
fmicb-11-01795 July 23, 2020 Time: 17:36 # 1

MINI REVIEW
published: 24 July 2020

doi: 10.3389/fmicb.2020.01795

Edited by:
Andrew S. Lang,

Memorial University of Newfoundland,
Canada

Reviewed by:
Emily S. Bailey,

Texas Tech University Health
Sciences Center, United States

Alexander Culley,
Laval University, Canada

*Correspondence:
Ian Hewson

hewson@cornell.edu

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 22 May 2020
Accepted: 09 July 2020
Published: 24 July 2020

Citation:
Mordecai GJ and Hewson I

(2020) Coronaviruses in the Sea.
Front. Microbiol. 11:1795.

doi: 10.3389/fmicb.2020.01795

Coronaviruses in the Sea
Gideon J. Mordecai1 and Ian Hewson2*

1 Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada,
2 Department of Microbiology, Cornell University, Ithaca, NY, United States

Interest in coronaviruses because of the 2019 novel coronavirus (SARS-CoV-2)
pandemic has generated concern about their occurrence and persistence in aquatic
habitats. Coronaviruses are not quantitatively significant constituents of marine
virioplankton. Members of the Nidovirales (to which human coronaviruses belong)
infect marine mammals, teleosts and possibly invertebrates, and human coronaviruses
may persist in marine plankton receiving wastewater effluent. However, virions likely
experience significant particle and infectivity decay rates in surface seawater, similar to
other enveloped RNA viruses.
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INTRODUCTION

The current 2019 novel coronavirus (SARS-CoV-2) pandemic has generated interest and concern
about the occurrence and persistence of coronaviruses in aquatic habitats. While the distal origin of
SARS-CoV-2 is still undetermined, but likely terrestrial (bats or other terrestrial animals; Andersen
et al., 2020) coronaviruses also occur in aquatic mammals and other metazoa as pathogens.
Given reports that SARS-CoV-2 can be shed from patients in feces for prolonged periods (Gu
et al., 2020; Hindson, 2020; Wu et al., 2020; Yeo et al., 2020; Zhang et al., 2020) and like other
human coronaviruses (Bibby and Peccia, 2013) can be detected in wastewater management facilities
(Lodder and De Roda Husman, 2020) it is possible that SARS-CoV-2 may be introduced to aquatic
habitats through sewage outfall and contact with infected recreational users. The purpose of this
mini-review is to summarize currently known marine (and more generally aquatic) coronaviruses,
their presence in plankton, and their potential persistence in aquatic habitats.

MARINE CORONAVIRUS DIVERSITY

Coronaviruses belong to the order Nidovirales, a group of viruses rapidly expanding in number
mainly as a result of a surge in metatranscriptomic sequencing studies (Shi et al., 2016).
Coronavirus virions are large (120–160 nm), and characterized by club-shaped projections
on their surface. They bear a ssRNA genome of 25–32 kb, on which (from 5′ to 3′) there
are typically two open reading frames encoding non-structural genes, followed by structural
genes. Replication of coronaviruses occurs by receptor mediated endocytosis, followed by
cytoplasmic replication and assembly of mature virions at the endoplastic reticulum surface, and
release by exocytosis (Brian and Baric, 2005). The Nidovirales is currently made up of eight
suborders (Abnidovirineae, Arnidovirineae, Cornidovirineae, Mesnidovirineae, Monidovirineae,
Nanidovirineae, Ronidovirineae and Tornidovirineae) (King et al., 2018) and virus classification is
verified by concatenation and phylogenetic analysis of five protein encoding domains. SARS-CoV-2
belongs to the family Coronaviridae, subfamily Orthocoronavirinae and genus Betacoronavirus.
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To date there have been no Betacoronaviruses recovered
from any marine animal. However, Alphacoronaviruses and
Gammacoronaviruses are described in marine mammals
(reviewed in Schütze, 2016; Bossart and Duignan, 2018). These
include the Harbor Seal Alphacoronavirus (Bossart and Schwartz,
1990), Pacific Harbor Seal Gammacoronavirus (Nollens et al.,
2010), Beluga Whale Gammacoronavirus (Mihindukulasuriya
et al., 2008) and the Bottlenose Dolphin Gammacoronavirus
(Woo et al., 2014). These viruses are distantly related to
SARS-CoV-2. Gammacoronaviruses and Alphacoronaviruses
share little homology with SARS-CoV-2 (Figure 1) but are
associated with respiratory diseases in pinnipeds and cetaceans.
Gammacoronaviruses and Alphacoronaviruses are associated
with respiratory secretions and possibly associated with
pneumonia in seals (Nollens et al., 2010; Ng et al., 2011) and
respiratory disease in cetaceans (Mihindukulasuriya et al., 2008)
however, firm pathology has not been established. Wild birds
are known viral reservoirs, and birds which live mainly in the
marine environment are also known to harbor coronaviruses. For
instance, a novel coronavirus within the Gammacoronaviruses
was identified in American herring and great black backed gulls
(Canuti et al., 2019). Interestingly, these sea bird coronaviruses
are within the same clade as marine mammal coronaviruses
(Figure 1), suggesting that in the past, transmission between
these animals has occurred. Additionally, and perhaps suggesting
that the diversity in the marine environment is not yet fully
understood, a Nidovirus (PsNV) recovered from Pacific Salmon
shares greater similarity with coronaviruses than to other fish
or invertebrate nidoviruses. Interestingly, PsNV was localized
via in situ hybridization to gill tissue, suggesting a similar tissue
tropism and infection strategy to other respiratory coronaviruses
(Mordecai et al., 2019, 2020). The morphology, genome
organization, and replication of marine gammacoronaviruses is
highly similar to human coronaviruses (Mihindukulasuriya et al.,
2008; Woo et al., 2014). While no marine gammacoronavirus
has been cultivated, the avian gammacoronavirus Infectious
Bronchitis Virus (IBV) follows similar entry, replication and
shedding as human coronaviruses. While SARS-CoV-2 bind to
angiotensin converting enzyme 2 (ACE2) (Yan et al., 2020) IBV
binds to sialic acid, and while both infect primarily respiratory
tissues, they may have wide tropism and infect multiple organ
systems (Winter et al., 2006; Promkuntod et al., 2014; Bande
et al., 2016).

Several nido-like viruses have been detected in invertebrates
in the marine environment (Shi et al., 2016; Bukhari
et al., 2018). Screening of RNA-specific viral metagenomes
prepared from asteroids (NCBI Accessions PRJNA253121 and
SAMN08012637 – SAMN08012651; Hewson et al., 2014, 2018b)
yielded no definitive coronavirus-like sequences, though weak
matches based on amino acid homology were found (Hewson
et al., 2018b). Analysis of representative Nidovirales diversity
shows that the majority of viral discovery studies are focused
on terrestrial mammalian and avian hosts, but the few aquatic
representatives in the Nidovirales are represented across the
tree (Figure 1), suggesting that their absence might be due to
inadequate sampling, rather than a restricted host range. It is
becoming clear that despite many newly discovered viruses

remain unclassified, members of the family Coronaviridae are
no longer limited to viruses of birds and mammals, but also
invertebrates (Shi et al., 2018) reptiles (Shi et al., 2018) amphibia
(Bukhari et al., 2018) and perhaps also fish (Mordecai et al.,
2019; Figure 1). Our analysis suggests that nidoviruses are
likely found in all animals, and that much broader sampling
and metatranscriptomic sequencing of marine organisms is
required to more fully understand the diversity of viruses found
in this environment.

To assess the occurrence of coronaviruses as free virions in
plankton (i.e., virioplankton), we screened plankton (>0.2 µm)
metatranscriptomes of the New York Finger Lakes (NCBI
accessions SRR6281416 – SRR6281423), viral metagenomes
the Anacostia River in Washington DC (NCBI accession
PRJNA637530), along with published RNA viromes from marine
and freshwater virioplankton (Culley et al., 2003, 2006, 2014;
Djikeng et al., 2009; Lang et al., 2009; Lopez-Bueno et al.,
2015; Hewson et al., 2018a) by BLAST, but these yielded no
definitive Orthocoronavirus-like sequences. Zeigler et al. (2017)
reported coronaviruses-like sequences in plankton recovered
from the Baltic Sea through combined metatranscriptome and
virome sampling, but concluded these were likely a result
of contamination from human sources. While these libraries
represent a tiny fraction of the total diversity of aquatic
habitats and aquatic animal diversity, it can be inferred
that coronaviruses do not represent numerically significant
constituents of virioplankton communities.

HUMAN CORONAVIRUSES IN MARINE
ECOSYSTEMS

As SARS-CoV-2 is likely to be released to the marine
environment via human effluent, it is important to understand
the impact this might have on marine life (if any). Wastewater
surveillance strategies to detect SARS-CoV-2 are currently
formulated to track human epidemiology, since these precede
case loads in the human population (Daughton, 2020; Randazzo
et al., 2020). Given the detection of SARS-CoV-2 nucleic acids in
wastewater (Ahmed et al., 2020; Lodder and De Roda Husman,
2020; Medema et al., 2020; Orive et al., 2020) coronaviruses
may be introduced into aquatic habitats through urban or
agricultural runoff or in wastewater effluent. Indeed, emerging
reports at the time of publication indicate the presence of
SARS-CoV-2 in river water receiving untreated human sewage
(Guerrero-Latorre et al., 2020; Haramoto et al., 2020; Rimoldi
et al., 2020). Human coronaviruses (HCoV) experience a 99%
loss in infectivity in primary and secondary treated wastewater
effluent after 1.9–2.4 days (Gundy et al., 2009). A study by
Ye et al. (2016) found that murine hepatitis virus (MHV;
coronavirus) experienced 90% reduction in infectivity after 13 h
in raw wastewater at 25oC, but infectivity was maintained
longer (36 h) at 10oC. Taken together, these studies illustrate
that intact coronavirus particles may survive in wastewater
after excretion, and may be present in coastal waters after
discharge. However, coronavirus particles are likely to experience
considerable particle decay and loss of infectivity after arriving in
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FIGURE 1 | Phylogeny of representative Nidovirales based on ORF1a (replicase) amino acid sequences. Closely related sequences were removed. Tip points are
colored by ecosystem and shaped by host. The clade highlighted in red shows the phylogenetic placement of SARS-CoV-2 and closely related viruses. Branches
are scaled to the number of amino acid substitutions per site and the tree is mid-point rooted. Node values show FastTree support values (ranging from 0 to 1).
Amino acid alignments were carried out using MAFFT (Katoh and Standley, 2013) the tree was built using FastTree (Price et al., 2010) and visualized using ggtree (Yu
et al., 2017).

aquatic habitats. Virus-like particles, which include both viruses
of eukaryotes and phage, experience particle decay in seawater
at rates of 2–4 % h−1 (Heldal and Bratbak, 1991) which is
generally considered to be a result of sunlight (UV-C radiation)
(Wommack et al., 1996; Wilhelm et al., 1998) and through
interaction with heat-labile organic matter which may include
nucleases and proteases present in marine microorganisms and
free in the environment (Noble and Fuhrman, 1997). Different
viral groups may have different particle decay rates (Wilhelm
et al., 1998) and decay of virus particles is a different process

to loss of viral infectivity (Wommack et al., 1996). The decay
of coronaviruses in natural waters has not been studied. Several
fish pathogens, including viral haemorrhagic septicemia virus
(VHSV; Rhabdovirus), infectious salmon anemia virus (ISAV;
Orthomyxovirus), Salmon Alphavirus (SA; Togavirus), and
Infectious Hematopoeitic Necrosis Virus (IHNV: Rhabdovirus)
are enveloped RNA viruses (Crane and Hyatt, 2011) which may
be detected in fish pens or holding tanks (Pinto et al., 1993)
and natural waters (Lovdal and Enger, 2002). Oye and Rimstad
(2001) reported a 3 log reduction in ISAV and VHSV titers after
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approximately 50 and 9 h, respectively, in sterilized seawater
and freshwater. They also found that fish pen water enhanced
viral survival compared to sterilized water. Skjold (2014) reported
3 log reductions in SA titer in 12 h. Garver et al. (2013)
found that IHNV experienced threefold declines in viral titer
<24 h, and that viral decay was much less in open aquaculture
compared to closed aquaculture systems or sterile water. Kocan
et al. (2001) reported a 50% loss of viral activity in VHSV
when inoculated into natural seawater. Hence, viral infectivity
decay rates of enveloped RNA viruses may be similar to those
of virioplankton in general. The high decay rates present
in seawater (detailed above) and high dilution rates suggest
coronaviruses may not persist for long periods in natural
waters, which would help to minimize the risk of infecting
any potential susceptible hosts in the marine environment that
could act as animal reservoirs of the virus. However, it is
important to note that surviving virions may potentially infect
marine mammals, since cetaceans and terrestrial mammals share
similar receptor binding domains on ACE2 (Luan et al., 2020;
Nabi and Khan, 2020) which may be especially pronounced
when such species occur near urban wastewater outfalls.
Marine aerosols may also represent another mechanism of re-
introduction to terrestrial habitats downstream of wastewater
outfalls (Baylor et al., 1977).

SUMMARY

In summary, coronaviruses occur uncommonly in marine and
freshwater ecosystems as free virions, but this could be because
the true diversity in aquatic reservoirs is not well explored.

There may be unrecognized coronaviruses infecting marine
metazoa that are currently under-sampled relative to terrestrial
counterparts. Introduced coronaviruses, such as SARS-CoV-2,
may be present in coastal marine waters which are affected
by sewage effluent, where they are subject to physical decay
and loss of infectivity at rates similar to other aquatic viruses.
Monitoring of SARS-CoV-2 in sewage outfalls into these habitats
is recommended, since it may provide guidance to recreational
users and fisheries to assess risk, especially when such viruses may
be concentrated, e.g., by filter feeding organisms or by onshore
winds. More study is needed to understand the natural diversity
of coronaviruses in marine metazoa through broad viral surveys.
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