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Development and validation 
of a machine learning method 
to predict intraoperative red blood 
cell transfusions in cardiothoracic 
surgery
Zheng Wang1, Shandian Zhe1, Joshua Zimmerman2, Candice Morrisey2, Joseph E. Tonna3, 
Vikas Sharma3 & Ryan A. Metcalf4,5*

Accurately predicting red blood cell (RBC) transfusion requirements in cardiothoracic (CT) surgery 
could improve blood inventory management and be used as a surrogate marker for assessing 
hemorrhage risk preoperatively. We developed a machine learning (ML) method to predict 
intraoperative RBC transfusions in CT surgery. A detailed database containing time-stamped clinical 
variables for all CT surgeries from 5/2014–6/2019 at a single center (n = 2410) was used for model 
development. After random forest feature selection, surviving features were inputs for ML algorithms 
using five-fold cross-validation. The dataset was updated with 437 additional cases from 8/2019–
8/2020 for validation. We developed and validated a hybrid ML method given the skewed nature of 
the dataset. Our Gaussian Process (GP) regression ML algorithm accurately predicted RBC transfusion 
amounts of 0 and 1–3 units (root mean square error, RMSE 0.117 and 1.705, respectively) and our 
GP classification ML algorithm accurately predicted 4 + RBC units transfused (area under the curve, 
AUC = 0.826). The final prediction is the regression result if classification predicted < 4 units transfused, 
or the classification result if 4 + units were predicted. We developed and validated an ML method to 
accurately predict intraoperative RBC transfusions in CT surgery using local data.

Cardiothoracic (CT) surgeries are commonly performed and account for a significant proportion of red blood cell 
(RBC) transfusions that occur in the United States each  year1. These cases are often complex with a substantial 
risk of significant hemorrhage and the most common setting of massive transfusion is CT  surgery2. Multiple 
patient blood management (PBM) modalities exist to minimize hemorrhage and avoid unnecessary  transfusions3. 
Consequently, using data to predict the risk of RBC transfusion in CT surgery patients has been of interest over 
the past two decades, which is evidenced by multiple previously published prediction  models4–8.

Maximum surgical blood order schedules (MSBOSs) are a common strategy used by PBM programs to 
prevent excessive preoperative blood ordering. MSBOSs reduce unnecessary crossmatches, pre-transfusion 
testing, and costs, while possibly increasing the number of emergency release transfusions by a small  amount9. 
However, MSBOSs are not designed to accurately predict RBC utilization for a given case. A natural evolution 
of the MSBOS could be more personalized predictions to further improve stewardship of pre-transfusion test-
ing and the blood supply as well as the identification of cases at risk of significant hemorrhage and high blood 
utilization. Preoperative identification of these high-risk cases can improve preparation, encourage the use of 
PBM modalities, and potentially improve patient outcomes.

The performance of previously developed CT surgery RBC transfusion predictive models was typically 
reported using area under the curve (AUC)  values4–8. While results suggested reasonable performance, there 
were limitations to each model. For example, some models used only binary classification to predict either 
zero units transfused or any transfusion amount greater than zero  units4,5,8. Two of these studies predicted any 
perioperative transfusion rather than intraoperative transfusions, while another predicted any transfusion up to 
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one day after the surgery. Two other studies attempted to predict larger transfusion amounts (e.g. > 4 or 5 RBCs 
transfused), but one predicted transfusion risk over the entire hospital stay and the other used intraoperative 
 variables6,7. The most important predictor in this latter study was cardiopulmonary bypass time, which is not 
known  preoperatively7. Therefore, these models provide limited information about preoperative blood ordering 
and intraoperative hemorrhage risk. Our aim was to use only preoperative variables to predict intraoperative 
blood use, thus informing more accurate preoperative blood ordering and providing a useful surrogate for risk 
and magnitude of intraoperative hemorrhage.

There are three major problems to consider when analyzing and predicting RBC use in CT surgery: (1) clini-
cal data associated with each surgical case for each patient can be highly varied and voluminous, resulting in a 
long list of thousands of features; (2) the relationship between surgical data and the required amount of RBC 
components is expected to be complex and, therefore, a complex algorithm may be needed; (3) RBC utilization 
for different patients is highly varied, with the vast majority of patients using less than or equal to 3 units and a 
relatively small percentage using 4 + units, which can lead to highly biased predictions.

The development of machine learning (ML) algorithms for prediction in healthcare has garnered substan-
tial  interest10. With access to large, detailed, validated databases, an outcome of interest (e.g. mortality) can be 
predicted with excellent  performance11–16. Unlike traditional statistical approaches, ML algorithms do not focus 
on a priori assumptions but rather learn from the dataset to achieve the most accurate output result. Further, 
ML algorithms vary in their complexity and transparency. A decision tree algorithm is a relatively simple ML 
approach that results in an intuitive and interpretable model, whereas neural networks may be highly complex 
and have less transparency (i.e. “black box”). The purpose of this study was to develop and validate a novel ML 
method to predict intraoperative allogeneic RBC transfusions in CT surgery and compare its performance to a 
spectrum of other well-known, commonly used ML algorithms.

Methods
Records of all inpatient visits from May 2014 to July 2019 that involved a cardiothoracic (CT) surgery operating 
room procedure were obtained from and validated by the University of Utah Health’s Enterprise Data Warehouse 
(EDW). Detailed data were obtained on patient demographics, hospital visit characteristics, surgery cases, and 
all associated billing codes. Additionally, all laboratory values, vital signs, medications, and intraoperative blood 
transfusions along with associated dates and times were included (information about data tables—also known as 
business objects—is included in Supplementary Table S1). Of note, our protocol for blood transfusion in response 
to hemorrhage during CT surgery involves the interpretation of viscoelastic testing methods. Our local approach 
mirrors previously published  approaches17. Our initial dataset’s CT surgery cases and associated features (vari-
ables) were used as predictive inputs into the models. Approval to perform this retrospective, observational study 
along with authorization of waived consent was obtained from the University of Utah School of Medicine Insti-
tutional Review Board (IRB). Methods were performed in accordance with relevant guidelines and regulations.

Only variables that were available before the start time of the surgical procedure were used as features to 
predict intraoperative allogeneic red blood cell (RBC) requirements. For example, a prior surgical procedure 
could be used as one, among several, important features to predict transfusions for the upcoming surgery. Miss-
ing values of categorical features for a given patient indicated that feature was not present. Missing values of 
continuous features for a given patient were transformed to the median value in the dataset for that particular 
feature. After a discussion with cardiothoracic (CT) surgeon stakeholders about perceived value, we decided a 
priori to attempt to predict intraoperative blood use based on the following usage categories: 0 units, 1–3 units, 
and 4 + units. The value of an accurate prediction is to facilitate appropriate blood ordering practices beyond a 
maximum surgical blood order schedule (MSBOS) and to identify cases that are likely to experience significant 
hemorrhage.

To build a competent model that can be adequately explained, we adopt a hybrid machine learning (ML) 
framework. Instead of feeding all features into our algorithm, we started with a random forest (RF) algorithm 
to filter out unimportant features (Fig. 1). We chose RF for feature selection because we assumed nonlinear 
relationships between the inputs and the outputs to improve accuracy. RF is a widely used ensemble method in 
ML that can effectively reduce prediction variance by averaging predictions across many randomly generated 
decision trees. For a decision tree, the split for each node is determined by impurity reduction which is typically 
measured by entropy, or gini index, and the resulting structure can resemble human reasoning. RFs can compute 
feature importance by averaging the probability of reaching a certain node through the corresponding feature. 
Thus, with feature importance, a filtering threshold can be set to select only strongly associated features. Note 
that popular feature selection methods, e.g., lasso and elastic net, are based on a linear regression model, which 
assume all the features are linearly correlated to the outcome. We did consider these commonly used linear feature 
selection methods, but these demonstrated inferior performance. By contrast, our RF feature selection approach 
does not restrict to linear correlations as it also covers strong nonlinear correlations, which can facilitate the 
prediction task in the next step.

After the initial feature selection procedure, we imposed a Gaussian process (GP) regression model to capture 
the complex relationships between the clinical data and intraoperative RBC transfusion amount. We chose GP 
for two reasons. First, GP is a nonparametric model, can self-adapt the model complexity (e.g. linear to highly 
nonlinear) according to the data, and hence alleviates both underfitting and overfitting (the latter is a disadvan-
tage of neural networks). Second, the posterior distribution of GP has a closed-form, and hence the uncertainty 
quantification is convenient. GP is also well known for the fact that neural networks can be turned into a GP 
model under certain conditions, which translates to the ability to capture complex nonlinear relationships. GP is 
proposed to learn a mapping or function f : Rd → R from a training set D =

(

X, y
)

 , where X = [x1, . . . , xN ]
T , 

y = [y1, . . . , yN ]
T , each xN is a d dimensional input vector, i.e. selected clinical data features, and yn the observed 
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output, i.e. the amount of RBC components transfused. Usually, the GP model associated with f  is denoted as 
f ∼ GP(m(·), k(·, ·)) , where m(·) is the mean function, often set to be 0, and k(·, ·) is the covariance (kernel) 
function. With f = [f (x1), . . . , f (xN )]

T following a multivarate Gaussian distribution N(f |0,K) , where K is 
the kernel matrix on X , and an isotropic Gaussian noise, the conditional marginal distribution can be derived 
as p

(

y|X
)

= N(y|0,K + τ−1I) , where τ is the inverse variance of the noise. The kernel parameters and τ are 
parameters to learn by maximizing the likelihood of the data. The prediction can be obtained via the posterior 
distribution, which is a conditional Gaussian distribution. We compared our GP regression model performance 
to another well-known approach, a random forest regression ensemble model.

Finally, to account for the highly skewed distribution of higher blood use surgical cases (4 + units), we trans-
formed the original problem into a binary classification task because regression based on highly skewed class 
distribution can result in poor performance. We compared the performance of GP classification to other well-
known machine learning classification algorithms, including neural networks, XGBoost, random forest, and 
decision tree. Both the regression and classification machine learning algorithms used to train the data employed 
a five-fold crossvalidation approach, which is a standard approach to reduce overfitting.

To validate the model performance at our institution, we expanded the dataset to include all CT surgery cases 
occurring from August 2019 through August 2020. An algorithm required by our EDW to reduce the risk of a 
data breach included random forward date shifting from 1 to 90 days after the true date for all time-stamped 
variables. If dates were shifted forward a given number of days, this applied to all time-stamped variables for a 
given case. We elected to exclude the first three months of data from the validation dataset to eliminate the chance 
of overlap between the training and validation datasets. The original dataset’s cases were then used as a training 
dataset and the additional cases included after updating the dataset were used as a test dataset for validation of 
all previously mentioned ML algorithms.

Results
Patient characteristics. The initial training dataset included 2410 Cardiothoracic (CT) surgery patients 
from May 2014 to July 2019. The validation dataset included an additional 437 CT surgery patients from August 
2019 to August 2020. Therefore, the total number of cases included in the development of our optimized machine 
learning (ML) algorithm was 2847. Detailed information about the characteristics of included patients is shown 
in Table 1. This includes demographics, blood utilization, common laboratory values, comorbidities existing 
prior to surgery, and the most common procedure types. Most patients received zero intraoperative allogeneic 
RBC transfusions, while about one quarter used 1–3 units and 6% used 4 or more units. This right-skewed 
distribution is typical for plots showing the frequency of transfusion volumes amongst a cohort of  patients18,19. 
While most patients were male, the percentage of female patients increased in higher blood use categories. The 
hemoglobin value before surgery was lower in higher blood use categories.

Feature selection. The dataset was wide, containing a large number of variables per patient. The initial 
number of features in the dataset was 10,622. The feature selection procedure used random forest to reduce 
the number of features down to 202 based on the importance value of each feature. Features were considered 
important if they were involved in a node split that usefully divided the dataset into different groups based on 
transfusion amount. Table 2 shows the top 10 selected features, which is a subset of the 202 total features selected 
(Supplementary Table S2 includes a list of all 202 selected features). The importance value reflects the percentage 
of the time a given feature was involved in usefully dividing the data in the decision trees that comprised the 

Raw Data ……
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Random Forest
Feature Selection

Gaussian Process
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4+ RBCs?

…
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Gaussian
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Transfusion
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Figure 1.  Feature selection and hybrid machine learning (ML) model. The raw cardiothoracic (CT) surgery 
dataset contained numerous features. To reduce the features to a manageable number, a random forest feature 
selection procedure was performed. The selected features were then used as inputs into the Gaussian Process 
(GP) regression and classification ML algorithms.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1355  | https://doi.org/10.1038/s41598-022-05445-y

www.nature.com/scientificreports/

Table 1.  Combined characteristics of cases in the training (development) and test (validation) datasets. 
CABG coronary artery bypass graft, LVAD left ventricular assist device, ECMO extracorporeal membrane 
oxygenation.

All patients (test + training 
datasets) 0 units transfused 1–3 units transfused 4 + units transfused

Number of cases 2847 (100%) 1962 (69%) 712 (25%) 173 (6%)

Age (years) 58.9 58.4 60.0 58.9

Gender (% female) 31 27 39 42

Ethnicity (%)

Not Hispanic/Latino 89 89 88 86

Hispanic/Latino 7 7 7 6

Unknown 4 4 5 8

Race

White/Caucasian 83 85 78 79

Other 6 6 7 6

Black or African American 3 3 5 4

American Indian and Alaska 
Native 3 2 4 2

Unknown 3 2 2 5

Asian 1 1 2 2

Native Hawaiian and Other Pacific 
Islander 1 1 2 2

RBC transfusions (mean) 1.26 0 1.62 6.34

Plasma transfusions (mean) 1.36 0.73 1.83 6.58

Platelet transfusions (mean) 0.66 0.34 1.17 2.18

Hemoglobin before surgery 12.15 13.08 10.45 10.25

Hemoglobin after surgery 9.61 9.91 8.96 8.87

Platelet count before surgery 204 211 193 175

Creatinine before surgery 1.41 1.28 1.63 1.69

Cell salvage used (ml) 443 433 381 817

Pre-existing end stage renal disease 145/2847 (5%) 53/1962 (3%) 71/712 (10%) 21/173 (12%)

Pre-existing hypertension 1647/2847 (58%) 1094/1962 (56%) 426/712 (60%) 127/173 (73%)

Pre-existing peripheral artery 
disease 96/2847 (3%) 53/1962 (3%) 36/712 (5%) 7/173 (4%)

Pre-existing cerebrovascular 
disease 132/2847 (5%) 68/1962 (3%) 50/712 (7%) 14/173 (8%)

Pre-existing diabetes mellitus 705/2847 (25%) 444/1962 (23%) 215/712 (30%) 46/173 (27%)

Case type/urgency (%)

Elective 73 80 61 46

Urgent 17 15 24 22

Emergent 10 5 15 32

Most common procedures (%)

CABG (26) CABG (31) CABG (15) Ascending aortic dissection (13)

Placement LVAD (7) Placement LVAD (7) Mediastinal exploration (10) Transplant heart (10)

Transplant heart (5) Replacement aortic valve (5) Placement LVAD (8) Placement LVAD (8)

Mediastinal exploration (4) CABG with aortic valve replace-
ment (3) Transplant heart (8) Aortic valve and mitral valve 

replacement (5)

Replacement aortic valve (4) Transplant heart (3) Replacement aortic valve (3) Mediastinal exploration (4)

CABG with aortic valve replace-
ment (3) Mitral valve replacement (3) Ascending aortic aneurysm (3) CABG (8)

Mitral valve replacement (3) Minimally invasive aortic valve 
replacement (3)

CABG with aortic valve replace-
ment (3) Sternal exploration (4)

Ascending aortic dissection (3) Ascending aortic aneurysm repair 
(3) Placement ECMO (3) Thoracoabdominal aortic aneu-

rysm repair (4)

Ascending aortic aneurysm repair 
(2) Mediastinal exploration (3) Transplant double lung with 

bypass (3) Placement ECMO (3)
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random forest. The features remaining after the feature selection procedure were then used to train the different 
ML algorithms tested.

Predicting intraoperative RBC utilization using regression. We report the regression results in 
Table 3 using root mean square error (RMSE) to evaluate the deviation of predictions from the true values. Aside 
from our Gaussian process (GP) method, we also tested random forest and all results are obtained by splitting 
the data into five training and testing folds with mean value and standard deviation. For less severe cases (RBC 
usage less than or equal to 3 units), our regression method showed excellent prediction performance in both 
the development and validation phases as indicated by the low RMSE values (Table 3). For more severe cases 
(RBC usage 4 or more units), performance of both methods declined, likely due to the highly skewed nature of 
the data (Table 3).

Classification algorithm for prediction of 4 + units transfused. To evaluate the discriminative per-
formance of our method in both the development and validation phases, we use area under the receiver operator 
curve (AUC) that summarizes the trade-off between sensitivity (true positive) and specificity (true negative). We 
also tested some other methods by replacing the GP classifier with a boosting classifier, decision trees, or neural 
networks. Here, we directly utilize XGboost, a widely used and powerful library for the boosting algorithm, and 
run the boosting classifier. In addition to AUC, we also report sensitivity and specificity at the cut-off point of 
the curve, selected as the intersection point of the AUC curve and the line y = −x + 1 , and the F1 score (har-
monic mean of the sensitivity and positive predictive value for severe case classification). Our GP classification 
method demonstrated the best overall performance in the development phase (AUC = 0.80) and its performance 
improved in the validation phase with an AUC value of 0.82 (Table 4, Figs. 2 and 3). Random forest, decision 
tree, and XGboost models demonstrated good specificity, but their sensitivity and F1 scores were low (Table 4).

The final hybrid ML algorithm incorporated GP classification and, conditionally, GP regression. If the GP 
classification result was < 4 RBCs transfused, then GP regression was used to predict the specific amount of RBCs 
transfused. If the GP classification prediction was > 4 RBCs, then GP regression was not used. We propose this 

Table 2.  Top 10 features after random forest feature selection. CPT current procedural terminology, ICD 
international classification of diseases. a All features used were only applied if they were known to be available 
for the patient prior to the surgery start time. Features (e.g. laboratory values, billing codes) were excluded 
from the model for a given patient if they were not available before the surgery start time.

Rank Feature Feature  descriptiona Importance
Number of cases where feature was present/total cases used 
for feature selection

1 CPT code Veno-arterial extracorporeal membrane oxygenation (ECMO) 
initiation 0.020874491 114/2410

2 ICD-10 procedure code ECMO continuous 0.015373679 56/2410

3 CPT code ECMO cannulation 0.013020617 94/2410

4 CPT code Thoracoabdominal aortic aneurysm repair 0.010975536 10/2410

5 Laboratory result Blood gas analysis, barometric pressure 0.010827222 863/2410

6 Laboratory result Blood gas analysis, potassium 0.009008439 843/2410

7 Laboratory result Ionized calcium 0.00858092 945/2410

8 Laboratory result Hemoglobin 0.007877384 2125/2410

9 Laboratory result Albumin 0.00751122 1756/2410

10 ICD-10 code Respiratory ventilation > 96 h 0.007166464 113/2410

Table 3.  Random Forest (RF) versus Gaussian process (GP) regression. This table shows our GP regression 
model compared with the RF regression model. GP regression performed best as demonstrated by the low 
root mean square error (RMSE) in the 0 units transfused and 1–3 units transfused categories. In contrast, 
performance of both models suffered when predicting 4 + RBCs transfused. Therefore, in the final model we 
restricted the GP regression prediction to cases where < 4 RBCs transfused was predicted by GP classification.

0 units transfused 1–3 units transfused 4 + units transfused

Model development

Random forest 0.829 (0.043) 1.191 (0.047) 5.799 (0.612)

Gaussian process regression 0.064 (0.102) 1.758 (0.033) 7.613 (0.635)

Gaussian process regression for less severe cases 0.766 (0.016)

Model validation

Random forest 7.007 1.624 56.568

Gaussian process regression 0.117 1.705 56.941

Gaussian process regression for less severe cases 0.985
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approach to maximize the practical value of the prediction while still accounting for the skewed nature of the 
dataset.

Discussion
Blood utilization in cardiothoracic (CT) surgery varies, with some cases requiring no blood transfusions while 
others may require massive transfusion. The ability to predict intraoperative RBC utilization with high accuracy 
could serve a dual function: informing risk of significant hemorrhage as well as optimal blood ordering and 
crossmatching. We developed a machine learning (ML) approach to address this problem using inputs from a 
detailed clinical database at our institution. Our approach showed excellent performance that was subsequently 
validated with an updated dataset. Our database containing model inputs was local and wide (i.e. contained 
numerous variables per patient). We first used a feature selection procedure to scale down the number of model 
inputs followed by application of several ML models for prediction performance comparisons. Our final hybrid 
Gaussian Process (GP) ML model outperformed the other common ML algorithms that we tested. To our knowl-
edge, this is the first ML-based approach for predicting RBC transfusions specifically in CT surgery.

We found that a regression approach to prediction resulted in excellent performance when predicting zero 
units transfused as well as 1–3 units transfused. This approach did not perform well when predicting higher 
blood use cases (4 + units), which was demonstrated by the relatively high root mean square error (RMSE) for this 

Table 4.  4 + RBCs transfused classification. Multiple machine learning (ML) models were compared 
using several performance metrics. Our Gaussian Process (GP) classification model demonstrated the best 
performance in the development phase and in the subsequent validation phase. AUC  area under the receiver 
operator curve. F1 Score = the harmonic mean of the sensitivity and positive predictive value. Note that 
standard deviations are only listed for the model development phase that used the initial dataset because it 
used five-fold cross validation. The model validation phase used the initial dataset for training (n = 2410) and 
the additional set of cases (n = 437) for its test phase.

AUC Sensitivity Specificity F1 score

Model development

Gaussian process 0.826 (0.017) 0.892 (0.027) 0.678 (0.030) 0.766 (0.015)

Random forest 0.812 (0.009) 0.812 (0.052) 0.668 (0.052) 0.726 (0.009)

Decision tree 0.610 (0.021) 0.272 (0.044) 0.948 (0.007) 0.413 (0.055)

XGBoost 0.820 (0.015) 0.805 (0.046) 0.741 (0.051) 0.757 (0.013)

Neural network 0.723 (0.027) 0.682 (0.055) 0.742 (0.037) 0.697 (0.025)

Model validation

Gaussian process 0.826 0.778 0.771 0.774

Random forest 0.803 0.944 0.642 0.764

Decision tree 0.572 0.278 0.866 0.421

XGBoost 0.697 0.694 0.659 0.676

Neural network 0.760 0.833 0.679 0.748

Figure 2.  Area under the curve (AUC) for each machine learning (ML) classification algorithm for the 
development phase. Here, we used only the initial dataset (n = 2410) with five-fold crossvalidation to reduce 
overfitting. Gaussian Process (GP) demonstrated the greatest AUC and overall performance.
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usage category. This is most likely due to there being relatively fewer events in the 4 + units transfused category 
(173 total) when compared with the other categories as well as there being a larger range of RBCs transfused 
within that category. For this reason, we viewed the higher RBC use prediction as a classification problem. GP 
classification resulted in strong performance with an AUC of 0.82. With the initial dataset, we used five-fold 
cross-validation for all ML models tested, which is a standard approach to reduce overfitting. Our GP classifi-
cation model outperformed the other classification models we tested, which included simpler (decision tree) 
and more complex/black box models (random forest, XGBoost, and neural networks). Therefore, the ultimate 
approach we developed includes feature selection using random forest followed by a hybrid ML approach with 
GP classification and, if fewer than 4 RBCs transfused was predicted, GP regression.

After we developed the hybrid ML approach using the original dataset (May 2014–June 2019), we validated 
our model. We updated the clinical database to include cases up through August 2020, an additional 437 cases. 
Here, we trained the GP algorithms using the original 2140 patient dataset and next tested the GP algorithms with 
the new 437 cases. The model performance remained strong and even improved for the classification prediction 
of 4 + RBCs transfused. The slight improvement in predicting these larger transfusion volumes may be due to 
the increased number of cases from which we could train the GP classification algorithm.

Maximum surgical blood order schedules (MSBOS) are a well-known method for institutions to standardize 
blood ordering prior to major  surgery9. While MSBOSs provide value by improving blood inventory manage-
ment and limiting excessive ordering, they do not provide a personalized prediction of blood utilization and 
associated hemorrhage risk. Beyond MSBOSs, multiple prior statistical models predicting transfusions in cardiac 
surgery have been developed, but to our knowledge none has been widely  adopted4–8. These prior models all 
used a classification approach, but there were notable differences in their methods. Some attempted to predict 
zero versus any transfusion, while others attempted to predict massive transfusion. Further, the period of which 
blood use was predicted was often well after the surgery, sometimes for the entire hospital stay. Some included 
variables that could only be obtained after a surgery had started, further limiting the value of the prediction. 
It is worth noting that while our ML approach was not based on making a priori assumptions, our model did 
ultimately include features that had been shown to be predictive in the past (examples include age, laboratory 
values associated with anemia, history of major prior surgeries, and more)4–8. Our ML-based approach improves 
upon prior models by accounting for complex nonlinear relationships of predictive features, using only preop-
erative variables, predicting a broader range of outcomes (from zero to 4 + units transfused), and restricting our 
prediction to intraoperative RBCs transfused.

It is important to note that the best approach we identified in this study was a black box model (Gaussian Pro-
cess, GP). This and other black box models (XGBoost, random forest, neural networks) outperformed the much 
simpler and more transparent decision tree. The advantage of a simpler model is easier clinical interpretation 
due to transparency. For example, if a small number of features were sufficiently predictive (e.g. age, preoperative 
hemoglobin, surgeon, anesthesiologist, procedure performed, preoperative creatinine), these predictors might 
make intuitive sense to clinicians and provide initial confidence in the model. However, we found that decision 
tree performed poorly.

Recommendations for how to develop and present ML models in healthcare are  available20,21. While we 
incorporated recommended items for developing and validating a prediction model, it is important to note that 
our study has some unique characteristics. First, our ultimate ML model is “black box” as noted above. Second, 
we used a large number of features for prediction, even after feature selection. While we achieved a reason-
able sample size using local data (n = 2847), the number of features is still considered high. We would like to 

Figure 3.  Area under the curve (AUC) for each machine learning (ML) classification algorithm after the 
validation phase. Here, the initial dataset (n = 2410) was used as the training dataset and the additional cases 
included after updating the database (n = 437) were used as the test dataset. Gaussian Process (GP) again showed 
the highest AUC and best overall performance.
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emphasize that the generalizability of this study is in the prediction method, rather than in the prediction model 
itself. This has been described as a new approach wherein models are intentionally trained and re-trained over 
time using local  data21. We use this approach here because we assumed the degree of hemorrhage and need for 
blood transfusions in cardiothoracic surgery is inherently complex and likely cannot be explained adequately 
by simpler, more transparent models. This is supported by the poor performance of the decision tree model in 
our study. For other institutions to apply our approach, we suggest developing a detailed clinical database using 
local data, performing feature selection (e.g. random forest), and evaluating our hybrid GP classification and 
regression method performance using their data. This could be validated on local data and also compared to 
other commonly used ML models, similar to our approach.

The use of ML for prediction in healthcare is growing as development and availability of detailed clinical 
databases allows investigators to predict any outcome of interest. While there is enthusiasm surrounding ML, its 
value in healthcare remains to be seen in many cases. ML has a better chance to provide value in a given context 
when a systematic approach to conception, development, and validation is  taken10. Our aim with this study was 
to take the first key step of developing and validating a blood use prediction model in a highly relevant (com-
monly transfused) patient population at our institution.

Strengths of this study include the systematic approach to database development and validation with our 
Enterprise Data Warehouse (EDW). We compared several well-known ML models to each other and used a five-
fold cross-validation approach for model development. We expanded the dataset to include additional patients 
and the models continued to demonstrate excellent performance.

This study also has limitations. ML prediction models always have a risk of overfitting, particularly with a 
single-center dataset that, by nature, limits the number of cases for analysis. We sought to mitigate this overfitting 
risk using five-fold cross-validation initially, followed by validation with a separate dataset of subsequent patients 
from our institution. This study also notably used data from our local Enterprise Data Warehouse (EDW). EDW 
datasets can be updated regularly at short intervals, but implementation into practice may require that some 
features (e.g. lab values) are extracted from the electronic health record (EHR) in real time if EDW datasets can-
not update with sufficient speed. Last, we focused on predicting intraoperative RBC transfusions and did not 
evaluate other blood components, such as plasma, platelets, or cryoprecipitate.

Future directions include further validation of performance of our ML prediction method within our institu-
tion and at other institutions. A stable, validated model using local data could then be carefully implemented 
for routine use by surgeons and anesthesiologists. Implementation may take the form of an electronic health 
record (EHR) application that is ultimately integrated into the routine clinical workflow for preoperative blood 
ordering. We envision this application would perform all necessary steps to achieve an accurate prediction so 
that the end user is given a straightforward prediction result. The application would use our selected features 
to first perform GP classification in the background. If 4 + RBCs predicted, this would be the final prediction 
presented to the end user. If 0–3 RBCs predicted, then GP regression would be performed and this more specific 
regression result would be presented to the end user, rounded to the nearest integer. The end user could use this 
information to help decide whether and how much blood should be ordered for the upcoming surgery and to 
evaluate hemorrhage risk.

Conclusion
In conclusion, we developed and validated an ML-based method to predict intraoperative RBC transfusion 
requirements in CT surgery using local data. Our method demonstrated excellent performance, but requires 
further validation outside our institution.
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