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Nearly all estrogen receptor (ER)-positive (POS) metastatic breast cancers

become refractory to endocrine (ET) and other therapies, leading to lethal

disease presumably due to evolving genomic alterations. Timely monitoring

of the molecular events associated with response/progression by serial tis-

sue biopsies is logistically difficult. Use of liquid biopsies, including
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circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), might

provide highly informative, yet easily obtainable, evidence for better preci-

sion oncology care. Although ctDNA profiling has been well investigated,

the CTC precision oncology genomic landscape and the advantages it may

offer over ctDNA in ER-POS breast cancer remain largely unexplored.

Whole-blood (WB) specimens were collected at serial time points from

patients with advanced ER-POS/HER2-negative (NEG) advanced breast

cancer in a phase I trial of AZD9496, an oral selective ER degrader (SERD)

ET. Individual CTC were isolated from WB using tandem CellSearch�/

DEPArrayTM technologies and genomically profiled by targeted single-cell

DNA next-generation sequencing (scNGS). High-quality CTC (n = 123)

from 12 patients profiled by scNGS showed 100% concordance with ctDNA

detection of driver estrogen receptor a (ESR1) mutations. We developed a

novel CTC-based framework for precision medicine actionability reporting

(MI-CTCseq) that incorporates novel features, such as clonal predominance

and zygosity of targetable alterations, both unambiguously identifiable in

CTC compared to ctDNA. Thus, we nominated opportunities for targeted

therapies in 73% of patients, directed at alterations in phosphatidylinositol-

4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), fibroblast

growth factor receptor 2 (FGFR2), and KIT proto-oncogene, receptor tyro-

sine kinase (KIT). Intrapatient, inter-CTC genomic heterogeneity was

observed, at times between time points, in subclonal alterations. Our analysis

suggests that serial monitoring of the CTC genome is feasible and should

enable real-time tracking of tumor evolution during progression, permitting

more combination precision medicine interventions.

1. Introduction

Current management approaches for estrogen

receptor-positive (ER POS), HER2-negative (HER2

NEG) metastatic breast cancer (MBC) commonly

consist of endocrine therapy (ET), including the selec-

tive ER degrader (SERD), fulvestrant [1]. Fulves-

trant’s activity is dose dependent [2–4] and may be

retained even after the acquisition of ligand-binding

domain mutations in ESR1, the gene that encodes for

ER, which induce ligand-independent signaling [5].

However, pharmacologically, fulvestrant requires

large volume intramuscular injection, so dose escala-

tion in its current formulation is difficult. Oral

SERDs have entered clinical trials [6] and patients

from a phase I trial of one such oral SERD candi-

date, AZD9496, are the focus of this study. The can-

didate drug only showed limited activity and all

patients reported here had progressive disease as their

best response. However, in-depth study of these

patients’ CTCs can shed light on CTC genomic

actionable biomarkers, intrapatient heterogeneity,

and clonal mechanisms of progression in metastatic

ER POS, HER2 NEG breast cancer.

Ideally, ET pharmacological agents should be devel-

oped with companion predictive and pharmacody-

namic tumor biomarkers that can be non-invasively

tracked over the course of treatment. Real-time detec-

tion and monitoring of genomic alterations in tissue

are problematic, since relevant archived tumor-derived

material is collected years or months before, at the

time of primary or first metastatic diagnosis, and serial

tissue biopsies are invasive and logistically difficult

[7,8]. Liquid biopsies, centered around detection of

cell-free circulating tumor DNA (ctDNA) and circulat-

ing tumor cells (CTC), have overcome these difficulties

by allowing non-invasive detection/monitoring of

genomic alterations [9]. However, the benefits of

ctDNA may be dampened by some technical limita-

tions and assay variability due to the often-low tumor

DNA fraction [10,11]. Further, since ctDNA repre-

sents a composite view of bulk tumor DNA in circula-

tion, its ability to discern cancer clonal and subclonal

architecture and intrapatient heterogeneity, a recog-

nized cause of therapy resistance [12], is also limited.

Circulating tumor cells are shed by the tumor and

are thought to represent the transit phase of the inva-

sion metastasis cascade or, in the context of recurrent
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metastatic disease, continued spread [13,14]. CTC enu-

meration is prognostic in several cancers, such as breast,

prostate, colorectal, and lung [15–22]. In addition to

CTC enumeration, their phenotyping and genotyping

may provide additional biologic and perhaps clinically

relevant information [23,24]. Yet, clinical application of

CTC-derived precision oncology biomarkers, despite

having the potential to provide additional clinically rele-

vant information, remains largely unexplored. We have

previously reported CTC enumeration, phenotype, and

ctDNA ESR1 results from our AZD9496 oral SERD

phase I trial [25]. Here, we report on the genomic analy-

sis of CTCs at single-cell resolution by scNGS at two

time points and compare it to ctDNA results for ESR1

ligand-binding domain mutations (LBD) in patients who

participated in this trial.

2. Materials and methods

2.1. Study design and objectives

This was a correlative study using specimens from the

NCT02248090 phase I trial, a multicenter international

study investigating safety and tolerability of the oral

SERD AZD9496 in ER POS/HER2 NEG metastatic or

locally recurrent breast cancer [6]. CTC enumeration,

phenotyping, and ctDNA ESR1 mutational analysis have

been previously reported [25]. The phase I study as well

as collection and profiling of liquid biopsy samples for

the successive correlative work, including this analysis,

has been conducted in accordance with the principles of

the International Conference on Harmonization Guideli-

nes for Good Clinical Practice and the Declaration of

Helsinki. The study methodologies were approved by the

local ethics committee (Institutional Review Board, IRB).

All experiments were undertaken with the understanding

and written consent of each subject.

2.2. Patient eligibility and AZD9496 dosing

Detailed eligibility criteria, conduct, and results of the

main clinical trial, in which participating patients received

escalating doses until disease progression or unacceptable

toxicity, have been previously described [6]. Briefly,

women with ER POS/HER2 NEG MBC having under-

gone ≥ 6 months of ET were eligible while those having

received > 2 lines of chemotherapy were excluded.

2.3. CTC collection and processing

Details of blood collection, processing, and CTC

enrichment and purification using CellSearch� and

DEPArrayTM have been previously described [24,25].

Briefly, blood was collected into three separate CellSave

tubes (Menarini Silicon Biosystems S.p.A., Bologna,

Italy) within 28 days prior to initiating therapy (screen-

ing), at initiation (Cycle 1, Day 1—C1D1), and then

either C1D15 or at treatment discontinuation. Blood

from the three tubes was pooled, mixed, re-aliquoted to

7.5 mL, and processed for CTC enrichment as previ-

ously described using the CellSearch� CTC enrichment

system (Menarini Silicon Biosystems) [25,26]. Cell-

Search� cartridges were initially stored at 4 °C in the

dark post-CellSearch� processing. However, data

reported during the conduct of the trial suggested that

storage in glycerol at �20 °C is superior, and subse-

quent specimens were stored in that manner [27]. Indi-

vidual CTCs were obtained by processing CellSearch�

cartridge contents on the DEPArrayTM system (Menar-

ini Silicon Biosystems) per the manufacturer’s instruc-

tions, at either Menarini Silicon Biosystems’ central

laboratory or at the University of Michigan, as previ-

ously described [24]. Individual selected cells passing

pre-specified criteria (DAPI and cytokeratin positivity,

CD45 negativity) were routed for isolation and recovery

via dielectrophoretic cell sorting by DEPArrayTM [28].

Individual CTC were lysed and DNA was whole-

genome-amplified (WGA) using the Ampli1 WGA kit

(Menarini Silicon Biosystems) with MseI digestion per

the manufacturer’s instructions. WGA DNA quality

control was performed using Ampli1 QC Kit [29], and

low-quality DNA cells (< 3 QC bands) were not pur-

sued for further genomic analysis.

2.4. CTC single-cell genomic analysis

A maximum of 96 individual CTCs per CellSearch�

cartridge can be recovered from DEPArrayTM. Purified

CTCs were WGA’d with the goal of obtaining 10 high-

quality CTC from each patient per time point for

downstream genomic analysis with additional cells

added for select interesting cases (#17, #26, and #34, up

to 19 total cells per time point). ScNGS was performed

as previously described [24,30–33]. Briefly, 20 ng of

WGA’d DNA per CTC underwent library construction

with a targeted NGS custom AmpliSeq panel (Ion Tor-

rent, Thermo Fisher Scientific, Waltham, MA, USA).

The panel targets 138 cancer-related genes selected

based on pan-solid tumor genomic data analysis that

prioritized recurrent and/or targetable cancer alter-

ations. The panel (Table S1) is an enhanced version of

the Oncomine Cancer Panel (Thermo Fisher) used in

the NCI-MATCH basket trial [30,34]. Approximately

one-third of panel amplicons are negatively affected due

to WGA MseI digestion. Templating, sequencing, and
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data analysis were performed on the Ion Torrent Chef,

S5 Prime Gene Studio, and Torrent Suite version 5.0.2,

respectively.

2.5. Data analysis and variant prioritization

Variant and copy number (CN) annotation, filtering,

and prioritization were performed essentially as previ-

ously reported using validated in-house pipelines

[24,30]. Candidate somatic variants called by the Tor-

rent Browser and annotated with ANNOVAR were fil-

tered to remove synonymous or non-coding variants,

those with read depths (FDP) < 10, variant read fre-

quencies < 0.10, extreme skewing (> 5-fold) of for-

ward/reverse read ratio calling the variant, or indels

within homopolymer runs > 4 nucleotides long. Called

variants were filtered using a panel-specific, in-house

blacklist. Variants reported at population allele fre-

quencies > 0.5% in EXAC or 1000 Genomes (KG)

databases, were considered germ line variants unless

occurring at a known cancer hot spot. Somatic vari-

ants passing the above filters were then visually con-

firmed in the Integrated Genome Viewer (IGV, Broad

Institute) as were the same regions in samples from the

same patient where the variant was not called, in order

to confirm both adequate coverage and absence of the

variant. Variants located at the last mapped base (or

outside) of amplicon target regions, those with the

majority of supporting reads harboring additional mis-

matches, those in repeat-rich regions (likely mapping

artifacts), or those occurring exclusively in one ampli-

con if overlapping amplicons cover the position, were

excluded. We have previously confirmed that these fil-

tering criteria identify variants that pass Sanger

sequencing validation with > 95% accuracy [31,35].

We prioritized as putative driving alterations those

that were deleterious in tumor suppressor genes (non-

sense, frameshift, deletion), recurrent ‘hotspot’ muta-

tions (in the ‘Curated set of non-redundant studies’

cohort, cbioportal.org or those with solid literature

evidence) or those with OncoKB driver annotation in

oncogenes or tumor suppressors or amplifications in

oncogenes. Somatic mutations without support from

any of those categories were designated as VUS. We

define homozygous mutations as having a variant read

fraction of 0.10–0.95 and homozygous variants at

> 0.95. Copy number analysis from total amplicon

read counts provided by the CoverageAnalysis plugin

(version v5.0.2.0) was performed essentially as previ-

ously described using a validated approach [31,36] with

adaptations for single-cell sequencing. Specifically, we

retained only well-performing amplicons (with > 100

reads in a set of 10 individual WBC samples) in order

to exclude amplicons lost due to their containing the

MseI restriction site.

Copy number alterations (CNAs) were calculated as

normalized read counts per amplicon divided by the

normalized mean read count of the same amplicons

from the set of unrelated 10 WBC samples sequenced

by scNGS with the same gene panel, yielding a copy

number ratio for each amplicon. Gene-level copy num-

ber estimates were determined by taking the coverage-

weighted mean of the amplicon ratios [36]. Genes with

a copy number estimate < 0.25 or > 4 were considered

to have high-level loss or gain, respectively. Normal

epithelial cells in circulation were defined as CTC

(DAPI and cytokeratin POS, CD45 NEG) but harbor-

ing no apparent driver truncal or subclonal alterations

as detected with our panel. Shared somatic alterations

were used to confirm CTC belonging to the same

patient-clone [37].

2.6. Nomination of actionable precision medicine

alterations

Nomination of potentially actionable alterations with

MI-CTCseq was performed by first categorizing alter-

ations present in > 1 CTC within a patient as biomark-

ers for treatments belonging to one of four tiers of

evidence [30,38]: (a) FDA-approved for the current indi-

cation (MBC), (b) FDA-approved drugs recommended

for off-label use by practice guidelines for this or other

cancer indications, (c) investigated as targeted therapies

in interventional biomarker-driven clinical trials in any

cancer type actively recruiting at the time of reporting,

and (d) having preclinical evidence/biological plausibil-

ity of actionability. This classification is based on com-

monly used principles on actionability reporting

guidelines. We then developed a novel platform for tar-

getability reporting that refines the classical tier system

above via the inclusion of subtiers that factor in the

clonality of the cell population harboring the alteration,

that is, the fraction of total CTC positive for the alter-

ation (Subtier A: ≥ 80%, B: 50–80%, C: < 50%, of

total CTC). Additionally, clinically relevant zygosity

status of alterations in tumor suppressors and oncoge-

nes is reported (requiring again that the zygosity status

be present in > 1 CTC if heterogeneity of zygosity is

present for an alteration within a patient). The best

level of evidence (a. highest priority tier, b. highest clo-

nal fraction, and c. homozygosity/complete deletion)

was used as the final assignment for patients with more

than one actionable alteration.

Fish plot analysis for patient #26 was performed in

R (version 4.1.0) as reported by Miller et al. [39] under

the assumptions of clonal parentage in the order: (a)
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CDH1 mutation, (b) ESR1 heterozygous mutation, (c)

ESR1 homozygous mutation.

2.7. Statistical analysis

Means and standard deviations were used to report

CTC quality for WGA and sequencing results. Differ-

ences in copy number estimates between individual

genes in different cell populations were detected by the

Student’s t test if normally distributed, otherwise the

Mann–Whitney test was used. Panel-wide copy num-

ber clustering for different cell populations was per-

formed with unsupervised hierarchical clustering by

sample (Cluster 3.0, correlation uncentered similarity

metric, centroid linkage method) and visualized with

Java Treeview in log2 scale with the middle value for

each gene across samples set at 1 (2 copies, diploid).

3. Results

3.1. Patient cohort and study design

Specimens were collected from advanced breast cancer

patients pre-treated with ET, including aromatase inhi-

bition (AI). These patients were enrolled in the phase I

AZD9496 trial (NCT02248090, Fig. 1A). We have pre-

viously reported clinical trial outcomes and quantifica-

tion of circulating biomarkers (CTC enumeration and

phenotyping as well as ctDNA mutant ESR1 detec-

tion) [6,25]. Of the 48 enrolled patients, three were not

eligible, two did not have blood drawn at baseline,

and 11 of the remaining 43 (26%) had ≥ 5 CTC/

7.5 mL whole blood (WB) (Fig. 1A) [6]. These 11

patients, as well as the two other patients who did not

have baseline specimens drawn, had specimens col-

lected at or near the time of treatment discontinuation.

Twelve of these 13 patients had ≥ 5 high-quality CTC/

7.5 mL WB. In-depth genomic analysis of individual

CTC from these 12 patients is the focus of this report.

3.2. CTC single-cell targeted next-generation

sequencing

The number of available cartridges, recovered CTC,

high-quality CTC, and CTC that were ultimately suc-

cessfully sequenced is provided in Fig. 1B. We attempted

isolation of individual CTC using the DEPArrayTM sys-

tem on 26 archived CellSearch� cartridges from 11

patients with available CTC at both time points and two

patients at discontinuation only. We recovered 375 single

CTC, 342 of which underwent whole-genome amplifica-

tion (WGA) with 133 of those (39%) yielding high-

quality WGA product. These individual CTCs under-

went comprehensive, multiplexed, amplicon-based, tar-

geted DNA scNGS, which was successful in 123 (92.5%)

of them (Fig. 1B,C). Ultimately, we sequenced high-

quality CTC from 12 patients, 11 of whom from both

baseline (screening or cycle 1, day 1 (C1D1)), and later

time point (C1D15 or discontinuation of therapy). One

additional sequenced patient did not have a baseline

blood draw but did have a discontinuation sample that

contained ≥ 5 CTC/7.5 mL WB of high WGA quality.

At the initial enrollment period, CTC were stored in

the CellSearch� cartridges at 4 °C without additives,

but during enrollment, storage of CTC in glycerol at

�20 °C was described [27]. Therefore, overall, CTC

from eight and four of the 12 eligible patients were

stored in CellSearch� cartridges at 4 °C or glycerol at

�20 °C, respectively. A comparison of these two meth-

ods, described in detail in Supplementary Materials

(Fig. S1, Table S2), suggested that storage in glycerol

at 20 °C may be preferable for long-term storage, but

of little added benefit in the short term.

We sequenced the 123 high-quality CTCs from the 12

evaluable patients (mean 10.3, range 1–38 CTC per

patient) to a mean depth of 9839 (IQ range 837–11269,
Table S3) and identified a total of 67 high-confidence,

somatic, putative cancer driver mutations, short insertions/

deletions (indels) and high-level copy number alterations

(CNAs). Of the 12 patients, the four most illustrative cases

are shown in Fig. 2 and the rest in Fig. S2. These genomic

alterations were distributed at a median of five per patient

(range 0–17). Only 30 of the 67 alterations (45%) were

found in multiple cells within a patient (i.e., truncal or sub-

clonal alterations) at a median of three such truncal/sub-

clonal alterations per patient (range 0–8). The rest were

harbored privately by individual CTC.

Strategies to enrich CTC from whole blood that are

based on epithelial cell surface markers, like the one we

used (CellSearch�: EpCAM and Cytokeratins 8, 18 and

19), have been reported by our group and others to also

capture a minority of epithelial cells that harbor no

apparent cancer-driving genomic alterations, and which

could in fact be normal epithelial cells [24]. In line with

these observations, we identified 9/123 cells (7.3%) of

apparent epithelial origin (median 1, range 0–2 per

patient) from six patients in this cohort that harbored

no driver mutations/indels or high-level CNAs assayed

by our comprehensive gene panel (Fig. 2 and Fig. S2).

3.3. ESR1 mutation concordance between CTC

and ctDNA

ESR1 ligand-binding domain (LBD) mutations, com-

monly arising during clinical acquired resistance to
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aromatase inhibitors (AI), confer ligand-independent

ER activity [5]. Importantly, ESR1 LBD mutant

tumors retain partial response to fulvestrant, which

underscores the clinical importance of their detection

and monitoring by liquid biopsy [5,40]. In our prior

publication, ESR1 LBD mutations detected in ctDNA

were reported in the larger set of patients in this phase

I trial [25]. Six of the 12 (50%) patients in the current

study harbored these ctDNA mutations (Fig. 2 and

Fig. S2). (CTC scNGS data from one patient were dis-

carded due to strong indications from her CTC geno-

mic alterations that the cells belonged to a different

patient, which highlights the exquisite ability of NGS

methods to eradicate sample mislabeling issues.) In the

Phase I total treated patients, 
collected for CTC and ctDNA

N = 45

CtDNA baseline 
(Screening/C1D1)

N = 45

CtDNA C1D15/
Dicontinuation

N = 45

CTC baseline 
(Screening/C1D1)

N = 43

CTC baseline 
≥5 CTC/7.5 mL WB

N = 11

CTC C1D15/
Discontinuation

≥5 Hi-Q  CTC 
WB

N = 12

Sampled for CTC 
only at discontinuation

N = 2

A B

DEPArray™ CTCs 
recovered

N = 375

WGA High-quality
CTCs

N = 133

CellSearch® cartridges
N = 26

scNGS High-quality 
CTCs

N = 123

Hi-Q WGA Disc. CTC
≥5 CTC/7.5 mL WB

N = 1

Phase I total enrolled patients 
N = 48

CTC baseline 
≤5 CTC/7.5 mL WB

N = 32

Patient ID:
# Cartridges& :
#CTC recovered& :
#Hi-Q WGA CTC :
#Hi-Q scNGS CTC :

#26
2

61
42
38

#17
3

102*
30
30

#34
2

41
20
20

#20
1

17
7
7

#31
2

13
3
3

#06
3

21
4
4

#35
2

30
10
10

#30
2

16
6
3

#13
2

16
2
2

#27
2

20
3
3

#36
2

10
4
1

#44
2

19
2
2

C

N = 3

Not assigned 
to treatment

WGA’d CTCs
N = 342

CTCs not 
attempted for WGA

N = 33

WGA Low-quality 
CTCs 

N = 209

scNGS Low-quality 
CTCs 

N = 10

/ 7.5 mL

Fig. 1. Consort diagram of AZD9496 phase I study patients and their CTC and ctDNA obtained at each time point. (A) Consort diagram of

patients attempted for CTC and ctDNA collection showing cases with informative analytes for each time point. (B) Flowchart of the total

number of the cartridges and CTCs in each of the categories in panel 1A at each processing step. (C) Details of CTC isolation for each

patient at each processing step, showing numbers of CellSearch� cartridges assayed, DEPArrayTM-recovered cells, high-quality whole-

genome amplified cells, and high-quality scNGS cells. & One cartridge (nine recovered cells) from panel 1B, not included here belongs to a

discontinuation-only patient with no high-quality CTC who was excluded from further study. * 33 of 102 CTCs for patient #17 were not

WGA’d, to minimize unnecessary costs. CTC, circulating tumor cells; ctDNA, circulating tumor DNA; CxDy, Cycle x, Day y; Hi-Q, high

quality; scNGS, single-cell next-generation sequencing; WB, whole blood; WGA, whole-genome amplification.

1974 Molecular Oncology 16 (2022) 1969–1985 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Genomic monitoring of CTC in ER+ metastatic breast cancer A. K. Cani et al.



11 remaining evaluable patients, there was 100% con-

cordance between CTC and ctDNA ESR1 LBD muta-

tion detection (Fig. 3A). Thus, 5/11 patients positive

for ESR1 mutations in ctDNA had CTCs harboring

the same mutation, whereas the six patients without

ESR1 ctDNA mutations were ESR1 mutation-negative

in their CTCs as well. ESR1 mutations were generally

mutually exclusive with MAPK pathway mutations

supporting the two as different ET resistance mecha-

nisms, as has been reported [41]. One of the ctDNA

ESR1 mutation-NEG patients (#36), previously

reported to harbor a p.Y537C mutation in her tumor
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Fig. 2. Integrative heatmap of putative driver genomic alterations detected by CTC scNGS and ctDNA ddPCR. Comprehensive genomic

analysis of individual CTCs in four of the 12 patients. For each patient, total CTC count at each time point is shown. Columns represent

individual CTCs. White boxes indicate adequate coverage and absence of the variant. For mutations/indels (top of each table), colored boxes

indicate mutation presence, with dark and light green representing homo- and heterozygous mutations, respectively. Numbers inside

colored boxes represent the variant read fraction. Gray ‘NC’ boxes indicate no NGS coverage for that position. Mutations private to single

cells are shown only for select cases. For CNAs (bottom of each table), estimated copy number is calculated back from the log2(tumor/

normal copy ratio) value. High-confidence, high-level copy changes (< 0.25 or > 4.0 estimated copies) are shown, with red and blue

representing amplifications and deletions, respectively. Only high-level CNAs present in > 1 CTC are shown. * Cells with suboptimal CNA

data (Patient #26, Baseline cell R13, Discontinuation cell R4). Patient #17 baseline CTC F3’ is from C1D1 whereas the rest from screening.
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tissue [25], was mutation-NEG in her CTC as well, in

agreement with ctDNA. Taken together, these data

support CTCs as sources of genomic cancer biomark-

ers that may have at least equal validity to ctDNA-

derived markers. Our observations also raise interest-

ing questions on the contribution of CTCs vs. the bulk

tumor mass as cells of origin for ctDNA.

3.4. Dynamic changes in ESR1 mutation levels in

CTC and ctDNA over time

We previously reported that 5 of the 6 baseline ESR1

mutation-POS patients had dynamic changes (of

> 50%) in ctDNA ESR1-mutant fraction (of total

plasma cell-free DNA) between baseline and C1D15 of

AZD9496 treatment [25]. Only one of these five patients,

#26, had enough CTCs in both the baseline and discon-

tinuation samples to enable a comparison between

ctDNA and CTC mutant ESR1 levels and their fluctua-

tions over time. This patient, #26, had lobular BC that

harbored a somatic CDH1 p.L220 frameshift deletion

(fsdel) and had been previously treated with fulvestrant

and AIs. The patient had an elevated baseline CTC

count of ~ 3000 CTC/7.5 mL WB and quickly pro-

gressed on the highest study dose (AZD9496 600 mg

BID) to a remarkable CTC count of ~ 11 500 CTC/

7.5 mL WB at her therapy discontinuation 49 days

post-treatment initiation [25] (Fig. 2, Patient #26).

Although we only sequenced a small fraction of this

patient’s large number of CTCs at each time point, her
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Fig. 3. CTC scNGS recapitulates ctDNA findings and elucidates the tumor subclonal evolution. (A) Concordance for the presence of identical

ESR1 LBD mutation between CTC and ctDNA for each of the 11 evaluable patients is shown. Green (+) represents mutation presence in at

least one time point. (B) Comparison of CTC scNGS and ctDNA ddPCR analysis for patient #26. Left, fish plot model of tumor clonal

heterogeneity and evolution between baseline at the start of trial and at trial discontinuation at day +49. This patient did not have a

confirmed response to AZ9496. The most parsimonious clonal parentage assumptions are made for the CDH1 mutation as an early, nearly

truncal event, followed by the arisal of a uniallelic, heterozygous ESR1 hotspot mutation from AI therapy, later undergoing a loss-of-

heterozygosity event to become homozygous. CTC enumeration in cells/7.5 mL whole blood is plotted for each time point in the bar graph.

Right, information obtained from bulk ctDNA ESR1 LBD mutation ddPCR is limited to changes in mutant DNA concentration in copies/mL

plasma, plotted in the bar graph. CTC, circulating tumor cells; ctDNA, circulating tumor DNA; ddPCR, digital droplet polymerase chain

reaction; LBD, ligand-binding domain; scNGS, single-cell next-generation sequencing; WB, whole blood.
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ESR1 p.Y537C-mutant CTC fraction at baseline (14/

18 CTC) and day 49 (16/18 CTC) was fairly constant

(Figs 2 and 3B). Furthermore, this case displayed

inter-CTC heterogeneity of the ESR1 mutation, with a

combination of biallelic and monoallelic mutant as

well as ESR1 wild-type cancer cells present in circula-

tion. Yet, the relative distributions of these three con-

figurations in CTC also remained stable between time

points (3 : 11 : 4 vs. 3 : 13 : 2, respectively), all in the

context of a ~ 4-fold increase in the absolute CTC

count (Fig. 3B). In comparison, her ESR1 p.Y537C-

mutant ctDNA fraction expectedly increased between

C1D1 and day 49, by over 9-fold. These data support

a model of progression in this patient that did not

involve changes/sweeps in the clonal genomic architec-

ture of her cancer. Rather, it appeared to occur

through other potential mechanisms of progression

that increased absolute CTC count (and ctDNA

mutant fraction) in circulation while preserving the

proportions of CTC subclones. Importantly, such

details of this cancer’s molecular makeup would have

been unresolvable by the composite genomic picture

obtained by ctDNA (Fig. 3B).

3.5. Intrapatient, inter-CTC genomic

heterogeneity

Circulating tumor cell genomic profiling through

scNGS enables elucidation of circulating intrapatient,

inter-CTC genomic heterogeneity with great precision

[24]. Similarly to our previous report in another dataset

[24], the patient cohort in this study was characterized

by considerable intrapatient CTC genomic heterogeneity

at baseline. Truncal alterations such as somatic gain-of-

function mutations in PIK3CA (patient #17 and #34)

and c-KIT (#20), or deleterious CDH1 alterations (#26),

served as founder mutational ‘backdrops’ to subclonal

genomic aberrations likely arising after these truncal,

foundational events (Fig. 2). The latter included ESR1

LBD mutations (#26: monoallelic, biallelic or absent

and #20: monoallelic or absent), ATM (#20 mono- and

biallelic), and FGFR2 (#34 monoallelic or absent,

Fig. 2). Unlike founder alterations, subclonal ones dis-

played considerable intrapatient, inter-CTC heterogene-

ity. Interestingly, the genomic pattern observed in

patient #26 CTCs (i.e., a lobular BC with an expected

E-cadherin deleterious LOH mutation, accompanied by

a subclonal, heterogeneous, mono-and biallelic ESR1

LBD mutation, in the context of a one-copy TP53 loss,

Fig. 2) had been previously observed by us in a lobular

BC patient from a different cohort [24].

Intrapatient heterogeneity of CTC genomic land-

scape between early and late time points was also

observed in a few patients. In patient #26 discussed

above, CTC carrying the founder CDH1 indel, but not

the ESR1 mutation, were present at baseline (Fig. 2,

#26, Baseline, CTC#: R10, R11, R17, Fig. 3B). These

ESR1 wild-type cells are likely remnants of a more pri-

mordial tumor state before acquisition of ESR1 muta-

tion due to AI selective pressure at some point during

the patient’s cancer history. Interestingly, however, this

CDH1-mutant ‘primitive’ clone was not present at dis-

continuation, at which time only cells containing both

CDH1 and ESR1 mutations were observed (Fig. 2,

#26 Discontinuation, Fig. 3B). This could conceivably

result from continued positive selection of the ESR1-

mutant subclone over the ‘primitive’ clone.

Likewise, in patient #34, the discontinuation sample

at +169 days showed the presence of one CTC that

did not contain that tumor’s dominant PIK3CA muta-

tion, but instead harbored a hotspot IDH1 mutation

(Fig. 2, #34, Discontinuation, CTC#: E6). This muta-

tion was not identified in any CTC at baseline. How-

ever, this CTC did harbor the FGFR2 mutation seen

in one baseline and two discontinuation CTC, but not

the PIK3CA mutation observed in all five baseline

CTC and in 11 of 13 CTC at progression.

In addition to clonal and subclonal findings, a consid-

erable number of alterations (37 of 67, 55%) were

detected, classified as known cancer drivers, but har-

bored privately by one individual cell each. These

included deleterious mutations in BRCA2 (#17), TSC1

(#26, #35) as well as oncogenic ‘hotspot’ mutations in

genes such as SF3B1 (#34), NRAS (#6), and SMO

(#35) (Fig. 2 and Fig. S2; BRCA2, SF3B1, and some

other private mutations are not shown in figures. They

are listed in Table S4. A list of targeted genes is shown

in Table S1). While it is unlikely that these private geno-

mic events drove the bulk of disease burden at the time

of collection (and it cannot be excluded that a small

fraction of them may potentially be WGA artifacts), it

is conceivable that at least some of them may serve as

stand-by ‘raw material’ for tumor evolution, only to

become dominant drivers if they confer an advantageous

phenotype when exposed to future selective pressures.

3.6. Therapeutic targets identified by CTC

genomic profiling

CtDNA has been successfully employed in cancer pre-

cision medicine. As shown above for ESR1 mutations,

CTC scNGS can faithfully replicate ctDNA sequenc-

ing for precision oncology biomarker detection.

Importantly, it may provide additional clinically rele-

vant information to complement ctDNA findings. To

evaluate the ability to find CTC genomic biomarkers

1977Molecular Oncology 16 (2022) 1969–1985 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A. K. Cani et al. Genomic monitoring of CTC in ER+ metastatic breast cancer



predictive of response to targeted therapies, we analyzed

truncal and subclonal (present in > 1 CTC) putative dri-

ver alterations in this patient cohort. We developed a

novel, CTC liquid biopsy-based platform, MI-CTCseq,

that not only detects actionable alterations, but also

accounts for the clonal identity and clonal predomi-

nance of the alterations as well as their zygosity. Muta-

tions and copy number alterations were first classified

according to four treatment evidence levels, or tiers,

based on commonly used reporting guidelines [30,38]:

Tier 1—FDA-approved treatments for the current indi-

cation; Tier 2—FDA-approved drugs, recommended for

off-label use by practice guidelines in the current or

other cancer indications; Tier 3—investigated in cur-

rently enrolling, targeted intervention clinical trials for

any cancer type; or Tier 4—for which strong preclinical

evidence or biological plausibility exists.

Given the importance of the predominance of an

alteration for predicting the extent of response to tar-

geted therapy within a genomically heterogeneous tumor

[12], we then refined the MI-CTCseq classification sys-

tem by assigning alterations into clonality (CL) subtiers

A, B, and C based on whether they were present in

≥ 80%, 50–80%, or < 50% of CTC, respectively. Lastly,

given CTC’s exquisite ability to unambiguously deter-

mine the homo- vs. heterozygous status of a mutation/

deletion (compared to bulk tissue or ctDNA sequenc-

ing), we enhanced MI-CTCseq by reporting the precise

zygosity of targetable mutations/deletions and losses of

heterozygosity (LOH). This is critical in determining

one-copy vs. total deletion or LOH in actionable tumor

suppressor such as BRCA1, BRCA2, and PALB2, which

are targetable only when inactivated biallelically [42].

The final category assignment for each patient was

based on the alteration with the best evidence level (i.e.,

(a) highest priority tier, (b) highest clonal fraction, and

(c) homozygosity/complete deletion) if more than one

actionable alteration was present.

Eight of 11 evaluable patients (73%) met MI-

CTCseq criteria for harboring at least one potentially

tumor-driving alteration belonging to Tiers 1–3, with

all but one case having > 1 such alterations. These

were present in at least one of nine different altered

genes. No patients had Tier 4 alterations and the

remaining three patients harbored no alterations with

any level of actionability evidence. The two (18%)

patients with Tier 1 alterations belonged to subtiers

CLA and CLB, that is, with the alteration present in

over 50% of cells and thus likely to respond to a con-

siderable extent to the corresponding targeted therapy.

A third patient (9%) had Tier 2-CLA and five others

(45%) had Tier 3 (CLA and B) alterations, one of them

being homozygous (Table 1).

The Tier 1 alterations in both patients (#34 CLA

and #17 CLB) consisted of gain-of-function PIK3CA

mutations for which the targeted inhibitor alpelisib is

FDA-approved in ER-POS, HER2 NEG breast cancer

in conjunction with fulvestrant [43]. Tier 2 alterations

detected were gain-of-function mutations in FGFR2

and c-KIT, the latter being the best evidence-level

mutation in the one Tier 2-CLA patient (#20, Table 1,

Fig. 2, Fig. S2). Drugs targeting these two mutant

proteins, including erdafitinib and imatinib, respec-

tively, have been approved by the FDA for use in can-

cers such as urothelial carcinoma and gastrointestinal

stromal tumors (GIST), respectively. Tier 3 alterations

included amplifications in MYC (#26, #27, #35, all in

subtier B) and CCND1 (#13, subtier A), actively inves-

tigated in clinical trials. Assignment for the three

patients without actionable alterations was potentially

affected by the low numbers of CTC recovered for

each (Patients #31, #36, and #44, Fig. S2, Table 1).

Taken together, these data support examination of

the CTC genomic landscape as a non-invasive source

of actionable biomarkers for precision guided treat-

ment in patients with elevated CTC, similarly to

ctDNA. Importantly however, our novel MI-CTCseq

platform, can define the precise CTC subclonal com-

position in each patient allowing prediction of the sub-

clone likely to respond to the matched therapy and

tracking of its clinically relevant fluctuations. Further-

more, we show that our platform can rank actionable

alterations based on their subclonal dominance to

potentially predict the extent of response. Mutation

variant fraction in ctDNA instead is dependent on

the tumor burden, tumor DNA shedding ability, con-

tent of normal DNA in plasma, etc. Moreover, our

CTC-based system can unambiguously determine the

alteration zygosity, important in actionable tumor sup-

pressors, which cannot be reliably accomplished by

ctDNA. Lastly, although not examined here, CTCs

can provide phenotypic information important for

immunotherapy and other biomarkers. Overall, these

data support the continued exploration of CTC liquid

biopsy-guided precision/immuno-oncology to comple-

ment ctDNA and tissue analysis.

4. Discussion

In this study, we profiled individual CTC genomes

prior to therapy initiation and at different therapy

time points in 12 patients enrolled in a prospective

phase I clinical trial investigating oral SERD

AZD9496. We obtained high-quality genomic informa-

tion from 123 CTC, detecting 67 putative driver muta-

tions, indels, and high-level copy number alterations,
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Table 1. Targetable alterations identified in CTC via the MI-CTCseq platform. CL, clonality; CTC, circulating tumor cells; MBC, metastatic

breast cancer.

Tier of Evidence Level Description

1 FDA-approved in MBC

2  Recommended off-label use by practice guidelines for
drugs inFDA-approved  MBC or  other cancer indications

3 Currently-recruiting$ clinical trials investigating a therapy
targeted to the alteration or immediate pathway

4 Strong biological plausibility and preclinical evidence

Patient ID Alteration# Tier Description Drug Trial ID

34 PIK3CA p.H1047R 1-CLA FDA-approved in aBC Alpelisib

17 PIK3CA p.H1047R 1-CLB FDA-approved in aBC Alpelisib

20 KIT p.V530I 2-CLA FDA-approved, off-label Imatinib

26 MYC amplification 3-CLB Clinical Trial M6620 (VX-970) NCT03718091: M6620 (VX-970) in Selected Solid
Tumors

35 MYC amplification 3-CLB Clinical Trial M6620 (VX-970) NCT03718091: M6620 (VX-970) in Selected Solid
Tumors

06 ESR1 p.Y537N 3-CLB Clinical Trial Lasofoxifene
NCT03781063: Evaluation of Lasofoxifene Versus
Fulvestrant in Advanced or Metastatic ER+/HER2-

Breast Cancer With an ESR1 Mutation

13 CCND1 amplification 3-CLA Clinical Trial Palbociclib
NCT02465060: Targeted TherapyDirected by

Genetic Testing in Treating Patients With Advanced
RefractorySolid Tumors, Lymphomas, or Multiple

Myeloma (The MATCH Screening Trial)

27 MYC amplification 3-CLB Clinical Trial M6620 (VX-970) NCT03718091: M6620 (VX-970) in Selected Solid
Tumors

31 None

36 None

44 None

ActionabilityEvidence of

# One representative alteration from the best evidence-level tier is shown if multiple actionable targets are present. If multiple from the best possible tier are
present in a patient, examples different from those in other patients are chosen to illustrate a variety of alternatives. $ At the time of reporting

1

2

3

4

None

Tier
Subtier

CLA

CLC

CLB

Clonality

  80%>

  50-80%

  <50%

Zygosity
=  Homozygous/

LOH/complete deletion
*

*
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45% of which were present in > 1 CTC within individ-

ual patients. CTC data were perfectly concordant with

concurrent ctDNA ddPCR for ESR1 LBD mutations.

We also analyzed CTC’s ability to enable precision

medicine genomic biomarker detection whereby 73%

of patients harbored approved or investigational tar-

getable alterations. The therapeutically predictive abil-

ity of a genomic biomarker is related to the clonal

dominance of that alteration in the context of a genom-

ically heterogeneous tumor [12,44]. Herein, we propose

a novel CTC-based individualized, precision oncology

platform, MI-CTCseq that factors in the clonal domi-

nance of a targetable genomic event in the circulation

exploiting the exquisite ability of CTC to precisely

define the tumor clonal architecture. Further, our sys-

tem incorporates unambiguous identification of alter-

ation zygosity, a feature with important precision

medicine implications. This is especially imperative in

determining one-copy vs. total deletion or LOH of

actionable tumor suppressors such as BRCA1, BRCA2,

PALB2, and others for which biallelic inactivation

would make them eligible for targeted therapy [42].

In this cohort, we again observed considerable intra-

patient, inter-CTC genomic heterogeneity at baseline

that in some instances became more complex at later

time points. We posit that ctDNA, or even scNGS of

a localized tissue biopsy would likely be unable to

resolve the details of a complex, rapidly evolving dis-

ease like cancer. Bulk sequencing approaches such as

tissue biopsy and ctDNA have a partial (and often

low) tumor content. Thus, unlike CTC, they provide

only a composite picture of tumor genomic landscape

[45] with often ambiguous determination of subclonal-

ity and zygosity. This can over-rely on rather convo-

luted analyses of variant read frequencies observed

within a tumor-normal mixture [46]. Our flexible

method profiles individual CTCs, but also allows for

pooling of multiple CTC into a single sample if simple

knowledge of the combined genomic alterations in cir-

culation is needed [24,47]. Furthermore, although not

investigated here, CTC genomic profiling, with its per-

fect tumor content, is particularly suited to the non-

invasive determination of tumor mutation burden

(TMB) and microsatellite instability (MSI), two

approved checkpoint inhibitor immunotherapy predic-

tive biomarkers [48,49], with potentially higher accu-

racy than currently reported by ctDNA, especially for

low tumor content samples [10,11,50].

Multiregion sequencing of tumor tissue has con-

firmed the long-postulated intratumor genomic hetero-

geneity [51,52]. Previous work from other investigators

and our group has also revealed this heterogeneity

being reflected in CTC [13,24,53–56]. We and others

have reported that the CTC genomic landscape is gen-

erally, but not perfectly concordant to that of matched

tissue samples [24,53,54,57]. CTC ESR1 mutational

heterogeneity [56] and CTC genomic relationship to

metastatic and primary tissue [53,54] have been docu-

mented primarily in breast and prostate cancer. In gen-

eral, intratumor heterogeneity is commonly recognized

as fueling tumor evolution resulting in therapy resis-

tance and ultimately death [12,44,58–60]. Indeed, the

recognition of cancer heterogeneity was the basis for

introduction of combination therapies, which resulted

in the first cures and prolongation of survival in human

cancers [61]. Assaying that heterogeneity and detecting

predictive genomic biomarkers in a non-invasive, longi-

tudinal, high-precision method as with CTC scNGS,

will potentially allow the clinician to ‘keep-up’ with a

changing disease and adjust precision treatment accord-

ingly to extend survival. For example, the investigation

of combination precision therapy, as is currently being

investigated in the NCI-ComboMATCH/EAY191 trial

being conducted in North America, represents one first

step toward that future paradigm.

Our study has some important limitations. First, our

limited patient size (n = 12) precludes the discovery of

generalizing principles of MBC CTC genomics. Addi-

tionally, our time points were relatively closely spaced

to fully capture long-term disease evolution. Addi-

tional studies in larger ER POS prospective cohorts

with more informative time points remain a focus of

our current work. Further, CTC scNGS, with multiple

sequenced samples required per patient, is substantially

costlier compared to one ctDNA or tissue sample,

even though the sequencing depth required per cell can

be lower, especially compared to ctDNA.

Another important limitation lies in the fact that

CTC capture from ~ 7.5 mL WB can be a low sensi-

tivity approach compared to ctDNA, since only 54%

of MBC patients have ≥ 5 CTC/7.5 mL WB [62,63].

Thus, analyses do not include all patients and can be

skewed toward nonresponding, progressing cases with

abundant CTC. This concern is further compounded

by rejection of some CTC by WGA and scNGS qual-

ity filters [64,65]. The ability to delineate tumor hetero-

geneity and subclonal makeup is especially limited in

patients with low CTC counts making collection and

processing of additional 7.5-mL blood tubes necessary.

To address these limitations, we have also recently

reported on a mini-cytopheresis device linked to a

short-term, in-dwelling, intravascular, dual-dual lumen

catheter system that permits interrogation of larger

blood volumes over longer time periods [66], much as

a Holter monitor improves analysis of cardiac arrhyth-

mias over a simple electrocardiogram. Such a system
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should greatly increase CTC capture in each patient

and expand the proportion of CTC-positive patients as

has been reported using apheresis-based methods

[54,67,68]. It is worth mentioning that ctDNA liquid

biopsy also has imperfect sensitivity, with many

patients having low ctDNA content (e.g., 43% of

advanced non-small cell lung cancer has < 2% ctDNA

tumor content [69]). And obviously, detection of intra-

patient heterogeneity in ctDNA as a bulk sample of

total tumor DNA in circulation is quite challenging

even with high tumor content. Tissue samples for that

matter, also have imperfect sensitivity for precision

oncology purposes and represent only one area of one

lesion. We thus envision CTC sequencing as a method

with additional features and specific advantages that

could complement ctDNA and tissue in many patients.

Other limitations of our approach include use of

restriction digestion-based WGA [28,29], which causes

loss of a portion of sequencing panel coverage

breadth, an imprecise variant fraction for heterozygous

mutations, and imprecise determination of low-level

copy gains/losses in individual cells.

5. Conclusion

Comprehensive individual CTC genomic analysis of

fresh or archived cells is a feasible way to assess tumor

heterogeneity, detect existing and novel features of

actionable precision oncology biomarkers, and resolve

complex tumor genomic evolution non-invasively, lon-

gitudinally and with great clarity. This may represent

a useful approach that complements ctDNA-based liq-

uid biopsy for elucidating tumor biology and impact-

ing clinical decision making.
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