nonpolar phase with a positive ionization
mode. Only five metabolites belonging to the phosphatidy-
lethanolamine category showed gender differences, including
octadecatetraenoate, which was higher in males. In males, 65
altered metabolites were found between AGA and IUGR
groups. In the male IUGR group, only 7 metabolites belonging
to the sphingolipid class (omega-linoleoyloxy cer(t18:1(6OH)/
26-28:0), g-butyrobetaine and 5-hydroxy-DL-tryptophan) were
upregulated. Other 58 metabolites were detected at higher
levels in male AGA. When AGA and IUGR were compared in
female, only 7 metabolites were differentially abundant. Two
out of these 7 metabolites were upregulated in IUGR and 2
metabolites (arsenous acid and dihydrothymine) in the AGA
group. The details and the number of metabolites that changed
between groups and their overlaps are shown in electronic
supplementary material, table 3 and figure 2b.
2.4. Pathway analysis of different metabolites and
transcripts

To integrate the common pathways from metabolite and tran-
script data, the lists of significant differentially expressed
genes (DEGs) and significant differentially expressed metab-
olites (DEMs) that were annotable were used for the analysis.
Focusing only on metabolic pathways, eight significant path-
ways ( p < 0.05) were identified including lysine degradation,
sphingolipid metabolism, arginine biosynthesis, citrate cycle
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(TCA cycle), glycerophospholipid metabolism, linoleic acid
metabolism, taurine and hypotaurine metabolism and
glycolysis/gluconeogenesis (figure 6a). Five metabolic
pathways (lysine degradation, sphingolipid metabolism, argi-
nine biosynthesis, linoleic acid metabolism, and taurine and
hypotaurine metabolism) were significantly enriched when
AGA and IUGR were compared in males (figure 6b). Only
lysine degradation and sphingolipid metabolism were
enriched when AGA and IUGR were compared in females
(figure 6c).
2.5. Integration and identification of biosignatures
specifying the IUGR and AGA fetuses

After pre-processing and filtering, data from 24 animals (12
from IUGR and 12 from AGA) were considered for further
downstream analyses. Finally, we combined transcriptome
data (6,284 mRNAs, 40 miRNAs) and metabolome data (742
metabolites) from the liver of IUGR and AGA fetuses. Signifi-
cant biosignatures were predicted from the dataset using the
mixOmics platform. To investigate data variation between
IUGR and AGA, we performed a discriminant analysis using
sparse partial least square discriminant analysis (SPLS-DA)
available in the mixOmics R package. The analysis resulted in
the selection of the most discriminating features between
IUGR and AGA, including 7 miRNAs, 30 mRNAs and
30 metabolites. Only one component achieved an error rate
less than 0.01. A Circos plot shows the correlation between
the different omics blocks (figure 7a; correlation threshold:
|r| > 0.75). The heatmap of the biosignature panel containing
mRNAs, miRNAs and metabolites shows that the IUGR or
AGA group form clusters separately (figure 7b). All features
selected by DIABLO confirm the major differentially expressed
mRNAs, miRNAs and metabolites between fetal groups.
Metabolites such as omega-linoleoyloxy cer(t18:1(6OH)/
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Figure 7. Circos plot and heat map depicting the molecular features identified using DIABLO and their correlation. (a) Circos plot demonstrates the biosignature from
three datasets, including miRNAs, mRNAs and metabolites associated with to IUGR and AGA. The selected biomarkers from each data type were represented in the
outer cycle. The black line indicates a positive correlation, whereas the yellow line represents a negative correlation. The red and blue lines represent the abundance
of the features in IUGR and AGA, respectively. (b) The heat map of the correlation matrix calculated based on the features selected by DIABLO shows strong groups of
highly correlated features. Some of these features are labelled on the left.
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27-29:0 were identified in the panel and correlated strongly
positively with the acetyl-CoA Acyltransferase 2 gene
(ACAA2), whereas they correlated strongly negatively with
the acyl-CoA dehydrogenase medium chain gene (ACADM).
By contrast, ACAA2 was negatively correlated and ACADM
was positively correlated with phosphatidylethanolamine
(PE), including PE(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE
(15:0/20:4(5Z,8Z,11Z,14Z)), PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,
19Z)), PE(15:0/22:4 (7Z,10Z,13Z,16Z)). The activated receptor
for activated C kinase 1 (RACK1) was the most conspicuous
gene, positively correlated with omega-linoleoyloxy cer(t18:1
(6OH)/27-29: 0 and negatively correlated with PE(15:0/22:6
(4Z,7Z,10Z,13Z,16Z,19Z)), PE(15:0/20:4 (5Z,8Z, 11Z,14Z)) and
PE(18:0/22:6 (4Z,7Z,10Z,13Z,16Z,19Z)).
3. Discussion
Prenatal development is an important predisposing factor for
perinatal development and postnatal growth [26]. Variability
in piglet weight depends not only on maternal nutrition but
also on other maternal influences such as uterine capacity,
parity and health status. Models of IUGR in farm animals
are mostly based on maternofetal stress caused by environ-
mental, nutritional or health conditions [27]. Expression
profiling of fetal liver of pig differing in utilization and parti-
tioning of energy will point to metabolic pathways, which
affect these physiological properties. In addition, the study of
the metabolome during prenatal development is a promising
way to identify and characterize parameters of piglet maturity
at birth [28]. Ultrastructural studies revealed that the fetal pig
liver exhibits specific hepatic metabolic competence and hepa-
topoietic activity at 40–80 dpc, followed by mainly glycogen
accumulation [25]. Accordingly, it is of interest to investigate
the particular phase of metabolic activity in liver development
between IUGR and AGA fetuses, and the focus of this study
was on samples derived at 63 dpc. Here, we identified
more than 1000 fetal liver transcripts associated with IUGR,
including metabolic and non-metabolic pathways.

The HIF-1 signalling pathway and Hippo signalling were
among the most dysregulated pathways during embryogen-
esis or IUGR outcome [3,18,29]. The Hippo signalling
pathway has been reported to play an early and essential
role in mammalian embryogenesis [30]. HIF-1 is an important
transcriptional regulator that mediates cellular responses to
hypoxia in mammals [31]. Our present study showed that
many transcripts belong to the HIF-1 signalling pathway,
including HIF1A, TF, ALDOB, PGK1, EGLN3, PRKCA and
EGFR. Interestingly, we found transcripts regulated in differ-
ent directions in the IUGR and AGA groups, including a
decrease in the level of HIF1A in IUGR, whereas the tran-
script level of EGLN3 increased. HIFs are regulated
posttranslationally by oxygen-dependent hydroxylation of
proline residues by prolyl hydroxylase domain protein
(PHD), which targets HIF-1α for degradation [32]. EGLN3 is
a one of isoforms of PHD and was upregulated in IUGR,
possibly to compensate for lower PHD activity caused by
oxygen deprivation. Transcriptional upregulation of EGLN3
has been shown to regulate the HIF response under low
oxygen conditions and ensure cell survival under hypoxia
[33]. Other transcripts belonging to glycolysis/gluconeogen-
esis are also associated with HIF-1 signalling pathways
(figure 4a). Hypoxia can induce or reprogram metabolism
to maintain bioenergetic homeostasis during hypoxia [34].
Together with our previous study, HIF-1 signalling and
Hippo signalling were shown to play important roles in
both skeletal muscle and metabolic process in the liver of
IUGR fetuses [3].
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Iron-dependent lipid peroxidation (ferroptosis) mediates
programmed cell death. Four ferroptosis-related genes, includ-
ing ACSL3, ACSL4, GCLM and TF, were decreased in the IUGR
group, whereas others, GPX4, SLC3A2 and SLC39A14, were
increased, the former promoting ferroptosis and the latter lim-
iting it. The result suggests that ferroptosis in IUGR may be
slowed down by an increase in GPX4, SLC3A2 and
SLC39A14, leading to a decreased formation of lipid peroxide
or iron transport. In fact, glutathione peroxidase 4 (GPX4),
which converts lipid peroxides to non-toxic lipid alcohols, is
the primary cellular mechanism controlling ferroptosis [35].
Furthermore, solute carrier transporters, including SLC3A2
and SLC39A14, have been shown to limit ferroptosis by
reducing iron accumulation. By contrast, ACSL4 and other
members of the long-chain acyl-CoA synthetase family,
GCLM and TF limit ferroptosis by reducing or blocking
GPX4 or impeding iron transport [36,37].

Furthermore, when comparing IUGR and AGA, ribosome
and ferroptosis were more enriched in males than females.
This may suggest that male IUGRs attempt to prioritize
growth through upregulated ribosomal transcripts while
upregulating apoptosis or ferroptosis, as reported in a
previous review on sex-specific adaptations to a change in
the in utero fetal environment [38].

Another pathway of interest was Cushing’s syndrome.
We found genes such as AGTR1, CDKN2B, CRHR1, EGFR,
FH and LDLR were upregulated in IUGR, while RB1, USP8,
APC, GSK3B and ITPR1 were downregulated in IUGR
fetuses. Cushing’s syndrome is a disorder that occurs when
too much of the hormone cortisol is produced over a long
period of time. During pregnancy, maternal cortisol levels
increase and have a positive effect on neural development
[39]. However, overexposure to glucocorticoids resulted in
lower birth weight, an unfavourable metabolic profile and a
behavioural phenotype in adulthood in the offspring [40].

Many biological processes and KEGG pathways involved
with energy metabolism (citrate cycle, glycolysis/gluconeo-
genesis) and lipid metabolism (lipid oxidation, fatty acid
oxidation, lipid transport and fatty acid degradation) were sig-
nificantly changed when comparing IUGR and AGA fetuses.
Gluconeogenesis is a pathway of glucose synthesis from
non-carbohydrate precursors during fasting, starvation or
IUGR conditions to maintain blood glucose levels. Studies of
IUGR in sheep showed increased expression of gluconeogenic
genes, including the rate-limiting phosphoenolpyruvate car-
boxykinases 1 and 2 (PCK1 and PCK2) [27]. We found that
transcripts such as GAPDH, ALDOB, ENO1 and PGK1,
which are part of glycolysis/gluconeogenesis, were more
highly expressed in the fetal liver with IUGR. Glycolysis, a
metabolic pathway that breaks down glucose, is critically regu-
lated by insulin secretion [41]. Fetuses with IUGR have low
insulin concentrations [42], which partially explains the low
glycolysis along with the upregulation of gluconeogenesis in
IUGR. Other metabolic pathways associated with IUGR are
the citrate cycle (TCA cycle) including ACO1, FH, IDH1 and
MDH1, which are overexpressed in the IUGR liver. A previous
study reported that skeletal muscle in IUGR adapts to hypox-
aemia and hypoglycaemia by decreasing the activity of
complex I and TCA cycle enzyme [43]. By contrast, fetuses
with IUGR undergo early activation of hepatic glucose
production, an ATP- and substrate-intensive process that is
activated to counteract hypoglycaemia [11]. These obser-
vations suggest that various metabolic adaptations in IUGR
are tissue-specific [6]. Lipids in the liver are associated with
a number of biological functions, including the provision of
energy, as a major structural component of membranes,
mostly belonging to the glycerophospholipids, and as impor-
tant signalling lipids such as the sphingolipids. Maternal
lipid metabolism is involved in biological processes for cell
growth and development, cell signalling and the development
of critical structural and functional features of the feto-placen-
tal unit [44]. Fatty acids are an essential energy source for the
fetus, while phospholipids are important as cell membrane
components and for tissue development [45]. Fatty acid bind-
ing protein (FABP1) is crucial for fatty acid uptake and
intracellular transport and also plays an important role in reg-
ulating lipid metabolism and cellular signalling pathways, and
as a cellular antioxidant [46]. The expression of FABP1, which
belongs to the PPAR pathway, was significantly lower in the
IUGR groups compared to AGA (p < 0.003) and was particu-
larly low in the male IUGR group. For other signalling
pathways such as lipid degradation, transcripts including
FABP1, ACADL, ACADM, ACADSB, GCDH, ACSL4 and
ACSL3 were also less expressed in the IUGR groups.

Differentially abundant transcripts and metabolites were
found that were mutually confirmed to belong to the same
metabolic pathways. Analyses of the metabolic pathways of
differentially expressed transcripts and differentially abun-
dant metabolites showed, in particular, shifts in the lipid
metabolism in IUGR and AGA (figure 6a). Interestingly,
when IUGR and AGA were compared, a greater difference
in metabolic characteristics was observed in males than in
females. These sex bias phenomena can be observed not
only from the lower weight of male IUGR compared with
female IUGR (figure 1), but also in a number of transcript
and metabolite changes (figure 2a,b). Accordingly, sex-specific
developmental dynamics were observed in a previous study
focusing on the liver transcriptome of IUGR piglets [47]. In
particular, male IUGR piglets are more susceptible to impaired
metabolic homeostasis [47]. Together with our data, it indi-
cates that the sexual dimorphism associated with IUGR
occurs early in the embryonic period and that IUGR is more
pronounced in males, especially in the metabolic system.
Elements of the sphingolipid pathway are not only com-
ponents of the cell membrane, but also bioactive lipids that
are signalling molecules in cellular processes such as differen-
tiation and apoptosis [48,49]. Sphingolipid metabolism is
required for the maintenance of normal pregnancy [50,51].
As shown in this study, besides phospholipids, sphingolipids
were the major group of lipids that differed between IUGR
and AGA. Ceramides are intermediates of sphingolipid metab-
olism obtained by both de novo synthesis and via recovery
pathways. We found that some of these intermediates
(Cer(d18:)/Cer(t18:)/Cer(m18:)/Cer(t15:) are lower in IUGR
than in AGA fetuses. Other metabolites that also belong to
the sphingolipids of the main class of ceramides are omega-
linoleoyloxy-Cer(t18:1(6OH)/26-19:0), but these are more
abundant in IUGR than in AGA. Interestingly, these
differences between IUGR and AGA are more pronounced
in male than in female fetuses. In this study, we found
significantly lower taurine levels in IUGR compared to AGA
(p < 0.0005) and especially lower levels in male IUGR. Taurine,
a sulfur-containing organic acid with various cellular and
physiological functions [52], is synthesized in the liver from
methionine/cysteine in adults, while fetuses depend on taur-
ine supplied by mothers via the placenta [53]. This indicates
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that insufficient maternal nutrient supply to fetus is the main
cause of impaired development.

MiR-34a, one of the two miRNAs shown to be increased
in the IUGR groups in this study, has been found to be abun-
dant in the placenta, maternal circulation or muscle tissue,
associated with the pathophysiology of IUGR or preeclamp-
sia [18,20]. The same study also reported that miR-34a is
induced by hypoxia in choriocarcinoma cells [20]. The miR-
34a is also involved in fat and glycogen metabolism under
hypoxia stress [54]. Our previous study using muscle tissues
of the same animals revealed upregulation of miRNA, includ-
ing miR-34a and miR-210, in the IUGR group [3]. By contrast,
miR-210, which has been mostly reported to be involved in
hypoxia [19,55], was not differentially expressed in liver, as
shown here. This tissue-specific transcriptional responses of
mR-34a and miR-210 suggest differential sensitivity and
function in the context of IUGR. In this study, miR-34a pre-
dicted targets belong to transcripts enriched in HIF-1
signalling pathway (TF, PIK3R1, IGF1R and PIK3CB) and
metabolic pathways (PCK1, PGM1, SUCLA2, ROCK1,
SMAD6, ACADM and ABHD5) (figure 5). MiR-885-3p is
another miRNA that was also upregulated in the IUGR
groups in this study. The predicted target transcripts of
miR-885-3p were enriched in the HIF-1 signalling pathway
(TF and HIF1A), TGF-beta signalling pathway (TGFB1 and
SMAD6) and citrate cycle (PCK1 and SUCLA2). Six
miRNAs (miR-216, miR-188-5p, miR-144, miR-10a-5p, let-
7 g-5p and miR-182) were downregulated in the IUGR
groups. Many placental miRNAs have been linked to
IUGR, including let-7 g, which plays a role in fetal growth
and development [56]. Our previous study showed that
hepatic expression of let-7 family members negatively corre-
lates with blood glucose and triglyceride levels [23]. A
recent study showed that overexpression of let-7 reduces glu-
cose production in primary hepatocytes of obese individuals
[57]. Moreover, hepatic administration of let-7 improves
hyperglycaemia and glucose homeostasis in diabetic mice
[57]. In our study, glucose levels tended to be higher in the
IUGR liver, while significantly higher triglycerides were
observed in the IUGR liver, as well as downregulation of
let-7 g-5p and an increase in key gluconeogenic genes.

Fetal and placental growth in pigs is influenced by many
factors including genetic, epigenetic and environmental fac-
tors, even by the sex status of adjacent fetuses or the
intrauterine position [58]. It has been reported that fetuses
positioned toward the uterine-tubal junction are larger than
fetuses positioned toward the cervix [59]. In addition, fetal
weight has been reported to vary within a litter due to lim-
ited uterine capacity [60]. Overall, the causal reason for
IUGR, even in our study with IUGR and AGA fetuses
selected from the same mother (same-sex divergent full sib-
lings) i.e. the same environment, apart from intrauterine
position, remains to be elucidated. Measurements of umbili-
cal blood concentrations and uterine and umbilical blood
flow rates provide further information on whether the
metabolic changes are due to nutrient deficiency, hypoxia
or both. We have compiled a comprehensive systems biology
study of omics data that reveals interactions and changes in
the metabolic system associated with IUGR. Our multi-
omics correlation and network analysis identified a bio-
signature that differs between IUGR and AGA. In particular,
the dependency between activated genes and metabolites
plays an important role in metabolic homeostasis and
shows distinct aberrations in IUGR. Most of the changes
during mid-pregnancy in the IUGR liver involved lipid
metabolism, especially in the category of sphingolipids and
phospholipids, at both the transcript and metabolite levels.
The HIF-1 pathway, the Hippo pathway and the functional
pathways of ribosomes, glycolysis/gluconeogenesis and fer-
roptosis, as well as Cushing’s syndrome were significantly
altered when comparing IUGR and AGA. In addition, signifi-
cant miRNAs with target transcripts enriched in the above
pathways were identified, particularly miR-34a. Sex-specific
phenomena were observed in both transcripts and metab-
olites and occur early in the embryonic stage, being more
pronounced in males, especially in the metabolic system.
This suggests that sex-specific adaptations in the liver occur
in the metabolic system at mid-pregnancy (63 dpc).
4. Material and methods
4.1. Animals and sample collection
In this study, liver samples were used from the same animals
previously used for muscle tissue analyses [3]. As previously
described, one sire and 11 dams from a cross of German
Landrace and Pietrain were used and a total of 118 fetuses
were obtained at day 63 post-conception [3]. Discordant sib-
ling pairs representing fetal weight extremes were selected
from the 118 F2 fetuses. Fetuses that had less than two s.d.
of the mean weight of the littermates were classified as
intrauterine growth restricted (IUGR), while sex-matched lit-
termates with weight close to the mean were classified as
appropriate for gestational age (AGA). Based on these cri-
teria, a total of 12 sibling pairs from 8 dams were selected
for this study (IUGR; n = 12 including 7 males and 5 females;
AGA; n = 12 including 7 males and 5 females).

In addition, we calculated relative fetal weight (%) as
[(fetal weight−mean litter fetal weight)/mean litter fetal
weight] × 100 according to a formula previously used to
characterize IUGR using birth weight to assess mortality
risk [61–63]. During the experiment, pigs had ad libitum
access to feed (Trede and von Pein, Itzehoe, Germany) and
water in standard housing of the FBN experimental station.
After opening of the uterus, the fetuses were sequentially
retrieved. The umbilical cord was cut about 2 cm from the
umbilicus of each fetus, and the fetus was exsanguinated.
Sex was determined by visual inspection of the external gen-
italia (clearly visible at this age) and recorded. Subsequently,
the fetus was weighed on a Sartorius LC621P scale. Liver
tissue from AGA and IUGR fetuses was immediately frozen
in liquid nitrogen and stored at −80°C until RNA or
metabolome extraction.

4.2. RNA isolation and gene expression profiling
Total RNAwas isolated from ground livers using Tri-Reagent
and processed using RNeasy Mini-Kits (Qiagen) and on-
column DNase treatment. Electrophoresis in 1% agarose
gels and spectrophotometric measurements using a Nano
Drop ND-1000 spectrophotometer (PEQLAB) were per-
formed to determine RNA integrity and quantification.
Finally, additional measurements were performed using the
Agilent 2100 Bioanalyzer (Agilent) and Agilent kits for
RNA quantification.



royalsocietypublishing.org/journal/rsob
Open

Biol.12:220151

10
Affymetrix microarrays (Affymetrix Snowball, Geo Plat-
form GPL16569) with 47 880 probe-sets were used. 500 ng
RNA of each of the 24 samples was transcribed first into
cDNA and then into biotin-labelled cRNA and hybridized
onto the arrays using the Affymetrix WT plus Expression
Kit and the Genechip WT terminal labelling and hybridiz-
ation kit according to the manufacturer’s instructions
(Affymetrix, Santa Clara, CA, USA). Hybridization, washing
and scanning of the arrays were performed on Affymetrix
hybridization ovens, fluidics stations and scanners and the
Affymetrix GCOS1.1.1 software was used for quality control.
The Expression Console software was used to obtain
expression values by using robust multichip average (RMA)
normalization and detection above background (DABG)
algorithms. Expression values were further filtered to exclude
transcripts with low signals and probe sets that were present
in less than 75% of the samples. 10 086 probe sets passed the
quality filtering and were used for further analyses. The
expression data are available in the Gene Expression Omni-
bus public repository with the GEO accession number
(GSE202677: GSM6128313- GSM6128336).

4.3. miRNA and validation of mRNA by qPCR
Selected differentially expressed mRNA transcripts and
miRNAs were quantified in the liver from AGA and IUGR
groups by qPCR using the Fluidigm BioMark HD System.
The cDNA synthesis of miRNA and mRNA was performed
according to a previous study [64]. Briefly, 100 ng of total
RNA were poly(A) tailed and reverse transcribed using 1
unit of poly(A) polymerase 1 µM (BioLab), RT-primers
(CAGGTCCAGTTTTTTTTTTTTTTTVN where V is A, C
and G and N is A, C, G and T), 0.1 mM of NTPs, 100 units
of MuLV reverse transcriptase (Invitrogen). The reaction
was incubated at 42 °C for 1 h followed by 95 °C to inactivate
the enzyme. In total 40 miRNA from 24 samples with two
replicates each were used for qPCR with the Fluidigm Bio-
Mark HD System. Specific target amplification (STA) was
done per manufacturer’s recommendations. Pre-amplification
sample mixtures were prepared using PreAmp Master Mix
(Fluidigm PN 1005581) containing 1.25 µl of cDNA, 1 µl
PreAmp Master Mix and 0.5 µl Pooled Delta Gene Assay
Mix (500 nM) containing DNA-suspensions buffer and pri-
mers mixes (electronic supplementary material, file S1) in
5 µl total volume. The preamplification reaction was incu-
bated at 95°C for 2 min, followed by 10 cycles at 95°C for
15 s and 60°C for 4 min. The preamplification reaction was
cleaned up using exonuclease I, followed by 10 × dilution of
STA with DNA suspension buffer (TEKnova, PN T0221).
Fluidigm quantitative measurement runs were carried out
with 48.48 dynamic arrays (Fluidigm Corporation, CA,
USA) according to manufacturers instructions. In brief,
2.5 µl of 2 × SsoFast Evagreen Supermix with Low ROX,
0.25 µl 20 × sample-loading reagent and 2.25 µl of treated
samples were prepared. Separately, an assay mixture was pre-
pared for each primer pair and this included 2.25 µl of DNA
Suspension buffer, 0.25 µl of 100 µM forward and reverse
primer and 2.5 µl of 2 × assay-loading reagent. The dynamic
arrays were first primed with control line fluid and then
loaded with the sample and assay mixtures via the appropri-
ate inlets using an IFC controller. The array chips were placed
in the BioMark Instrument for PCR at 95°C for 10 min, fol-
lowed by 30 cycles at 95°C for 15 s and 60°C for 1 min. The
data were analysed with real-time PCR analysis software in
the BioMark HD instrument (Fluidigm Corporation,
San Francisco, CA). The internal controls of cel-miR-39-3p,
5S and 18S were used for miRNA and Actin beta (ACTB),
YMHAZ and RPS11 for mRNA. All these endogenous refer-
ence genes were unaffected by factors used in the study.
Data analysis was done by 2−ΔCt method. The primer
sequences are listed in electronic supplementary material,
table S4.
4.4. Metabolomic analysis
Liver samples are analysed according to protocols established
at the FBN Core Facility Metabolomics [65]. Briefly, liver
tissue samples were collected and frozen in liquid nitrogen
and stored at −80°C until extraction. The samples were
ground and homogenized before being split for extraction.
The polar and non-polar layers were separated and dried
under nitrogen flow at room temperature and stored until
analysis. After reconstitution, the nonpolar phase and the
polar phase were analysed in positive and negative ionization
mode by RP ultra-high performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) (Vanquish
UHPLC-System with heated electrospray ionization (HESI)
QExactive plus Orbitrap mass spectrometer; Thermo Scienti-
fic, Waltham, USA). Identification and relative quantification
of individual lipid species were performed at the production
level (MS/MS fragmentation) using LipidSearch Software
(Thermo Scientific, Waltham, MA, USA), and annotation of
small metabolites was performed using Compound Disco-
verer 3.2 Software (Thermo Scientific, Waltham, MA, USA).
In total 990 metabolites, from both polar and non-polar
part, were identified. The metabolome was further filtered,
normalized by logarithmic transformation, centred on the
mean and divided by the square root of the standard devi-
ation of each variable (Pareto scaling) using MetaboAnalyst
4.0 [66]. Finally, 742 metabolites were used for further analy-
sis. The Human Metabolome Database (HMDB; http://
www.hmdb.ca) and KEGG Database were used to identify
metabolites by matching the molecular weight, numeric
mass (m/z) values, retention times and ion mode.
4.5. Differentially expressed mRNA, miRNA and
metabolites

To determine whether there were differences in liver gene
expression and liver metabolites based on fetal weight
groups, the normalized expression and metabolite data
served as dependent variables for variance analysis using
JMP Genomics 9.0 (SAS Institute, Cary, NC, USA). The
mixed model analysis procedure under JMP Genomics 9.0
(SAS Institute, Cary, NC, USA) was used for statistical analy-
sis. A linear model was applied that included fetal weight
group (IUGR and AGA) and sex (male and female) as fixed
effects and mother as a random effect. The Tukey-Kramer
post hoc test (type III) was calculated to adjust each compari-
son for all effects, IUGR versus AGA or IUGR versus AGA
for female or IUGR versus AGA for male. We considered
FDR less than 0.1 as significant threshold for mRNA and
metabolite. Due to a small number of miRNA input, we
considered significance thresholds of miRNA at p < 0.05.

http://www.hmdb.ca
http://www.hmdb.ca
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4.6. Prediction of miRNA target genes and their
correlation analysis

To investigate the downstream target mRNAs for differen-
tially expressed miRNAs (eight miRNA) between IUGR and
AGA fetuses, 17 065 30-UTR sequences, 16 857 50-UTR
sequences and 20 310 coding sequences were extracted from
the Sus scrofa genome sequence (Sscrofa11.1) based on
Ensembl annotation v. 102. Using the sequences of mature
miRNAs, RNAhybrid v. 2.1.2 was used to predict the target
genes of differentially expressed miRNAs. The parameters
were set for a single hit per target, a human-based assumed
p-value distribution, a minimum free energy (MFE) threshold
of less than −25 kcal mol−1, and a helix restriction of base 2 to
7 [67,68]. Pearson correlation between miRNAs and mRNAs
was calculated. Only the predicted target mRNA that were
negatively correlated with miRNA and that were also differ-
entially expressed between IUGR and AGA fetuses were used
for further analyses.

4.7. Data integration of the metabolome, mRNA and
miRNA

The normalized metabolites, mRNAs and miRNAs were
used as input for further analysis. In order to identify a
highly correlated multi-omics signature discriminating
between IUGR and AGA groups, the multi-block discrimi-
nant analysis with DIABLO (Data Integration Analysis for
Biomarker discovery using a Latent cOmponents) embedded
in the R package ‘mixOmics’ (v. 6.6.2) was used [69,70].
Transcripts and metabolome data were used as input for
identifying the molecular drivers for IUGR traits.

To assess the number of parameters, the global perform-
ance, the balanced error rate (BER), to select the optimal
metric distance, and to define the number of components
kept for our block.splsda analysis, we computed the evalu-
ation criteria using the perf() function from DIABLO.
As input arguments we used our block.splsda object (with-
out variable selection), Mfold validation (n = 10), repeated
cross-validation (50 repetitions). We fine-tuned our model
using tune.block.splsda() function, and determined the opti-
mal number of variables kept for our final block.splsda
analysis. The output variable $choice.ncomp integrates the
centroids.dist distance as well as the BER and indicates the
optimal number of components for the final DIABLO model.
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