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Abstract: Drought is a major natural disaster that seriously affects agricultural production, especially
for winter wheat in boreal China. As functional proteins, the functions and mechanisms of
glyceraldehyde-3-phosphate dehydrogenase in cytoplasm (GAPCs) have remained little investigated
in wheat subjected to adverse environmental conditions. In this study, we cloned and characterized a
GAPC isoform TaGAPC2 in wheat. Over-expression of TaGApC2-6D in Arabidopsis led to enhanced
root length, reduced reactive oxygen species (ROS) production, and elevated drought tolerance.
In addition, the dual-luciferase assays showed that TaWRKY28/33/40/47 could positively regulate
the expression of TaGApC2-6A and TaGApC2-6D. Further results of the yeast two-hybrid system and
bimolecular fluorescence complementation assay (BiFC) demonstrate that TaPLDδ, an enzyme
producing phosphatidic acid (PA), could interact with TaGAPC2-6D in plants. These results
demonstrate that TaGAPC2 regulated by TaWRKY28/33/40/47 plays a crucial role in drought tolerance,
which may influence the drought stress conditions via interaction with TaPLDδ. In conclusion,
our results establish a new positive regulation mechanism of TaGAPC2 that helps wheat fine-tune its
drought response.
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1. Introduction

Plants are constantly subject to various environmental stresses, including drought and salinity,
which all lead to severe losses in crop yield. Under harsh stress conditions, the elaborate and complex
signaling crosstalk with the environment has evolved and developed to perceive and translate these
stress-signaling pathways, leading to protective responses [1,2]. All these adversities could greatly
reduce crop yield and increase economic costs. A deeper physiological and genetic understanding of
drought resistance is crucial for increasing food production.

Glyceraldehyde-3-P dehydrogenase (GAPDH) is widely considered to be a critical enzyme
involved in the glycolytic and gluconeogenesis metabolic pathways by catalyzing the NAD-dependent
conversion of glyceraldehyde-3-phosphate into 1,3-diphosphoglycerate. In all living organisms,
glycolysis is an important metabolic pathway in carbohydrate metabolism [3]. In higher plants, there
are four distinct isoforms of GAPDHs: GAPA, GAPB, glyceraldehyde-3-phosphate dehydrogenase
in cytoplasm (GAPCs), and GAPCps. Phosphorylated and NADP-dependent GAPA and GAPB are
involved in photosynthetic CO2 fixation in chloroplasts, phosphorylated and NADP-dependent GAPCs
exist in the cytosol, and phosphorylated and NADP-dependent GAPCps exist in the non-green plastids.
Nonphosphorylated and NADP-dependent NP-GAPDH exist in the cytosol [4–6].

NAD-dependent GAPDH consists of four identical subunits (C4). Generally, GAPDH is used as
an internal control for the relative quantitation of gene expression because it is highly conserved in
plants [7–10]. The gene structure and biochemical and functional properties of GAPDH have been
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investigated in mammals [11]. Recently, more and more studies have been carried out on the in vivo
role of plant GAPDHs, especially in stress tolerance [12,13]. Many studies have also indicated that
GAPDH proteins have many functions in addition to their roles in the glycolytic pathway [14–16].
In Arabidopsis, the relative expression level of AtGApDH was significantly increased in Arabidopsis
roots after treatment with NaCl [17,18]. In the stable genetic Arabidopsis mutant plants (gapc1-1 and
gapc2-1), the stomatal apertures and photosynthetic rate were significantly increased under drought
stress, compared with the wild type [19]. The accumulation of GAPC1 has been found in the nuclei
of root tip cells under cadmium treatment [20]. Under a low-concentration selenium environment,
NAD-dependent GAPDHs are key regulatory factors that promote the normal growth of Arabidopsis
seedlings [21]. The expression level and enzyme activity of GAPDH changes significantly during the
immune response [22]. In rice, the expressions of OsGApC1-3 were all induced by drought, salt, high
temperature, ABA, and methyl viologen treatments. Further, the transgenic rice plants over-expressing
OsGApC3 are more resistant to salt stress compared with WT [4]. In maize, GAPC3 and GAPC4
proteins are synthesized under hypoxic conditions in the roots, which belong to the classic “anaerobic
polypeptide”. Hypoxia can significantly increase the transcription level of the GApC3/4 gene, while the
GApC1/2 gene maintains constitutive expression or decreases the transcription level. These studies all
indicate that GAPC may play a role in the stress resistance of plants in some way.

Many previous studies, including our studies, have shown that the TaGAPC1 was up-regulated
under certain abiotic stresses in Chinese Spring Triticum aestivum [23]. Thus, in order to investigate the
function and stress response mechanism of TaGApC2, TaGApC2-6A/6B/6D were cloned in this study.
Our results show that over-expression of TaGApC2-6D reduced the accumulation of reactive oxygen
species (ROS) and promoted root growth in transgenic Arabidopsis plants under drought stress, which
suggests that TaGApC2-6D plays an important role in enhancing drought tolerance by adjusting ROS
content and promoting root length. Further, an osmotic-stressed full-length normalized cDNA library
from Chinese Spring wheat was constructed and used to screen TaGAPC2-6D’s potential partners in a
yeast two-hybrid system. This provides more detailed information for further investigation into the
underlying mechanisms of TaGApC2 involved in drought-related regulatory networks.

2. Results

2.1. Characterization of TaGApC2 and Bioinformatics Analysis

In our previous study, we identified six members of the GApC gene family in the wheat
genome, among which TaGAPDH3 (TraesCS6A02G213700.1), TaGAPDH6 (TraesCS6B02G243700.1), and
TaGAPDH8 (TraesCS6D02G196300.2) are three copies of a gene, namely, TaGAPC2-6A, TaGAPC2-6B,
and TaGAPC2-6D [24]. In the present study, three wheat GApC2 genes—TaGApC2-6A, TaGApC2-6B,
and TaGApC2-6D—were cloned from Chinese spring wheat and characterized. These three homologous
genes share similar gene structures and are highly similar in terms of their amino acid sequences.
Additionally, the numbers of exons and introns were also almost conserved within TaGApC2 (Figure S1).

To obtain more insights into the regulation mechanism of TaGApC2 in Chinese spring wheat,
the transcriptional expression patterns of TaGApC2 genes, including TaGApC2-6A, TaGApC2-6B,
and TaGApC2-6D, were examined at different time points (0, 2, 4, 6, 8, 12, and 24 h) after PEG and H2O2

treatment by quantitative real-time PCR (qRT-PCR). As shown in Figure 1, real-time PCR results show
that the relative expression level of TaGApC2-6A and TaGApC2-6D increased over 2–8 h and reached
the highest point. In addition, these genes were highly expressed in the roots, stems, and leaves of
wheat plants (Figure S2).
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Figure 1. Transcription profiles of TaGApC2 in Chinese spring wheat leaves under 20% PEG8000 (A) 

and 10 mM H2O2 (B). The β-actin gene was used as an internal reference. The vertical ordinate is the 

fold change; the horizontal ordinate is the treatment time. The data represent three independent 

experiments. The standard deviation (SD) is indicated at each point. Significant differences were 

assessed by one-sided paired t-tests (** p < 0.01). 
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As shown in Figures 1 and S2, TaGApC2-6A and TaGApC2-6D exhibited higher expression levels 

in different organizations and drought stress, showing that TaGApC2-6A and TaGApC2-6D might be 

the main effective genes for TaGApC2 in wheat. Therefore, TaGApC2-6A and TaGApC2-6D were 

selected for further study. We firstly amplified and sequenced approximately 2.0 kb of the promoter 

regions upstream of the TaGApC2-6A and TaGApC2-6D ATG start codons from Chinese spring wheat, 

named TaGApC2-6AP and TaGApC2-6DP. Sequence analysis showed that TaGApC2 promoter not 

only differs significantly in different wheat cultivars but also in different chromosomes of the same 

wheat cultivar (Figure S3). Furthermore, we also observed many cis-acting elements related to 

drought resistance in TaGApC2-6A and TaGApC2-6D promoters by bioinformatics analysis, including 

W-box elements; ABA-responsive elements (ABREs), MYB, and MYC binding sequences; and 

dehydration-responsive elements (DREs) (Table S1). TaGApC2-6AP and TaGApC2-6DP were fused to 

the Rluc reporter vector to detect promoter activity in tobacco leaves. The inducible activities of 

TaGApC2-6AP and TaGApC2-6DP under PEG, ABA, and H2O2 treatments were measured in 

transgenic tobacco by the Rluc/Fluc enzyme activity. The results show that TaGApC2-6AP and 

TaGApC2-6DP were stress-inducible promoters (Figure 2B). 
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Schematic diagram of the distribution of the W-boxes in the TaGApC2 promoter. (B) The Rluc/Fluc 

enzyme activity suggested that TaGApC2 promoters are stress-inducible. The data represent three 

independent experiments. The standard deviation (SD) is indicated at each point. Significant 

differences were assessed by one-sided paired t-tests (** p < 0.01). 

We previously observed that the transcription factor TaWRKY28/33/40/47 could bind to the 

special W-box in CW-TaGApC5 (TaGApC2-6D of wheat cv.Changwu) and ZY-TaGApC5 (TaGApC2-6D 

Figure 1. Transcription profiles of TaGApC2 in Chinese spring wheat leaves under 20% PEG8000 (A) and
10 mM H2O2 (B). The β-actin gene was used as an internal reference. The vertical ordinate is the
fold change; the horizontal ordinate is the treatment time. The data represent three independent
experiments. The standard deviation (SD) is indicated at each point. Significant differences were
assessed by one-sided paired t-tests (** p < 0.01).

2.2. Interaction between TaWRKY and TaGApC2-6D and TaGApC2-6A Promoters

As shown in Figure 1 and Figure S2, TaGApC2-6A and TaGApC2-6D exhibited higher expression
levels in different organizations and drought stress, showing that TaGApC2-6A and TaGApC2-6D
might be the main effective genes for TaGApC2 in wheat. Therefore, TaGApC2-6A and TaGApC2-6D
were selected for further study. We firstly amplified and sequenced approximately 2.0 kb of the
promoter regions upstream of the TaGApC2-6A and TaGApC2-6D ATG start codons from Chinese spring
wheat, named TaGApC2-6AP and TaGApC2-6DP. Sequence analysis showed that TaGApC2 promoter
not only differs significantly in different wheat cultivars but also in different chromosomes of
the same wheat cultivar (Figure S3). Furthermore, we also observed many cis-acting elements
related to drought resistance in TaGApC2-6A and TaGApC2-6D promoters by bioinformatics analysis,
including W-box elements; ABA-responsive elements (ABREs), MYB, and MYC binding sequences;
and dehydration-responsive elements (DREs) (Table S1). TaGApC2-6AP and TaGApC2-6DP were fused
to the Rluc reporter vector to detect promoter activity in tobacco leaves. The inducible activities of
TaGApC2-6AP and TaGApC2-6DP under PEG, ABA, and H2O2 treatments were measured in transgenic
tobacco by the Rluc/Fluc enzyme activity. The results show that TaGApC2-6AP and TaGApC2-6DP were
stress-inducible promoters (Figure 2B).
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Figure 2. The TaGApC2 promoter in Chinese spring wheat responds to abiotic stress in tobacco.
(A) Schematic diagram of the distribution of the W-boxes in the TaGApC2 promoter. (B) The Rluc/Fluc
enzyme activity suggested that TaGApC2 promoters are stress-inducible. The data represent three
independent experiments. The standard deviation (SD) is indicated at each point. Significant differences
were assessed by one-sided paired t-tests (** p < 0.01).

We previously observed that the transcription factor TaWRKY28/33/40/47 could bind to the special
W-box in CW-TaGApC5 (TaGApC2-6D of wheat cv.Changwu) and ZY-TaGApC5 (TaGApC2-6D of wheat
cv.Zhengyin) promoter. The transcriptional expression patterns of several TaWRKY genes, including
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TaWRKY28, 33, 40, and 47, were examined at different time points after PEG treatment by qRT-PCR [25].
TaWRKY28, 33, 40, and 47 all expressed a trend of increasing first and then decreasing under PEG
stress, similar to that of TaGApC2-6A and TaGApC2-6D but before them. These results indicate that
TaWRKY28, 33, 40, and 47 may also positively regulate the expression of TaGApC2-6A and TaGApC2-6D
in Chinese spring wheat (Figure 1A). To further investigate whether TaWRKY28, 33, 40, and 47 could
bind to TaGApC2-6A and TaGApC2-6D promoters in Chinese spring wheat, we firstly analyzed the type
of W-box in TaGApC2-6A and TaGApC2-6D promoters in Chinese spring wheat. As shown in Figure 2A,
these two promoters contain different types of W-box, including G/ATGACG/C/A bound by TaWRKY28,
C/G/ATGACG bound by TaWRKY33, C/ATGACC bound by TaWRKY40, and C/ATGACC/G bound
by TaWRKY47 [25]. To investigate the transactivation role of TaWRKY28/33/40/47 on the target
TaGApC2-6A and TaGApC2-6D promoter in Chinese spring wheat, a dual-luciferase assay was conducted
according to what was previously reported [26]. The promoter of TaGApC2-6A and TaGApC2-6D
was cloned into the dual-luciferase report vector pC0390-RUC and transformed into Agrobacterium
GV3101 and then injected together with either pC0390-TaWRKY:GUS (effector) or pC0390-GUS empty
vector (control) into tobacco leaves. The Dual-Luciferase® Reporter Assay System (Promega, Madison,
WI, USA) was used to assess the luciferase activity (RLuc/Fluc). The Rluc/Fluc ratio was significantly
increased by simultaneous TaWRKY:GUS over-expression compared to GUS expression (Figure 3).
These results indicate that TaWRKY28/33/40/47 are indeed upstream positive regulators of TaGApC2-6A
and TaGApC2-6D genes in wheat cv. Chinese spring.
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Figure 3. Rluc/Fluc value analysis of the interaction between TaWRKYs and TaGApC2 promoters of
Chinese spring wheat. TaGApC2-6A promoter and TaGApC2-6D promoter. The GUS effector was used as
internal control. The data represent three independent experiments. The standard deviation (SD) is
indicated at each point. Significant differences were assessed by one-sided paired t-tests.

2.3. Morphological Changes and Drought Tolerance in Transgenic Arabidopsis Plants

To further understand the function of TaGApC2, we constructed transgenic Arabidopsis plants
harboring p35S::TaGApC2-6D, expressing TaGApC2-6D under the control of the constitutive CaMV35S
promoter. We selected putative transgenic lines harboring this construct on media containing
hygromycin and confirmed them using PCR with gene-specific primers and qRT-PCR. The enzyme
activity of GAPDH was also measured in WT and transgenic Arabidopsis plants (Figure 4). Two
independent p35S::TaGApC2-6D transgenic lines (OE-02 and 05) were selected for further analysis.
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Figure 4. Detection of transgenic plants. (A) Diagram of the 35S:TaGAPC2-6D constructs. TaGApC2-6D
CDS was fused with the GFP-coding region driven by a 35S promoter. The primers pr1, pr2, and pr3,
used to analyze TaGApC2-6D and TaGApCs-GFp in transgenic Arabidopsis plants, are shown. (B) PCR
analysis of TaGApC2-6D over-expressing transgenic Arabidopsis using primer pairs of pr1 and pr2.
(C) PCR analysis of TaGApC2-6D over-expressing transgenic Arabidopsis using primer pairs of pr1
and pr3. (D) Quantitative real-time PCR (qRT-PCR) validation of TaGApC2-6D in the aboveground
part of the three-week-old Arabidopsis plant. The AtTubulin gene was used as an internal reference
(*** p < 0.001). (E) The enzyme activities of glyceraldehyde-3-P dehydrogenase (GAPDH) in the
aboveground part of the three-week-old Arabidopsis plant (** p < 0.01).

To investigate whether TaGApC2-6D over-expression was associated with drought stress tolerance,
we subjected WT, vector control (VC), and transgenic three-week-old seedlings to 25 days of drought
stress. At the early stage of treatment (7 days), all plants showed normal growth. At day 12 of treatment,
the leaves of WT and the control line rapidly withered, whereas the growth of OE-02 and OE-05 plants
was almost unaffected by drought stress. After 16 days of drought stress, both WT and the control line
plants exhibited severe wilting. By contrast, the growth of OE-02 and OE-05 transgenic plants was
better than that of WT. However, on the last day of drought treatment (day 25), all plants, including
OE-02 and OE-05 transgenic plants, were severely wilted (Figure 5). Seven days after re-watering, 24%
of the WT and 25% of the VC plants had survived, while the survival rates of the OE Arabidopsis were
68% and 62%, respectively (Figure 6A). Relative water content (RWC) and chlorophyll contents were
relevant indicators for the measurement of drought tolerance. RWC and chlorophyll content were
calculated in transgenic and WT Arabidopsis plants after 10 and 15 days of drought stress. As can
be seen in Figure 6, the transgenic Arabidopsis lines had significantly higher RWC and chlorophyll
contents than WT.
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Figure 6. Physiological changes and tolerance assay in wild-type and transgenic plants under drought
stress. (A) The survival rate of wild-type and transgenic Arabidopsis plants after drought treatment.
At least 50 plants were counted and averaged for each line (** p < 0.01). (B) The relative water content
(RWC) of wild-type and transgenic Arabidopsis plants after drought treatment. (C) The chlorophyll
content of wild-type and transgenic Arabidopsis plants after drought treatment. The data represent
three independent experiments. Asterisks indicate a significant difference between WT and transgenic
Arabidopsis lines.

Transgenic and WT Arabidopsis seeds were grown on 1/2 MS medium for five days and then
transferred to 1/2 MS medium containing 6% PEG8000. The OE-02 transgenic lines had a similar
phenotype to WT plants under normal conditions. However, the total root length of the transgenic
line was longer than that of WT plants under PEG8000 treatment after seven days. TaGApC2-6D more
significantly promoted root growth in transgenic Arabidopsis plants than WT under PEG8000 treatment
(Figure 7). The result suggests that the enhanced drought tolerance in TaGApC2-6D transgenic lines
may be related to the longer root length.
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Figure 7. Total root lengths of transgenic Arabidopsis lines under mock drought stress. Phenotypes
of WT and TaGApC2-6D transgenic Arabidopsis seedlings under 1/2 MS medium with or without
6% PEG8000. (A) Root lengths phenotype of WT and TaGApC2-6D transgenic Arabidopsis seedlings
grown on 1/2 MS medium with or without 6% PEG8000 for seven days. (B) Root lengths of WT and
TaGApC2-6D transgenic Arabidopsis seedlings grown on 1/2 MS medium with or without 6% PEG8000
for seven days. Data are means ± SD of three independent experiments, and asterisks indicate a
significant difference between WT and transgenic Arabidopsis lines (** p < 0.01).

2.4. Ectopic Expression of TaGApC2-6D Reduces ROS Accumulation under Drought Stress

Since drought stress increases ROS production, we then investigated whether TaGApC2-6D
over-expression in Arabidopsis would affect ROS accumulation under drought stress by examining
O2
− and H2O2 accumulation using nitroblue tetrazolium (NBT) and diaminobenzidine (DAB) staining,

respectively. The results obtained from histochemical staining indicate that transgenic Arabidopsis
plants and WT generated different amounts of ROS (mainly O2

− and H2O2). As shown in Figure 8A,
under normal conditions, little NBT staining was detected in the WT and VC, whereas after drought
stress, clear NBT staining was detected in both lines. By contrast, lower NBT staining and content of
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O2
− were detected in the OE transgenic lines, even under drought stress (Figure 8A and Figure S4).

In addition, lower signals of DAB staining and content of H2O2 were detected in the OE transgenic
lines than in the WT and VC lines (Figure 8B and Figure S4).
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Figure 8. Changes in O2
− and H2O2 levels in wild-type (WT) and transgenic plants subjected

to drought stress. Drought-stressed seedlings were incubated in nitroblue tetrazolium (NBT) or
diaminobenzidine (DAB) solution. Blue staining indicates O2

− accumulation (A). Brown staining
indicates H2O2 accumulation (B). Control, plants growing under normal conditions; drought, plants
growing after drought stress treatment (12 days).

Since malondialdehyde (MDA) content is an indicator of lipid peroxidation, MDA content was
measured in the leaves of WT and transgenic Arabidopsis lines. After 15 days of drought treatment, the
MDA content was significantly lower in the transgenic Arabidopsis lines, relative to WT (Figure 9C).
Enzymatic antioxidants play a very significant role in scavenging harmful ROS that accumulates
under stress. We further analyzed the superoxide dismutase (SOD) and peroxidase (POD) of these
significant antioxidant enzymes in the leaves of the plants. These activities exhibited a similar trend in
all lines after 10 and 15 days of drought stress (Figure 9A,B). After 10 and 15 days of drought stress,
the activities of all antioxidant enzymes were higher in the TaGApC2-6D over-expression Arabidopsis
lines than in WT. These results suggest that the enhanced drought tolerance in TaGApC2-6D transgenic
lines is related to the reduced MDA content and the increased antioxidant enzyme activity.
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2.5. Screening of Proteins Interacting with TaGApC2-6D by Yeast Two-Hybrid

We firstly conducted an osmotic-stressed full-length normalized wheat cDNA library. The resultant
library had a quantity of 5.30 × 105 cfu/mL independent clones, and its titer was 3.62 × 107 cfu/mL
(Figure S5). To assess the quality of the library, a total of 1000 clones selected randomly from the cDNA
library were sequenced, from which 804 high-quality expressed sequence tags (ESTs) from 963 raw
sequences with an average length of 1048 bp were obtained. The 804 ESTs were clustered into 591
unigenes containing 64 contigs and 527 singletons. Based on GO annotation, the 579 of 591 unigenes
were found in their homologous sequence and 330 different GO terms of cellular component (98),
molecular function (71), and biological process (161) were obtained (Figure 10). Meanwhile, some
transcription factors were hit, including transcription factor bHLH35, MADS-box transcription factor 5,
transcription factor GLK2, and transcription factor MYB1R1-like, which were reported to play a key
role in response to drought stress. The unigenes were subjected to analysis of biochemical pathways as
described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results show that
265 unigenes had their counterparts among 591 unigenes in the KEGG database, which relate to the six
biological functions: metabolism, genetic information processing (GIP), environmental information
processing (EIP), cellular processes (CP), organismal systems (OS), and human diseases. The metabolic
pathways are the most abundant, making up 58.5% of the total (Figure 11). KEGG pathway analysis
displayed that the cDNA library contained several plant stress response pathways, including the Ras
signal pathway, MAPK signal pathway, TGF-beta signal pathway, HIF-1 signal pathway, and FoxO
signaling pathway.

To identify proteins that interact with TaGAPC2-6D, we used full-length TaGAPC2-6D as bait in
the yeast two-hybrid (Y2H) system and screened a wheat osmotic-stressed cDNA library constructed
from the prey vector pGADT7-Rec. To determine the specificity of interactions between TaGAPC2-6D
and interacting proteins, the bait and positive library plasmid were co-transformed into Y2HGold
strain pairwise. After exclusion of the false positives, 10 clones were identified as potential interaction
partners of TaGAPC2-6D (Table S2). Among the putative binding partners of the TaGAPC2-6D protein,
one was TaPLDδ, which could also interact with GAPCs in Arabidopsis. The bait and prey were again
co-transformed into Y2HGold strain to confirm the interaction (Figure 12A).
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Figure 12. Identification of TaPLDδ interacting with TaGAPC2-6D. (A) Confirmation of
true positive clones by small-scale yeast two-hybrid (Y2H) assay. SD/-Leu/-Trp/X-α-Gal
(DDO/X), SD/-Leu/-Trp/X-α-Gal; SD/-Ade/-His/-Leu/-Trp/X-α-Gal/AbA (QDO/X/A),
SD/-Ade/-His/-Leu/-Trp/X-α-Gal/AbA. PC indicates a positive control. (B) Bimolecular fluorescence
complementation assay (BiFC) assay of the interaction between TaPLDδ and TaGAPC2-6D protein
in tobacco leaf protoplasts. The pSPYNE-TaGAPC2-6D and pSPYCE-TaPLDδ constructs were
co-infiltrated into tobacco by Agrobacterium. YFP fluorescence was detected by confocal laser scanning
microscopy. Co-transformants of pSPYNE-TaGAPC2-6D and pSPYCE were used as negative controls.
Scalebar = 100 µm.

To further verify the interaction between TaGAPC2-6D and TaPLDδ in plant cells, the bimolecular
fluorescence complementation assay (BiFC) assay was performed in tobacco leaves. YFP fluorescence
was reconstituted when pSPYCE–TaPLDδ and pSPYNE–TaGAPC2-6D were co-expressed. Recombinant
vectors with corresponding non-fused pSPYCE empty vectors generated no fluorescence (Figure 12B).

3. Discussion

3.1. TaWRKY Positively Regulate TaGApC2 Gene Expression

In plants, there are many drought-responsive transcription factors that regulate the transcriptional
expression of downstream genes by binding specific cis-acting elements of the promoter. WRKY
transcription factors are one of the largest families of transcriptional regulators in plants, and are
involved in the drought-related response [27]. In plants such as wheat [28], rice [29], brachypodium
distachyon [30], maize [31], soybean [32], and cotton [33], a large number of WRKYs have been
identified in recent years. In our previous study, we identified that TaWRKY28, TaWRKY33,
TaWRKY40, and TaWRKY47 preferentially bind to specific W-box in cw-TaGApC5 (cw-TaGApC2-6D) and
zy-TaGApC5 (zy-TaGApC2-6D) by Y1H and EMSA (Electrophoretic Mobility Shift Assay) analyses [25].
In Chinese spring wheat, the real-time PCR results indicate that the expression patterns of TaGApC2-6A
and TaGApC2-6D were similar to TaWRKY28/33/40/47 but lagged behind TaWRKY28/33/40/47 under
drought stress (Figure 1A). Thus, we speculated that TaWRKY28/33/40/47 may also be potential
positive regulators of TaGApC2-6A and TaGApC2-6D expression in Chinese spring wheat. A tobacco
co-transformation experiment demonstrated that TaWRKY28/33/40/47 indeed improves transcription
levels of TaGApC2-6A and TaGApC2-6D (Figure 3). These results indicate that TaWRKY28/33/40/47
positively regulates TaGApC2-6A and TaGApC2-6D gene expression.

3.2. TaGApC2 Plays a Key Role in Drought Stress

Arabidopsis thaliana is often used as a model plant to study gene functions due to its short growth
cycle, small nuclear genome, and high reproduction coefficient. Niu et al. constructed over-expression
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TaDREB3 transgenic Arabidopsis plants to explore the function of the TaDREB3 gene under drought,
salt, and heat stresses [34]. Over-expression of TaWRKY46 enhanced osmotic stress tolerance in
transgenic Arabidopsis thaliana plants, which was mainly demonstrated by transgenic Arabidopsis
plants forming a higher germination rate and longer root length [35]. In this study, a transgenic
Arabidopsis over-expressing TaGApC2-6D was constructed through hygromycin screening and PCR
identification, which provided experimental materials for studying TaGApC2-6D function. RWC, MDA,
and chlorophyll content have been widely used to reflect drought tolerance in plants. The leaves of
TaGApC2-6D overexpressing Arabidopsis plants exhibited higher survival rate, RWC, and chlorophyll
content after drought treatment than WT plants (Figure 6). Further phenotypic analysis showed that
TaGApC2-6D over-expressing Arabidopsis plants possessed longer roots at 6% concentrations of PEG
(Figure 7).

In plants, ROS are the key cellular signals in response to multiple stresses, such as drought,
wounding, and low and high temperatures. H2O2 and O2

− are the major and most stable type of
ROS. Abiotic stress, such as drought stress, could cause excessive accumulation of ROS raising lipid
peroxidation to interfere with normal physiological processes and ultimately leading to programmed
cell death [36–38]. In order to explore the effect of TaGApC2-6D on antioxidant enzyme activity, the
antioxidant enzyme activities (POD, SOD) were measured in wild-type and transgenic Arabidopsis
under drought stress. The results show that the H2O2 and O2

− accumulation in transgenic Arabidopsis
over-expressing TaGApC2-6D were less and the enzyme activities of POD and SOD were enhanced,
compared with WT Arabidopsis (Figures 8 and 9). The increased ROS clearance ability reduced cell
membrane damage and enhanced drought resistance. All the results suggest that over-expression of
TaGApC2-6D enhanced drought tolerance in Arabidopsis plants. A similar finding was also verified in
other TaGApDH [39].

3.3. Interaction between TapLDδ and TaGApC2 May Contribute to Plant Drought Tolerance

To date, little is known about genes in wheat contributing to the strong adaptation in drought areas.
The molecular mechanism for wheat’s adaptation to drought environments needs to be explained.
It has been shown that full-length cDNA clones can be used to study the function of gene products [40].
In order to explore the biology of a plant response mechanism—genes such as those responsible for
survival, dehydration avoidance, and development—a full-length cDNA library was constructed using
wheat leaves from a drought condition. The high-quality-expression cDNA library can offer molecular
resources for the analysis of genes involved in biology and for studying its protein function [41].
Our library storage was 5.30 × 105 cfu/mL, and the titer was 3.62 × 107 cfu/mL. The insert fragment
size was greater than 0.75 kb, which proved that the cDNA library is of high quality and has a high
amount of information. The normalized cDNA library can also increase the possibility of selecting the
mRNA with low expression [42].

In this study, we have screened 10 proteins that potentially interact with TaGAPC2-6D from the
osmotic-stressed cDNA library. A large number of studies have shown that GAPC could interact with
some stress-related proteins to protect plants from damage under abiotic stress. In Arabidopsis plants,
GAPC could interact with E3 ubiquitin ligase (SINAL7) to make it monoubiquitinated. Arabidopsis
over-expressing SINAL7 showed increased concentrations of hexose, sucrose, and plant biomass,
accompanied by elevated drought resistance and delayed leaf senescence, which provided important
clues revealing that GAPC is involved in the resistance mechanism [43]. The receptor protein kinase
FERONIA (FERONIA, FER) interacts with GAPC to catalyze a key reaction in glycolysis and promote
energy production [44]. In this work, a wheat PLDδ protein was selected as a target protein to verify
potential interactions with TaGAPC2 in yeast, and this interaction was further confirmed through
bimolecular fluorescence complementation (Figure 12B). In the plant, PLD has been identified to
respond to multiple stresses [45]. For example, pLDα3 positively responds to hyperosmotic stress [46],
pLDα1 could respond to water stress by promoting ABA-regulated stomatal closure to reduce water
loss, and pLDα1 is also involved in the process by which lipid messenger PA produces peroxide
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products [47,48]. We propose that TaGAPC2 may improve the drought tolerance of plants by interacting
with PLDδ to promote ABA-regulated stomata closure. Our findings offer evidence of TaGAPC2’s roles
in drought resistance on a molecular level. Further studies on whether TaGAPC2 interacts with other
proteins will be required to thoroughly understand TaGAPC2’s molecular function.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Common wheat (Triticum aestivum L. cv. Chinese Spring) was used in this study. The seeds were
surface-sterilized with 75% ethanol for 2 min and rinsed three times with sterile water. Seeds were
placed on moistened filter paper in petri dishes for germination in darkness at 22 ◦C for 24 h. The sprout
seedlings were grown in a chamber at 22 ◦C in a 16/8 h (light/dark) cycle with a growth medium using
Murashige and Skoog (MS) liquid medium.

To construct an osmotic-stressed cDNA library, 10-day-old seedlings were immersed in 20%
PEG8000 (polyethylene glycol) solution. The treated leaf samples were collected at 0, 1, 2, 6, 12, and 24 h
after the treatment, immediately frozen in liquid nitrogen, and kept at −80 ◦C for RNA isolation.

Arabidopsis thaliana seeds were surface-sterilized with 70% (v/v) ethanol for 2 min followed by
4% (v/v) hypochlorite, cold-treated for three days at 4 ◦C for vernalization, and germinated on 1/2 MS
medium agar plates. Plants were grown with a 16/8 h (light/dark) cycle photoperiod at 22 ◦C. Seedlings
were transplanted to soil 10 days after germination.

4.2. Total RNA Extraction and Real-Time pCR Analysis

Total RNA was extracted using an RNAisoTM Plus kit (TaKaRa, Dalian, China) and treated with
RNase-free DNase I (TaKaRa, Dalian, China). The quality and purity of RNA were evaluated by
Bioanalyzer 2100 and 1% agarose gel electrophoresis. First-strand cDNA was synthesized using a
PrimeScript First-Strand cDNA Synthesis Kit (TaKaRa, Dalian, China). qRT-PCR was conducted using
a Bio-Rad CFX96 system (BioRad, Hercules, CA, USA). The β-actin (AB181991.1) was used as the
internal transcript level control for qRT-PCR using SYBR® Premix Ex Taq™ (TaKaRa, Dalian, China).
Detailed information on the primer sequences is provided in the supporting information (Table S3).
All real-time PCR reactions were performed in triplicate to ensure reproducibility of the results.

4.3. Examination of Plant Stress Tolerance

The coding sequence of TaGApC2-6D was cloned into pCAMBIA1302 under the control of the
CaMV 35S promoter, resulting in 35S::TaGAPC2-6D construct. This construct was used in transformation
mediated by Agrobacterium to obtain transgenic Arabidopsis lines. Hygromycin-resistant Arabidopsis
transformants carrying TaGApC2-6D were generated using the inflorescence infiltration method [49].
Transformed plants were cultured on 1/2 MS medium containing 30 µg/mL hygromycin in a day/night
regime of 16/8 h under white light at 22 ◦C for 10 days and then transferred to soil.

The Enzyme-Linked Immunosorbent Assay (ELISA) Kits (Meimian Biotech, Lianyungang, China)
was applied to detect the enzyme activities of GAPDH from the aboveground part of three-week-old
Arabidopsis plants, which were homogenized with cold PBS. Then, the supernatants were collected
after centrifugation and added to test wells for further reactions following the operating manual.
The absorbance at 450 nm was measured using a microplate reader. All results were determined by the
standard curve equation and normalized to the protein concentration of corresponding samples.

Homozygous T3 seeds of transgenic Arabidopsis lines were used for phenotypic analysis.
Arabidopsis seeds were grown on 1/2 MS agar plates that were routinely kept for three days in
darkness at 4 ◦C to break dormancy and then transferred to a tissue culture room at 22 ◦C for five days.
For drought treatment, 5-day-old seedlings were then transferred to 1/2 MS agar plates containing
6% PEG8000 for seven days. The total root lengths of the Arabidopsis plants were measured [50].
To analyze the drought tolerance in transgenic plants, the seedlings cultivated with soil in pots for three
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weeks at uniform developmental stages were subjected to drought stress treatment by withholding
water. After being treated for 25 days, the plants were rewatered for seven days and then the survival
rates of the different plant lines were recorded. Three biological experiments were performed, and at
least 50 plants were used for the calculation.

H2O2 content detection kit and O2
− content detection kit (Solarbio, Beijing, China) were used

to detect H2O2 content and O2
− content. O2

− and H2O2 accumulation was measured as previously
described [26]. Determination of the RWC and the chlorophyll content of Arabidopsis leaves after
drought stress were performed as previously described [26]. The MDA content and SOD and POD
activity were determined as described [26].

4.4. Construction of the cDNA Library

The cDNA library was constructed using the Make Your Own “Mate&Plate™” Library System User
Manual (Clontech, Mountain View, CA, USA) according to the manufacturer’s instruction. The first
single-stranded cDNA (ss cDNA) were synthesized by 1 µg of total RNA using CDS III/3′ PCR primer
and Moloney Murine Leukemia Virus (MMLV) Reverse Transcriptase. The double-stranded cDNA
(dscDNA) was acquired by 2 µL of sscDNA product using Advantage 2 Polymerase Mix (Clontech) via
long-distance PCR (LD-PCR). Then, the dscDNA products were digested with proteinase K, treated
with DSN solution, and purified with a CHROMA SPINTM TE-400 column (Clontech). The purified
dscDNA was ligated with pGADT7-Rec vector (SmaI-lineared) via homologous recombination using
Clone ExpressTM II One Step Cloning Kit (Clontech). The products were transformed into Escherichia coli
DH5α strains, which were stored in 50% glycerol at −80 ◦C.

The transformed strains were diluted using LB medium (Amp) with the ratio 1:105 and then
spread on 15 cm agar LB plates (Amp/IPTG/X-gal) and incubated at 37 ◦C for 12 h. The library titer
and clone capacity were calculated by counting the clones from the plates. The library titer (cfu/mL) =

colonies on LB/IPTG/X-gal × dilution factor ÷ volume (mL) plated. Colonies were randomly selected
to identify the size of the inserted sequences and amplified with T7 SP and 3′AD primers. The library
plasmid was isolated by High Pure Maxi Plasmid Kit (TianGen Biotech, Beijing, China).

4.5. Sequencing and Analysis of Expressed Sequence Tags (ESTs)

The transformed bacteria were randomly selected and inserted, and cDNA was sequenced from
the 5′ end. The Codon Code Aligner program was used to remove vector sequences and assemble
EST sequences into contigs. ESTs greater than 200 bp in length were regarded as high-quality ESTs
after removal of empty ESTs and vector ESTs. The PHRED program was used for base calling and
quality assessment [51]. The EST sequences were clustered and assembled into successive consensus
sequences (contigs) using the Codon Code Aligner program, which had high stringency parameters
of minimum percent identity of 99%, minimum overlap length of 50, and default parameters for the
rest. A cluster containing only one sequence was classified as a singleton. All similarity searches
were batch-executed locally using BlastN, BlastX, and TBlastX tools [52,53]. The Blast2go software
package was used for GO annotations. By comparing the results with the Kyoto Encyclopedia of Genes
and Genomes (KEGG, ftp://ftp.genome.jp/pub/kegg/) database, the functions of most unigenes were
obtained. Finally, the sequences were classified as functional categories using the GO database [54].

4.6. Yeast Two-Hybrid Screen

To identify proteins that interact with TaGAPC2-6D, we screened a wheat drought-treated
full-length normalized cDNA library in the yeast two-hybrid system. A fragment of TaGApC2-6D with
open reading frame (ORF) was amplified from Triticum aestivum L. cv. Chinese Spring cDNAs using
primers and subsequently cloned into the pGBKT7 vector (Clontech) as baits. The bait construct was
transformed into the yeast strain Y2HGold and tested for auto-activation of MEL1 and AUR1-C reporter
genes. The library plasmid was used as the prey. The prey vectors were transformed into the yeast
strains Y2HGold containing bait vector and without auto-activation according to the manufacturer

ftp://ftp.genome.jp/pub/kegg/
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protocol. The transform products were plated onto synthetic dropout (SD) medium without leucine
(Leu), tryptophan (Trp), and histidine (His) (TDO). Then, all the colonies that grew on TDO were
screened and patched out onto higher stringency SD medium without Leu, Trp, His, and adenine (Ade)
(QDO), QDO containing Aureobasidin A (AbA) (QDO/A), and QDO containing AbA and X-α-gal
(X) (QDO/A/X), in turn. All plasmids of the colonies that grew on QDO/A/X were isolated using
the yeast plasmid mini preparation kit (Beyotime, Shanghai, China), and the plasmids inserts were
PCR-amplified using the universal primer on the pGBKT7 vector. To confirm positive interactions,
the baits and positive library plasmids were co-transformed into Y2HGold stain according to the
manufacturer protocol.

4.7. Bimolecular Fluorescence Complementation (BiFC) Assay

BiFC assay was performed in Nicotiana benthamiana leaves. The ORFs of TapLDδ and
TaGApC2-6D without termination codons were recombined with C-terminal part of YFP in the
pSPYCE-35S/pUC-SPYCE vector and N-terminal part of YFP in the pSPYNE-35S/pUC-SPYNE
vector, respectively. The pSPYCE-TaPLDδ and pSPYNE-TaGAPC2-6D were co-transformed
into Nicotiana benthamiana leaves with corresponding empty vectors as negative controls.
The Nicotiana benthamiana leaves’ protoplasts were observed for fluorescence at 48 h after transformation
using a confocal laser scanning microscope (Andor, Belfast, UK).

5. Conclusions

Taken together, the results presented in this study provide evidence that the transcription factor
TaWRKY positively regulates the expression level of the TaGApC2 gene by specially binding to its
promoter in Chinese spring wheat. Over-expression of TaGApC2 in Arabidopsis led to lower ROS
production, longer root length, and higher drought tolerance under drought stress. TaGAPC2 can
interact with TaPLDδ, and it plays a vital role in plant drought tolerance. Our research provides a
better understanding of the molecular mechanism of TaGAPC2 in response to drought stress and offers
a promising strategy to increase crop stress tolerance using bioengineering technology.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/20/
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