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Abstract: Dodder (Cuscuta spp.) is a parasitic weed damaging many plants and agricultural
production. The native obligate parasite Cuscuta japonica Choisy (Japanese dodder) parasitizes
Dimocarpus longans Lour., Ficus septica Burm. F., Ficus microcarpa L.f., Mikania micrantha H.B.K. and
Melia azedarach Linn, respectively. Five Japanese dodders growing on different plants exhibit slightly
different metabolites and amounts which present different pharmacological effects. Among these
plants, a significant antiviral activity against influenza A virus (IAV) was found in Japanese dodder
parasitizing on D. longans Lour. (CL). To further explore methanol extract components in Japanese
dodder (CL), four undescribed aromatic glycosides, cuscutasides A–D (compounds 1–4) were isolated,
together with twenty-six known compounds 5–30. The chemical structures of 1–4 were elucidated
using a combination of spectroscopic techniques. The eighteen isolated compounds were evaluated
for antiviral activity against IAV activity. Among them, 1-monopalmitin (29) displayed potent activity
against influenza A virus (A/WSN/1933(H1N1)) with EC50 2.28 ± 0.04 µM and without noteworthy
cytotoxicity in MDCK cells. The interrupt step of 29 on the IAV life cycle was determined. These data
provide invaluable information for new applications for this otherwise harmful weed.

Keywords: Cuscuta japonica Choisy; Dimocarpus longans Lour.; parasitic plant; influenza A virus
(IAV); cuscutasides
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1. Introduction

Influenza A virus (IAV) is a highly contagious, epidemic etiology respiratory illness that has
affected 3–5 million population annually worldwide with high mortality and morbidity [1]. This
virus has developed multiple strategies to evade host immune defenses including continuous genetic
changes through mutation and re-assortment [2]. The influenza viral life-cycle is well known. The viral
ion channel protein M2 and viral releasing neuraminidase are the clinical therapeutic targets present
time. However, most currently circulating IAV’s are resistant to M2 inhibitors, neuraminidase inhibitors
are the only class of recommended anti-IAV treatments to date [3]. It is still unmet for anti-IAV agents.
Plants have long been thought a potential source of anti-viral drugs. With the development of new
influenza strains resistant to current commercially antiviral drugs, a wider range of influenza antiviral
compounds is needed [4].

Cuscuta japonica Choisy (Japanese dodder) is a unique kind of holoparastic vine from the
Convolvulaceae family. Dodder is completely dependent on the host plant for nourishment to survive,
so its phytochemical constituents depend on the type of host [5]. When Cuscuta sp. parasitizes a
medicinal plant such as Taxus brevifolia and grows thereon and can produce secondary metabolites lead
to a pharmaceutical component (camptothecin) [6]. Dodder is a parasitic weed and spreads rapidly,
afflicting many commercial crops, ornamentals and native plants by virtually decimating or killing
them [7]. Herbicides are able to control the parasitic weed and are surely phytotoxic to the host plants.
There are thus advantages in utilizing this harmful weed as a source of valuable products, including
increased effective management and reduced negative impacts on the environment.

Cuscuta is a genus of about 170 species of threadlike, yellowish, orange or reddish parasitic
plants distributed mainly in North and South America. A few species are found in Asia and Europe.
The C. chinensis Lam., C. japonica Choisy, and Cuscutae Semen seeds are a well-known traditional
medicinal material, commonly used for improving sexual function, tonifying the livers and kidneys,
reducing urination, treating aches and weakness in the loins and knees, and treating pharyngitis [8].
Investigation into the phytochemistry of Cuscuta spp. seeds has so far led to the isolation of many
compounds, consisting of flavonoids, alkaloids, steroids, fatty acids, lignans [7], aromatics [9], resin
glycosides [10] and polysaccharides [7]. These compounds exhibit a range of pharmacological
effects such as hepatoprotective, anti-osteoporotic, immune regulation, neuroprotection, antioxidative,
anti-aging, cytotoxic, renoprotective, reproductive system, prevention of abortion, antimutagenic
effect, antidiabetic, cardioprotective, antidepressant, and anti-inflammatory activities [7]. However,
the parasitic plant C. japonica growing onto a plethora of different plants has only been the subject of
rare studies concerning host-parasite relationships and phytochemical constituents. In this work we
analyzed the chemical fingerprint in five Japanese dodders (C. japonica) parasitizing on different plants
using HPLC, thus evidencing slight differences.

In the course of screening for anti-virus (H1N1) substances from five Japanese dodders parasitizing
different plants (Dimocarpus longans Lour., Ficus septica Burm. F., Ficus microcarpa L. f., Mikania micrantha
H. B. K. and Melia azedarach Linn., respectively), Japanese dodder parasitizing on D. longans Lour. (CL)
exhibited significantly suppressed anti-virus activation. Japanese dodder (CL) was not previously
studied from a phytochemical viewpoint. During research efforts to discover bioactive compounds
from the methanol extract of the whole plant Japanese dodder (CL), four previously undescribed
aromatic glycosides 1–4 and four known aromatic glycosides 5–8, two caffeoylquinic acid derivatives
9–10, five lignans 11–15, four tropane alkaloids 16–19, two indole alkaloids 20–21, five flavanoids 22–26,
two aromatic compounds 27–28, and two fatty acids 29–30 were obtained. Eighteen of the isolated
compounds were subjected to anti-IAV activity assays and the effective compound that interrupted the
IAV life cycle was determined.
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2. Results

The chemical constituent patterns of five Japanese dodder parasitizing on different plants,
D. longans Lour. (CL), F. septica Burm. F. (CF), F. microcarpa L. f. (CFM), M. micrantha H. B. K. (CM)
and M. azedarach Linn. (CMA), respectively, detected by HPLC-DAD analyses were slightly different
(Figure 1). The MeOH extract (100 µg/mL) of Japanese dodder parasitizing on D. longans Lour. (CL)
showed anti-IAV activity with no cytotoxicity in Madin-Darby canine kidney (MDCK) cells (Figure 2a).
Among them, the most active extract from Japanese dodder (CL) was further subjected to solvent
partitioning and three layers were obtained, including ethyl acetate (CLE), n-butanol (CLB), and water
layers (CLW). The CLE further showed stronger anti-IAV activity at 50 µg/mL without cytotoxicity
against MDCK cells at 100 µg/mL (Figure 2b). To understand the source of the active compound in
the CLE extract, we were isolated by employing diaion HP-20, Sephardex LH-20, silica gel, and C18

column chromatography and further purified by RP-HPLC to obtain 30 compounds, including four
new compounds 1–4 (Figure 3) and twenty-six known compounds.
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Figure 1. HPLC-DAD chromatogram of five Japanese dodder parasitizing on different plants, D. longans
Lour. (CD), F. septica Burm. f. (CF), F. microcarpa L. f. (CFM), M. micrantha H. B. K. (CM), and M. azedarach
Linn (CMA), respectively. Wavelengths: 254 nm (a) and 280 (b) nm.

2.1. Structural Elucidation of New Compounds

Compound 1 was isolated as a white amorphous solid. Its molecular formula was deduced to
be C21H22O10 from the analysis of its 13C-NMR spectrum and the HRESIMS molecular ion peak at
m/z 433.1123 [M − H]−, calculated for 433.1129), corresponding to 11 degrees of unsaturation. The UV
absorption maxima at λmax of 207 and 309 nm implied the presence of a conjugated chromophore,
while the IR spectrum exhibited absorption bands due to a hydroxyl (3361 cm−1), a conjugated carbonyl
(1693 cm−1), and an 1,4-disubtituent aromatic ring (1604, 1514 and 831 cm−1). The 1H-NMR spectrum
of 1 (Table 1) displayed downfield signals of 1,4-disubstitued aromatic protons at δH 7.56 (2H, d,
J = 8.5 Hz, H-2′′/6′′) and 6.79 (2H, d, J = 8.5 Hz, H-3′′/5′′), and a pair of trans olefinic protons at
δH 7.60 (1H, d, J = 16.0 Hz, H-7′′) and 6.37 (1H, d, J = 16.0 Hz, H-8′′) for the trans p-coumaroyl
moiety, along with an anomeric proton at δH 5.05 (1H, d, J = 7.5 Hz, H-1) which resonances with
one di-oxygenated carbon at δC 100.9 for a sugar moiety. The 13C-NMR (Table 2) and DEPT spectra
of 1 showed the obvious resonances for 10 carbons, which were resolved as four aromatic methine
C-2′′/C-6′′ (δC 131.5 × 2) and C-3′′/C-5′′ (δC 116.9 × 2), two aromatic quaternary C-1′′ (δC 127.3) and
C-4′′ (δC 161.5), two olefinic methine C-7′′ (δC 147.1) and C-8′′ (δC 114.9), one unsaturated carbonyl
carbon C-9′′ (δC 169.1), and one anomeric carbon C-1 (δC 100.9). These data suggested that 1 is a
glycoside derivative with a para-coumaroyl moiety [11]. The correlation between H-1 to H-6 [δH 5.05
(H-1), 3.46 (H-2), 3.48 (H-3), 3.37 (H-4), 3.77 (H-5), 4.23 and 4.55 (H2-6)] showed a coupling network



Molecules 2020, 25, 4427 4 of 14

in the 1H-1H COSY spectrum, which proved the presence of the sugar unit to be a glucospyranoside
(Figure 4). The β-configuration of glucopyranose was determined through NOESY correlations and
coupling constant [12]. HMBC correlations between the H-6 and carbonyl carbon (δC 169.1, C-9′′)
indicated the presence of p-coumaroyl moiety at glucose methylene signal (δC 64.7, C-6). Apart from
the above observation, further 13C-NMR spectrum analysis revealed the other signals for a carbonyl
(δC 171.4), two quaternary carbons (δC 167.5 and 164.9), two olefinics (δC 101.6 and 92.0), and a methyl
group (δC 19.8) carbons for this moiety. The additional signals were deduced from the resonances at
δH 6.09 (1H, d, J = 1.0 Hz, H-3′), 5.72 (1H, d, J = 1.0 Hz, H-2′) and 2.20 (3H, s, H3-5′), which were
supported by corresponding signals at δC 101.6 (C-3′), 92.0 (C-2′) and 19.8 (C-5′) in the HSQC spectrum.
Combined with HMBC correlations, the moiety was established as 5-methyl-2-furoyl. The position
of this 5-methyl-2-furoyl unit was assigned unambiguously as C-1 by HMBC correlation between
the anomeric proton (δH 5.05, H-1) to the carbonyl (δC 171.4, C-6′) (Figure 4). Hence the structure of
1 was established as 6-O-(E)-p-coumaroyl-1-β-O-(5-methyl-2-furoyl)-β-d-glycopyranoside, and the
compound was given the trivial name cuscutaside A.
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Figure 2. Anti-IAV activity of the extracts, fractions, and isolated compounds using the viral plaque
reduction assay on MDCK cells with A/WSN/33 (H1N1) virus. (a) The anti-IAV activity of the CL, CF,
CFM, CM, and CMA extracts. Cell viability was shown in upper panel and plaque forming reducing
was shown in bottom panel. (b) The anti-IAV activity of the EtOAc (CLE), BuOH (CLB), and H2O (CLW)
layers from CL extract. Cell viability was shown in the upper panel and plaque forming reducing is
shown in the bottom panel. The data are presented as mean ± SD of three independent experiments
and were normalized to the data of solvent control (* p < 0.05, ** p < 0.01 and *** p < 0.001).
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Figure 3. Chemical structures of compounds 1–4.

Table 1. 1H-NMR (500 MHz) spectroscopic data for 1–4 in CD3OD.

Position
1 2 3 4

δH, J in Hz

1 5.05 (d, 7.5) 5.05 (d, 7.5) 5.34 (d, 8.0) 5.25 (d, 8.0)
2 3.46 (dd, 9.0, 7.5) 3.48 (dd, 8.5, 7.5) 5.07 (dd, 9.0, 8.0) 5.03 (dd, 9.0, 8.0)
3 3.48 (t, 9.0) 3.50 (t, 8.5) 3.71 (t, 9.0) 3.64 (t, 9.0)
4 3.37 (t, 9.0) 3.39 (t, 8.5) 3.51 (br d, 9.0) 3.47 (t, 9.0)
5 3.77 (ddd, 9.0, 7.5, 2.0) 3.78 (ddd, 8.5, 7.5, 2.0) 3.57 (m) a 3.53 (m) a

6 4.23 (dd, 12.0, 7.5)
4.55 (dd, 12.0, 2.0)

4.25 (dd, 12.0, 7.5)
4.57 (dd, 12.0, 2.0)

3.74 (dd, 12.0, 5.5)
3.96 (dd, 12.0, 2.0)

3.71 (dd, 12.0, 5.0)
3.90 (br d, 12.0)

2′ 5.72 (d, 1.0) 5.74 (d, 2.0) 5.68 (d, 2.0) 5.66 (br s)
3′ 6.09 (d, 1.0) 6.08 (d, 2.0) 5.98 (br s) 5.95 (br s)
4′ - - - -
5′ 2.20 (s) 2.15 (s) 2.16 (s) 2.18 (s)
2′′ 7.56 (d, 8.5) 7.24 (d, 2.0) 7.43 (d, 8.5) 7.63 (d, 8.5)
3′′ 6.79 (d, 8.5) - 6.79 (d, 8.5) 6.73 (d, 8.5)
4′′ - - -
5′′ 6.79 (d, 8.5) 6.81 (d, 8.5) 6.79 (d, 8.5) 6.73 (d, 8.5)
6′′ 7.56 (d, 8.5) 7.09 (dd, 8.5, 2.0) 7.43 (d, 8.5) 7.73 (d, 8.5)
7′′ 7.60 (d, 16.0) 7.62 (d, 16.0) 7.67 (d, 16.0) 6.90 (d, 12.5)
8′′ 6.37 (d, 16.0) 6.42 (d, 16.0) 6.36 (d, 16.0) 5.80 (d, 12.5)

OCH3 - 3.92 s - -
a Overlapped signals are reported without designating multiplicity.
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Table 2. 13C-NMR (125 MHz) spectroscopic data for 1–4 in CD3OD.

Position
1 2 3 4

δc

1 100.9 100.8 98.9 98.9
2 74.5 74.4 74.4 74.4
3 77.8 77.8 75.9 76.0
4 71.7 71.7 71.1 71.2
5 76.4 76.1 78.9 78.9
6 64.7 64.7 62.2 62.2
1′ 167.5 167.3 167.3 167.3
2′ 92.0 92.1 91.9 91.9
3′ 101.6 101.6 101.4 101.4
4′ 164.9 164.8 165.1 165.1
5′ 19.8 19.9 19.8 19.8
6′ 171.4 171.3 171.0 171.5
1′′ 127.3 127.7 127.1 131.4
2′′ 131.5 111.9 131.4 133.8
3′′ 116.9 149.6 117.0 116.2
4′′ 161.5 151.0 161.5 162.3
5′′ 116.9 116.6 117.0 116.2
6′′ 131.5 124.6 131.4 133.8
7′′ 147.1 147.4 147.5 147.5
8′′ 114.9 115.1 114.7 115.9
9′′ 169.1 169.1 168.2 168.2

OCH3 - 56.7 - -
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Compound 2 was obtained as a white amorphous powder. The molecular formula C22H24O11

was determined based on the HRESIMS ion at m/z 503.0947 [M + K]+ (calculated for 503.0950), which
showed 11 indices of unsaturation. The IR spectrum exhibited characteristic absorptions for a hydroxyl
(3416 cm−1), a conjugated carbonyl (1692 cm−1), and an aromatic ring (1605 and 1514 cm−1). Inspection
of 1H- and 13C-NMR data of compound 2 (Tables 1 and 2) indicated similar NMR features to those of 1
except that it differed in the benzoate substitution patterns and the presence of one additional methoxy
group (δH 3.92/δC 56.7). In the 1H-NMR data revealed the ABX protons of a 1,3,4-trisubstituted aromatic
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ring at δH 7.24 (1H, d, J = 2.0 Hz, H-2′′), 7.09 (1H, dd, J = 8.5, 2.0 Hz, H-6′′), and 6.81 (1H, d, J = 8.5 Hz,
H-5′′) which in combination with the 13C-NMR data suggested the appeared as a feruloyl group. The
methoxy group (δH 3.92) attached at C-3′′′ of feruloyl group were confirmed by its NOESY correlation
with H-2′′′ (δH 7.24, d, J = 2.0 Hz) and its HMBC correlation with C-3′′′ (δC 149.6). The full chemical
structure of 2 was further confirmed by 1H-1H COSY, HSQC, and HMBC correlations (Figure 4). Thus,
the structure of 2 was determined as 6-O-feruloyl-1-O-(5-methyl-2-furoyl)-1-β-d-glycopyranoside and
it was named cuscutaside B.

Compound 3 was obtained as a white amorphous powder and [α]25
D + 15.3 (c 0.1, MeOH). The

molecular formula, C21H22O10, was deduced from HRESIMS (m/z 457.1105 [M + Na]+, calculated
457.1105). The UV spectrum showed absorption maxima at λmax of 205 and 312 nm. The IR absorptions
at 1602, 1514, and 831 cm−1 indicated an 1,4-disubstited aromatic system. The IR and UV spectra
similarity of 3 with those of 1 suggested that they have a similar p-coumaroyl glycoside. Detailed
analysis of the 1H- and 13C-NMR spectra (Tables 1 and 2) of 3 with those of 1 indicated that most of the
resonances in 3 were the same as those of 1. The significant difference between 1 and 3 was that the
trans-p-coumaroyl moiety linked to C-6 of glucose in 1 and connected to C-2 of glucose in 3, which
could be inferred from the γ-effect. The position of the p-coumaroyl moiety of 3 was compared with
that of 1, which showed upfield shifts of C-1 (δC 98.9) by 2.0 ppm, of C-3 (δC 75.9) by 1.9 ppm and
of C-6 (δC 62.2) due to γ-effect by 2.5 ppm and a downfield shift of C-5 (δC 78.9) by 2.5 ppm without
γ-effect and of H-2 (δH 5.07) by 1.61 ppm according to –OH substituent change to ester function. This
was further confirmed thought the observation of a HMBC correlation from δH 5.07 (H-2) to a carbonyl
carbon at δC 168.2 (C-9′′) and from δH 6.36 (H-8′′) to a carbonyl carbon at δC 168.2 (C-9′′), in addition
to the consequence of 1H-1H COSY correlation fragment (Figure 4) of δH 5.34 (H-1)/5.07 (H-2)/3.71
(H-3)/3.51 (H-4)/3.57 (H-5)/3.74, 3.96 (H2-6). The chemical shift and J values (J = 8.0 Hz) of its anomeric
proton indicated the β-configuration of glucose. The previously observed a further HMBC correlation
of H-1 to C-6′ positioned the remaining 5-methyl-2-furoyl ester at C-1. Accordingly, the structure of 3
was determined to be 2-O-(E)-p-coumaryl-1-O-(5-methyl-2-furoyl)-1-β-d-glycopyranoside and named
cuscutaside C.

Compound 4 was purified as a white amorphous powder and its molecular formula of C21H22O10

was determined on the basis of HRESIMS at m/z 433.1113 ([M − H]−, calculated 433.1129). The
spectroscopic data of 4 was very similar to and shared many features with 3. Comparison of the
NMR data (Tables 1 and 2) for 3 and 4 readily identified 4 as having the same a 5-methyl-2-furoyl unit
substituted at C-1 and a p-coumaroyl moiety attached to C-2′ of a glycopyranosyl moiety. However,
obviously different signals were noted in the 1H-NMR chemical shift for δH 6.90 (d, J = 12.5 Hz,
H-7′′) and δH 5.80 (d, J = 12.5 Hz, H-8′′) of 4 compared to 3. The geometry of double bonds was
determined to be cis by the magnitude of the coupling constant JH-7′′/8′′ (12.5 Hz). In the HMBC
spectrum, δH 5.03 (H-2), 6.90 (H-7′′), and 5.80 (H-8′′) exhibited interactions with δC 168.2 (C-9′′). The
relative configuration of glucosyl moiety was also determined through both NOESY correlations and
coupling constants. The magnitude of the coupling constants for H-1 (J = 8.0 Hz) was also constructive
of axial-axial couplings and established a β-d-glucose moiety. Thus, compound 4 was deduced as
2-O-(Z)-p-coumaryl-1-O-(5-methyl-2-furoyl)-1-β-d-glycopyranoside and named cuscutaside D.

Twenty-six known metabolites were isolated and identified as four aromatic glycosides, 6-O-p-
coumaroyl-glucopyranose (5), 6′-O-cinnamoyl-glucopyranose (6) [13], 6′-O-(E)-p-coumaroyl-2-O-β-
d-glucopyranosyl-α-d-glucopyranoside (7) [14], and 4-(E)-p-coumaroyl-glucopyranose (8) [15], two
caffeoylquinic acid derivatives, 3,5-dicaffeoylquinic acid (9) [16], and methyl 3,5-dicaffeoylquinate
(10), five lignans, clemaphenol A (11) [17], (+)-pinoresinol (12), (+)-syringaresinol (13) [18],
bombasinol A (14) [19], and (+)-epipinoresinol (15) [20], four tropane alkaloids, p-coumaroyltyramine
(16) [21], N-trans-feruloytyramine (17) [22], N-(p-cis-coumaroyl)tyramine (18) [23], and N-cis-
feruloyltyramine (19) [24], two indole alkaloids, indole-3-carboxaldehyde (20) [25], and indole-3-
carboxylic acid (21) [26], five flavonoids, querectin (22) [27], querectin-3-O-glucopyranoside (23) [28],
quercetin-3-O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (24), 4′-O-methylquercetin-3-O-β-d-



Molecules 2020, 25, 4427 8 of 14

glucopyranoside (25) [29], and 3,5,7,3′-tetrahydroxy-4′-methoxyisoflavanone (26) [30], two aromatic
compounds, trans-4-hydroxycinnamic acid (27) [31], and methyl 3,4-dihydroxycinnamate (28) [32], two
fatty acids, 1-monopalmitin (29) and 1-α-linolenoylglycerol (30) [33] by comparing their physical and
spectroscopic data with those reported in the literature. These compounds were obtained from this
plant for the first time. The phytochemical composition of the 16 marker compounds from the whole
plant Japanese dodder parasitizing on D. longans Lour. (CL) was investigated by HPLC (Figure 5).
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2.2. Antiviral Activity against Influenza A Virus (IVA)

Some of the isolated compounds (1–4, 9, 10, 13, 15–17, 19, 21, 22, and 26–30) were further evaluated
for their antiviral activity against IAV (A/WSN/1933(H1N1)) (Figure 6). The results indicated that
fatty acids 29 and 30 possessed high antiviral activities against IAV. The most effective compound 29
were further evaluated the different stages of viral infection by plaque reduction assay (Figure 7a).
Compound 29 was found to effectively inhibit the entry step of IAV into cells (Figure 7b). The values
of EC50 is 2.28 ± 0.04 µM and EC90 value is 4.77 ± 0.17 µM (Figure 7c).Molecules 2020, 25, x 9 of 14 
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with 29 at the concentration of EC90 at the indicated time according to the different strategy presented 
above. (c) Anti-IAV activities of different concentration of 29. DMSO was used as a solvent control. 
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Figure 6. Anti-IAV activity of isolated compounds from the CLE layer. Cell viability is shown in the
upper panel and plaque forming reducing shown in the bottom panel. DMSO was used as a solvent
control and betulinic acid was used as a positive control. The data are presented as mean ± SD of
three independent experiments and were normalized to the data of solvent control (** p < 0.01, and
*** p < 0.001).
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Figure 7. Anti-IAV assay of 1-monopalmitin (29). (a) Schematic representation of the strategies used to
test the anti-IAV activity. (b) MDCK cells were infected with IAV (A/WSN/1933(H1N1)) and treated
with 29 at the concentration of EC90 at the indicated time according to the different strategy presented
above. (c) Anti-IAV activities of different concentration of 29. DMSO was used as a solvent control.
The data are presented as mean ± SD of three independent experiments and were normalized to the
solvent control data (*** p < 0.001).

3. Discussion

Comparative profiling of metabolites by HPLC-DAD in five Japanese dodders after attachment to
different hosts revealed several metabolic changes and amounts. Japanese dodders parasitizing on
different plants exhibited distinct anti-virus activation depending on the host. The investigation of
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Japanese dodder parasitizing on D. longans Lour. (CL) and its EtOAc fractions (CLE) showed it can
effectively inhibits IAV. In this work, four new compounds 1–4 and twenty-six known compounds 5–30
were isolated from Japanese dodder (CL). It is interesting to note that 1-monopalmitin (29), a simple
glycerol esterified fatty acid which has a role as a plant metabolite, was found to be one of anti-IAV
(A/WSN/1933(H1N1)) substances from the whole plant Japanese dodder (CL). Moreover, the two fatty
acids 1-monopalmitin (29) and 1-α-linolenoylglycerol (30) were more potent than betulinic acid which
was used as a positive control. The fully saturated (C19:0) fatty acid, 1-monopalmitin (29) showed
higher antiviral activities against IAV than the unsaturated (C21:3) fatty acid 30. The current results
suggest that fully saturated fatty acids play a crucial role in the anti-influenza virus activity that
was observed.

4. Materials and Methods

4.1. General

1D- and 2D-NMR spectra were recorded using a Bruker DRX-500 spectrometer (Bruker Instruments,
Karlsruhe, Germany) with CD3OD as the solvent. Infrared (IR) spectra, optical rotations, and UV
spectra were measured using a JASCO FT/IR-480 plus spectrometer, a JASCO P-1020 polarimeter
and a JASCO V-550 UV/Vis spectrometer, respectively (JASCO International Co. Ltd., Tokyo, Japan).
HRESIMS data were obtained using a maXis impact Q-TOF mass spectrometer (Bruker Daltonik,
Bremen, Germany). Sephadex LH-20 (GE healthcare, Chicago, IL, USA), Diaion HP-20 (Mitsubishi
Chemical Corporation, Kyoto, Japan) and silica gel (Merck 70–230 mesh and 230–400 mesh) (Merck
& Co. Inc. Darmstadt, Germany) were used for the column chromatography. The analysis HPLC
was performed on a Shimadzu LC-20AT series apparatus (Shimadzu Co., Kyoto, Japan) with a
prominence SPD-M20A diode array detector, a SIL-20A prominence Auto sampler, and a CTO-20A
prominence column oven, using a reverse phase column (Cosmosil 5C18-AR-II column, 5 µm particle
size, 250 mm × 4.6 mm i.d.) (Merck & Co., Inc., NJ, USA). Preparative HPLC was performed using a
reverse phase column (Cosmosil 5C18-AR-II column, 5 µm particle size, 250 mm × 10 mm i.d.) (Merck
& Co., Inc., NJ, USA) using a Shimadzu LC-6AD series apparatus with a RID-10A Refractive Index
detector (Shimadzu Co.). MPLC was performed using a reverse phase column (Buchi MPLC glass
column, C18, 460 mm × 36 mm i.d.) on a Buchi pump module C-601 series apparatus (Buchi Ltd.,
Flawi, Switzerland) without a detector. The 1D and 2D NMR spectral data of compounds 1–4 can be
found at Supplementary Materials.

4.2. Plant Material

Whole C. japonica on D. longans Lour. plants used in this experiment were collected on the
mountains of Nantou County, Taiwan, in August 2012. The parasitic plant was identified by Dr. Shy-Yuan
Hwang, Endemic Species Research Institute. A voucher specimen of C. japonica on D. longans Lour.
(No. CMR201208CL) was deposited in the Department of Chinese Pharmaceutical Sciences and Chinese
Medicine Resources, China Medical University, Taichung, Taiwan.

4.3. Extraction and Isolation

Whole C. japonica (10 kg) plants were sectioned and extracted three times with MeOH (20 L) for
72 h each time. The MeOH extract was continuously dried under reduced pressure at 45 ◦C to yield a
brown syrup (ca. 988 g). The combined extracts were suspended on H2O (2 L) and then partitioned
with EtOAc (2 L) and n-BuOH (2 L), successively. The EtOAc layer (ca. 600 g) was subjected to a
silica gel CC (15 × 50 cm i.d., Merck 70–230 mesh), eluting with n-hexane/EtOAc (40:1, 20:1, 10:1,
5:1, 1:1, 0:1, v/v) and EtOAc/MeOH (10:1, 5:1, 4:1, v/v) in a gradient to give ten fractions (fr. 1~11).
Fraction 5 (20.1 g) was subjected to Sephadex LH-20 column (3 × 90 cm, i.d.) chromatography eluting
with CH2Cl2/MeOH to yield 9 subfractions (fr. 5.1–5.9). Fr. 5.3 (453.5 mg) was subjected to reverse
phase (RP) MPLC (C18 gel, 3 × 60 cm i.d., flow rate: 20 min/mL) with gradient MeOH/H2O (40/60 to
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100/0, v/v) to yield 8 subfractions (fr. 5.3.1~5.3.8). Fr. 5.3.1 (165.5 mg) was chromatographed using
preparative RP-HPLC (Cosmosil 5C18-AR-II column, flow rate: 3.0 min/mL) with 38% MeOH in H2O
to yield 13 (8.5 mg, tR = 46.3 min), 14 (2.3 mg, tR = 53.1 min), and 18 (4.4 mg, tR = 23.8 min). Using
preparative RP-HPLC (Cosmosil 5C18-AR-II column, flow rate: 3.0 min/mL) with 43% MeOH, 15
(8.8 mg, tR = 44.8 min) were obtained from fr. 5.3.3 (32.4 mg). The subfraction 5.3.6 was subjected
to RP-HPLC with 45% MeOH to obtain 29 (42.9 mg, tR = 24.1 min), and 30 (59.1 mg, tR = 25.6 min).
Fraction 5.4 (1.98 g) was subjected to RP-MPLC (C18 gel, 3 × 60 cm, flow rate: 20 min/mL) with gradient
MeOH/H2O (30:70 to 100:0, v/v) to yield 10 subfractions (fr. 5.4.1~5.4.10). Fr. 5.4.2 (293.1 mg) was
subjected to preparative RP-HPLC (flow rate: 3.0 min/mL), eluting with 60% MeOH to yield 7 fractions
(fr. 5.4.2.1~5.4.2.7). Fr. 5.4.2.4 (40.9 mg) was chromatographed using RP-HPLC with 43% MeOH to
yield 27 (16.2 mg, tR = 13.8 min). 12 (5.2 mg, tR = 32.5 min) was isolated from fr. 5.4.2.6 (40.5 mg)
by RP-HPLC (flow rate: 3.0 min/mL), eluting with 43% MeOH. Fr. 5.4.3 (41.7 mg) was subjected to
Sephadex LH-20 column (3 × 90 cm, i.d.) chromatography eluting with MeOH to yield 6 subfractions
(fr. 5.4.3.1~5.4.3.6). Fr. 5.4.3.4 (141.7 mg) was purified by RP-HPLC (45% MeOH) to yield compounds
26 (24.4 mg, tR = 17.8 min). 16 (30.0 mg, tR = 27.8 min) was separated by RP-HPLC with 45% MeOH
from fr. 5.4.5 (149.3 mg). Fr. 5.4.6 (293.8 mg) was subjected to preparative RP-HPLC, eluting with
43%MeOH to yield 21 (4.8 mg, tR = 12.0 min), 20 (4.9 mg, tR = 17.0 min), 19 (7.3 mg, tR = 17.8 min), 28
(61.9 mg, tR = 22.1 min), 17 (55.7 mg, tR = 28.3 min), and 11 (75.5 mg, tR = 31.5 min). Using Sephadex
LH-20 column (1.5 × 100 cm, i.d.) with isocratic MeOH, 22 (102.1 mg) and 23 (6.9 mg) were obtained
from fr. 5.8 (1.67 g). Fr. 8 (14.72 g) was subjected to Sephadex LH-20 column (1.5 × 100 cm, i.d.)
chromatography eluting with MeOH to yield 12 subfractions (fr. 8.1~8.12). Fraction 8.7 (2.76 g) was
subjected to RP-MPLC (C18 gel, 3 × 60 cm, flow rate: 20 min/mL) with gradient MeOH/H2O (40:60
to 100:0, v/v) to yield 8 subfractions (fr. 8.7.1~8.7.8). Using preparative RP-HPLC with 50% MeOH, 1
(78.3 mg, tR = 44.8 min), 2 (6.3 mg, tR = 2.3 min), 3 (26.1 mg, tR = 40.8 min), and 4 (4.9 mg, tR = 39.1 min)
were obtained from fr. 8.7.1 (650.5 mg). Subfraction 8.7.2 was further purified by RP-HPLC with 45%
MeOH to give 5 (2.5 mg, tR = 17.8 min), 6 (2.0 mg, tR = 21.5 min), and 7 (3.4 mg, tR = 18.2 min). Fr. 8.11
(60.8 mg) was further separated by RP-HPLC with 50% MeOH to yield 8 (181.8 mg, tR = 7.5 min),
9 (7.7 mg, tR = 10.9 min), 10 (17.8 mg, tR = 16.5 min), 24 (4.1 mg, tR = 14.3 min) and 25 (9.1 mg,
tR = 9.6 min).

4.4. Spectroscopic Data

Cuscutaside A (1). White amorphous powder. [α]25
D −86.0 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 207

(4.0), 227 (3.8), 309 (4.1) nm; IR (KBr) νmax 3361, 1693, 1604, 1564, 1514, 1448, 1246, 1170, 1074, 1018,
831, 520 cm−1; 1H- and 13C-NMR data (CD3OD) see Tables 1 and 2; HRESIMS m/z 433.1123 [M −H]−

(calculated for C21H21O10, 433.1129).

Cuscutaside B (2). White amorphous powder. [α]25
D −21.0 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 207

(4.0), 308 (4.1) nm; IR (KBr) νmax 3416, 1692, 1632, 1605, 1565, 1514, 1451, 1246, 1180, 1075, 822 cm−1;
1H- and 13C-NMR data (CD3OD) see Tables 1 and 2; HRESIMS m/z 503.0947 [M + K]+ (calculated for
C22H24O11K, 503.0950).

Cuscutaside C (3). White amorphous powder. [α]25
D +15.3 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 205

(4.0), 228 (3.7), 312 (4.0) nm; IR (KBr) νmax 3352, 1695, 1631, 1602, 1566, 1514, 1450, 1246, 1166, 1083,
1024, 831, 516 cm−1; 1H- and 13C-NMR data (CD3OD) see Tables 1 and 2; HRESIMS m/z 457.1105 [M +

Na]+ (calculated for C21H22NaO10, 457.1105).

Cuscutaside D (4). White amorphous powder. [α]25
D −19.6 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 203

(3.9), 299 (3.2), 311 (3.2) nm; IR (KBr) νmax 3375, 1695, 1633, 1602, 1566, 1514, 1450, 1246, 1166, 1083,
1024, 831, 526 cm−1; 1H- and 13C-NMR data (CD3OD) see Tables 1 and 2; HRESIMS m/z 433.1113 [M −
H]− (calculated for C21H21O10, 433.1129).
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4.5. HPLC-DAD Analysis

Five methanol crude extracts, EtOAc layer (CLE) and isolated compounds were diluted in MeOH
(conc. 1.0 mg/mL), respectively. All samples were filtered through a filter cartridge (pore size of 0.22 µm)
prior to analyses. The HPLC profiles of crude extracts, CLE fraction and the isolated compounds
were performed on a RP-18 column at a flow rate of 1.0 mL/min and detected at 254 and 280 nm. The
injection volume was 5 µL. The separation was performed using a mixture of 0.1% trifluoroacetic acid
(TFA) water solution (A) and methanol (B) with the gradient elution: 0–120 min from 5% B to 55% B.

4.6. Anti-Inflluenza Virus Assay

The anti-IAV activity was displayed using plaque reduction assay as described previously [34].
In brief, the five crude extracts (CL, CF, CFM, CM and CMA), three fractions (CLE, CLW, and CLW),
compounds (1–4, 9, 10, 13, 15–17, 19, 22-24, and 26–30) cytotoxicity were determined by MTS cell
viability assay at the concentration of 100 µM of each samples in MDCK cells in the first. MDCK cells
were cultured in DMEM, supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA, USA)
and 1% penicillin and streptomycin (PS; HyClone, Marlborough, MA, USA) at 37 ◦C with 5% CO2

incubation. The non-cytotoxic samples were selected to the following plaque reduction assay. MDCK
cells (2 × 106 cells/well) were pre-seeded in a six-well plate at 37 ◦C overnight. The cell monolayer
cells was then infected with influenza virus (A/WSN/1933 (H1N1), 100 PFU/well) with 25 µM of each
samples and the plaque forming assay was performed. The anti-IAV activity of each sample was
calculated using the plaque number compared with that of the virus infected control. The most effective
compound 29, was used to further perform the dose dependent plaque reduction assay. The 50% and
90% effective concentrations (EC50 and EC90) were defined as the concentration required for 50% and
90% inhibition of virus infection, respectively.

4.7. Time-Of-Addition Assay

To determine the stage of at which 1-monopalmitin (29) inhibits IAV infection, three time points,
including post-treatment, pre-treatment and mix-treatment, were used as previous study [34]. In brief,
for the stage of post treatment, the viruses infected the cells for 1 h and the cells were overlaid
with 0.3% agarose gel containing the compound for 48 h. The effect of 1-monopalmitin inhibits
IAV at post-infection stage was determined using the virus plaque reduction assay. For the stage of
Pre-treatment, the cells were pretreated with 1-monopalmitin for 1 h followed by virus infection of the
pre-treated cells for another 1 h. After the virus removed, plaque reduction assay were performed.
For the stage of Mix-treatment, the viruses were pretreated with 1-monopalmitin for 1 h, and then the
mixture of compound and viruses was added to the cells for another 1 h. After the mixture remove,
plaque reduction assay were performed.

5. Conclusions

Bioactivity-guided isolation of Japanese dodder (CL) let to the isolation and identification of four
new compounds 1–4 and twenty-six known compounds 5–30. The structures were established
via extensive spectroscopic investigations, including 1D and 2D NMR, UV, IR and HRESIMS
techniques. The eighteen isolated compounds were evaluated for antiviral activity against IAV
activity. 1-Monopalmitin (29) exhibits potential to be developed as a promising agent against influenza
virus infection. This study is important as it explain the chemical and biological diversity of the whole
plant Japanese dodder parasitizing on D. longans Lour. Furthermore, the results provide invaluable
information for the new application of the harmful weed.

Supplementary Materials: The 1D and 2D NMR spectra of compounds 1–4 are available online.
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