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During infection, pathogen sensing and cytokine signaling by the host induce expression
of antimicrobial proteins and specialized post-translational modifications. One such
protein is ISG15, a ubiquitin-like protein (UBL) conserved among vertebrates. Similar to
ubiquitin, ISG15 covalently conjugates to lysine residues in substrate proteins in a process
called ISGylation. Mice deficient for ISGylation or lacking ISG15 are strongly susceptible to
many viral pathogens and several intracellular bacterial pathogens. Although ISG15 was
the first UBL discovered after ubiquitin, the mechanisms behind its protective activity are
poorly understood. Largely, this stems from a lack of knowledge on the ISG15 substrate
repertoire. To unravel the antiviral activity of ISG15, early studies used mass spectrometry-
based proteomics in combination with ISG15 pulldown. Despite reporting hundreds of
ISG15 substrates, these studies were unable to identify the exact sites of modification,
impeding a clear understanding of the molecular consequences of protein ISGylation.
More recently, a peptide-based enrichment approach revolutionized the study of ubiquitin
allowing untargeted discovery of ubiquitin substrates, including knowledge of their exact
modification sites. Shared molecular determinants between ISG15 and ubiquitin allowed
to take advantage of this technology for proteome-wide mapping of ISG15 substrates and
modification sites. In this review, we provide a comprehensive overview of mass
spectrometry-based proteomics studies on protein ISGylation. We critically discuss the
relevant literature, compare reported substrates and sites and make suggestions for
future research.

Keywords: ISG15, mass spectrometry, infection, interferon, ubiquitin-like modification
INTRODUCTION

ISG15, a Ubiquitin-Like Protein of the Immune System
Host cellular immunity arises from the intricate network of cell types and signaling molecules which
confer resistance to pathogenic infections. As part of both the innate and adaptive immune system,
interferons (IFNs) are a family of proteins released by host cells upon encounter of foreign invaders.
Acting as a cytokine, IFNs signal to other cells to induce the expression of interferon-stimulated
genes (ISGs) whose products control pathogenic infections. The evolutionary conserved ubiquitin‐
like protein (UBL) ISG15 is one of the genes most strongly induced by IFNs and has a profound role
org August 2021 | Volume 12 | Article 7207651

https://www.frontiersin.org/articles/10.3389/fimmu.2021.720765/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.720765/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.720765/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:francis.impens@vib-ugent.be
https://doi.org/10.3389/fimmu.2021.720765
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.720765
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.720765&domain=pdf&date_stamp=2021-08-10


Thery et al. Proteomics Identification of ISG15 Substrates
in the antimicrobial response. For instance, ISG15 is known to
counteract both viral, bacterial and fungal infections (1). To exert
this function, ISG15 depends on three molecular activities which
include i) negative control of interferon-a/-b signaling as a free
intracellular molecule (2, 3), ii) induction of IFN-g secretion as
an extracellular cytokine and iii) ubiquitin-like protein
conjugation in a process called ISGylation (4, 5) (Figure 1).
Similar to ubiquitylation, ISGylation is mediated by the
consecutive action of an E1‐activating enzyme (UBA7), an E2‐
conjugating enzyme (UBE2L6) and E3 ligases (ARIH1, TRIM25
or hHERC5/mHERC6) that covalently link ISG15 to lysine
residues of target proteins (14–18). In addition, ISGylation can
be reversed through the action of a deconjugating protease, the
ubiquitin-like carboxy-terminal hydrolase USP18 (6, 19).

Although its discovery dates back to the 1980s, ISG15 only
recently regained attention as an UBL involved in a plethora of
biological pathways. Aside from the immune system, ISG15 also
plays a role in the progression of cancers, exosome secretion, the
DNA damage response, telomere shortening, autophagy,
hypoxia and ischemia (20–28). However, its main and most
studied function lies within the host response against viral
infection [recently reviewed in (1)]. ISG15 acts antiviral by
covalently modifying host and viral proteins which interferes
with viral assembly or function (29). Accordingly, mice lacking
ISG15 are unable to control various pathogens including
clinically relevant etiologic agents such as influenza, herpes‐,
noro- and coxsackievirus (30–32). This crucial antiviral function
of ISG15 is further supported by effective immune evasion
strategies of specific pathogens which express ISG15 proteases
(e.g. SARS/MERS virus) or interfere with ISG15 conjugation (e.g.
influenza virus) (33–35). Notably, also the coronavirus pandemic
led to renewed interest in ISG15 since the papain-like protease
(PLpro) from SARS-CoV-2 actively targets and deconjugates
ISGylated proteins to dismantle the host immune response (36,
37). In line with this, molecular inhibition of PLpro restores
ISGylation levels in infected cells concomitant with reduced viral
replication and virus-induced cytopathogenic effects (10).

Although ISG15 and ISGylation have been primarily
characterized in the context of viral infection, it was recently
shown that ISG15 also protects against infections by intracellular
bacteria such as Listeria monocytogenes (L. monocytogenes) and
Mycobacterium tuberculosis (M. tuberculosis) or predominantly
extracellular bacteria like Pseudomonas aeruginosa (38–40).
Concordantly, individuals with an inherited ISG15 deficiency
show an increased susceptibility to weakly virulent
M. tuberculosis, a condition known as Mendelian susceptibility to
mycobacterial disease (MSMD) (4). Although this phenotype was
first ascribed to the extracellular function of ISG15, it was later
shown that ISG15 conjugation is also upregulated during
M. tuberculosis infection in vivo (39). Likewise, our laboratory and
others have shown that increased levels of ISGylation protect against
L. monocytogenes in vitro and in vivo (38). Meanwhile beyond
bacteria, ISGylation was also found to be critical to control
Toxoplasma gondii (T. gondii) infection in human cells (41).

Clearly, ISG15 and ISGylation harbor a broad antimicrobial
effect against several major classes of pathogens. Evidently, this
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raises the question how one single protein modification can target
such a diverse set of disease agents. One model suggests that
cotranslational modification of newly translated proteins is the
basis of ISG15’s far-reaching antimicrobial function. Indeed, the
dominant ISG15 E3 ligase HERC5 associates with polyribosomes
and preferentially modifies proteins that are being synthesized
during the active stages of the conjugation machinery (29).
Considering that during viral infection mainly viral proteins are
translated, ISGylation will preferentially target viral proteins thus
disturbing their folding and activity. As such mechanism does not
require affinity for specific viral components, ISG15 cotranslational
tagging likely contributes to the ability of ISG15 to counteract a
broad range of viruses. While this model contributes to our
understanding of the antiviral activity of ISG15, it does not
explain how ISGylation counteracts bacterial infections. In
addition, viral infection or type I interferons (IFN-I) signaling also
leads to strong ISGylation of host proteins for which the functional
role is still unknown. To gain insights into the biological
implications of ISGylation, research has focused on identifying the
targets and sites of ISGylation induced upon infection.

Like many other protein post-translational modifications
(PTMs), research on UBLs has benefited greatly from recent
advances in mass spectrometry (MS)-based proteomics. Aside
from shotgun proteomics experiments to profile protein changes
upon ISG15 modulation (42–44), several MS screens were
performed in the past two decades to identify targets and sites
of ISG15 with increasing levels of ingenuity, but also with their
own set of shortcomings. In this review, we provide a
comprehensive overview of MS-based studies on protein
ISGylation. We critically discuss the relevant literature and
make suggestions for future developments and research.

MS-Based Approaches to Identify
ISG15 Substrates
Despite its early classification as an UBL, it was not until 2002 when
the first substrates of ISG15-conjugation were discovered. Following
immune challenge of murine macrophages with bacterial DNA,
Hamerman and colleagues identified Serpin2a as a bacteria-induced
host protein with unexpected higher molecular mass forms on
western blot (45). The authors expressed a tagged version of
Serpin2a in macrophages followed by immunoprecipitation (IP)
and separation on SDS-PAGE to isolate these modified forms of
Serpin2a. SubsequentMS analysis then revealedmouse ISG15 as the
PTM that conjugates to Serpin2a during macrophage activation.
One year later, four additional ISG15-substrates were reported using
a high-throughput western blot screen on human thymus
samples (46).

In the years that followed, different research groups continued
using untargeted MS-based approaches to identify targets of
ISGylation. In 2005, a research team led by Robert M Krug was
the first to report a comprehensive catalog of 156 human ISGylated
proteins (47). The authors overexpressed doubly tagged His-FLAG-
ISG15 along with E1/E2 enzymes in HeLa cells treated with IFN-I.
ISGylated proteins were isolated from cellular lysates by affinity
pulldown and separated by SDS-PAGE prior to their MS
identification from specific gel bands. Bona fide ISGylated
August 2021 | Volume 12 | Article 720765
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FIGURE 1 | The three functions of ISG15. (A) The ISGylation pathway during infection. After detecting the presence of an intra- or extracellular pathogen, several
antimicrobial signaling pathways lead to the expression of ISGs, including ISG15 and its conjugation machinery. The covalent attachment of ISG15 to substrate
proteins, also called ISGylation, relies on the activities of an E1 (UBA7) (1), E2 (UBE2L6) (2) and E3 (hHERC5/mHERC6) (3) enzyme. The product of the ISG15-
conjugation pathway is an ISGylated host or viral protein (4). Target modification by ISG15 has a widespread negative effect on the replication, growth, egress and
infectivity of four major classes of pathogens, including viruses, bacteria, fungi and protozoa (1). Deconjugation is catalyzed by USP18 which releases ISG15 from its
substrate (5) (6). (B) Intra- and extracellular functions of free ISG15. Apart from its activity as a ubiquitin-like conjugate, ISG15 also exists in a free form with functions
both inside and outside the cell. (1) Type I interferon (IFN-I) signaling is the main pathway for induction of ISG15 and the ISGylation machinery, including the
deISGylase USP18. Binding of IFN-I to the dimeric IFN-I receptor (IFNAR1/2) results in recruitment and activation of Janus activated kinases (JAKs) and tyrosine
kinase 2 (TYK2). Consequently, the JAKs phosphorylate STAT1 and STAT2 which dimerize and form a three-protein complex with IRF9. This complex translocates
to the nucleus where it binds to IFN-responsive regulatory elements (ISRE) to initiate transcription of IFN-stimulated genes (ISGs). Among these genes is Usp18,
which, in addition to its enzymatic activity, also functions as a negative regulator of IFN-I signaling by binding to IFNAR2 (7). There, it prevents dimerization of the
receptor and blocks recruitment of JAKs which puts a brake on IFN-I-signaling (8). There, it prevents dimerization of the receptor and blocks recruitment of JAKs
which puts a brake on IFN-I-signaling (8). In humans, this function depends on direct interaction with ISG15 which protects USP18 from proteasomal degradation
(3). Apart from its role in IFN-I signaling, free ISG15 also blocks the activity of certain enzymes, impairs viral functions by sequestering viral proteins, regulates
autophagy (9). (2) When ISG15 is not conjugated to other proteins, it also becomes secreted through an unknown non-canonical secretion pathway (10, 11). In the
extracellular space, it acts as a cytokine for NK and T cells where it binds to LFA-1 and induces the secretion of IFN-g and IL-10 from secretory granules (5). The
mechanism relies on a synergy between IL-12 and ISG15 where IL-12 triggers the expression of IFN-g and ISG15 promotes the secretion of IFN-g through
downstream activation of SRC kinases. In addition, ISG15 was shown to enhance secretion of other pro-inflammatory cytokines such as CXCL1, CXCL5, IL-1 and
IL-6 (12, 13). Figure created with BioRender.com.
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proteins were distinguished from potential contaminants by
applying the same procedure on untransfected control cells.
Similarly, Takeuchi and colleagues relied on overexpression of
FLAG-ISG15 and the ISGylation machinery (E1/E2 enzymes) in
HeLa cells to identify six additional substrates of ISG15 (48).

Although new insights were gained into the functions of ISG15,
both studies suffered from the use of transient transfection to
overexpress the ISGylation machinery. This was known to
introduce artefacts through modification of collateral proteins that
are not endogenous ISG15-conjugates (29). To overcome these
limitations, alternative strategies were devised based on antibodies
recognizing endogenous ISG15 or on cell lines stably expressing
tagged ISG15. Wong et al. engineered A549 cells to express FLAG-
ISG15 which was leveraged to isolate ISGylated proteins from IFN-
I-treated cells (49). They identified 168 ISGylation targets of which
24 were biochemically validated. Moreover, the use of A549 instead
of HeLa cells elegantly expanded the repertoire of ISG15 targets in
epithelial cells. Also during that time, the first ISG15 substrates
derived from professional immune cells were uncovered thanks to
the lab of Dong-Er Zhang. Here, the authors relied on antibodies
raised against human and mouse ISG15 to isolate and map ISG15
substrates in human U937 monocytes and Usp18-/- mouse
embryonic fibroblast (MEF) cells treated with IFN-I (50). In total,
76 ISGylation targets were discovered of which 21 were found in
both human and mouse cells, suggesting a core set of ISGylated
proteins shared across different species and cell types. More recently,
Care et al. applied the same antibody-based strategy to draft the first
catalog of ISG15 substrates in primary human cells (51). The
authors investigated how ISG15-conjugation is involved in the
maturation of plasmablasts into immunoglobulin-secreting
plasma cells. To this end, primary B cells were isolated from
human donors, treated with IFN-I and immunoprecipitated with
anti-ISG15 antibodies. MS analysis and comparison with control-IP
samples revealed 52 ISGylated substrates, several of which are
known regulators of B cell maturation.

Nonetheless, the identification of endogenous ISG15 substrates
through IP remains suboptimal due to the inefficiency of ISG15
antibodies to enrich for ISGylated proteins (47, 52). As a result, Yan
et al. recently developed a novel approach to map ISG15 targets
based on adenoviral delivery and stable overexpression of FLAG-
ISG15 into primary Isg15-/- adipocytes treated with LPS (52). In this
way, potent anti-FLAG antibodies could be used to fish for
ISGylated proteins, similar to the early screens of Takeuchi and
Wong. Following standard IP and MS analysis, the authors
eventually identified 527 murine ISG15 substrates, hitherto the
highest number of ISGylated proteins reported in a single
experiment. One of the reasons for their high coverage is the
incorporation of state-of-the-art proteomics tools, including
peptide isotopic labeling by Tandem Mass Tags (TMT) and high-
resolution orbitrap MS analysis.

Together, these studies made important contributions to the
field by expanding the landscape of potential ISGylation functions
beyond the scope of microbial infections. Nevertheless, ISG15’s
antimicrobial activity is still considered as its foremost function
which prompted additional proteomics studies in the context of
infection. In 2015, Radoshevich et al. demonstrated that ISG15
Frontiers in Immunology | www.frontiersin.org 4
counteracts infection with the intracellular bacterial pathogen L.
monocytogenes in vitro and in vivo (38). To work out the molecular
determinants underlying the antilisterial activity, the authors
developed a quantitative proteomics approach to identify ISG15
substrates. Using HeLa cells stably expressing FLAG-His-ISG15,
they isolated ISGylated proteins by His pulldown and quantitatively
measured the levels of ISG15-conjugates with Stable Isotope
Labeling by Amino acids in Cell culture (SILAC). Unlike previous
screens where in-gel digestion was used without any isotopic
labeling approach, this report was the first to combine
contemporary in-solution sample preparation with SILAC-based
quantification. With their approach, the authors identified 42 new
ISG15 substrates of which two were validated at the endogenous
level during L. monocytogenes infection. Similarly, Bhushan and
colleagues investigated the role of ISGylation signaling during
autophagy-mediated growth restriction of intracellular T. gondii
(41). The authors found that ISG15 is part of the proxisome of the
Autophagy Gene 5 (ATG5) where it mediates recruitment of
autophagy adaptors to the pathogen-containing vacuole (PV).
Accordingly, deletion of ISG15 blocked PV-recruitment which
impaired IFN-g-dependent control of T. gondii. To discern the
function of ISG15-conjugation during this process, the authors
mapped ISG15 substrates in A549 cells upon IFN-g treatment.
Their protocol used A549 cells stably expressing wild-type or non-
conjugatable ISG15 (control) that were subjected to ISG15 IP and
on-bead trypsin digestion followed by MS analysis. 239 ISGylated
proteins were identified, making up the first list of ISGylated
proteins induced upon IFN-g treatment in an epithelial cell line.
Finally, one study identified ISG15 substrates during influenza A
viral infection (53). Here, A549 cells were cultured in presence or
absence (control) of the virus to induce a physiological ISGylation
response. After 24h, cells were lysed and ISGylated proteins were
pulled down prior to on-bead trypsin digestion and LC-MS/MS
analysis. Among 22 ISGylated proteins, the authors picked up the
influenza A non-structural protein 1 as a known viral target of
ISGylation (54, 55).

Together, just 20 years after the initial discovery of the first
ISG15 substrate, MS-based methods led to the successful
identification of hundreds of ISGylation substrates in various
cell types upon different stimuli. However, many of these studies
relied on artificial systems that used ectopic overexpression of
ISG15 in cultured cells, leading to overexpression artefacts, and
on treatment with IFNs which could induce a stronger
ISGylation response than what is physiologically induced
during infection. In addition, none of the above screens was
able to pinpoint the exact modification site on substrate proteins,
making it difficult to investigate how ISG15-conjugation affects
the function of the identified substrates.

Proteome-Wide Mapping of ISG15
Modification Sites
To overcome the inability to map ISG15 modification sites and
inspired by recent developments in the ubiquitin field, we recently
devised a novel approach to study protein ISGylation (56). When
trypsin cleaves proteins into peptides, also conjugated ISG15
becomes proteolyzed which leaves a diglycine tag (GG) attached
August 2021 | Volume 12 | Article 720765
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to the original modified lysine residue. As a result, peptides that
were modified by ISG15 can be isolated from the bulk of
unmodified peptides using anti-K-ϵ-GG antibodies. Hence, the
modified peptides including the exact site of modification can be
identified by LC-MS/MS. Without any further comparison,
however, GG peptide pulldown is unable to distinguish ISG15
sites from ubiquitin and NEDD8 sites since trypsin digestion leaves
the same diglycine adduct for all three PTMs. One evident solution
is to include an Isg15-/- control condition where all enriched sites
either correspond to NEDD8 or ubiquitin sites. In this way, sites
that are uniquely identified in the wild-type correspond to bona
fide ISG15 sites. Using this comparative approach, we were able to
map 930 ISG15 sites on 434 proteins in the liver of mice infected
with L. monocytogenes, the first study reporting on the proteome-
wide identification of ISG15 modification sites, directly in an in
vivo model of bacterial infection.

Last year, the group of Benedikt Kessler published a similar
strategy to map ISG15 modification sites in the chronic myeloid
leukemia (CML)-derived cell line HAP1 (57). Here, the authors
used Usp18-/- cells instead of Isg15-/- cells to control for the
ubiquitin/NEDD8 signal spillover. Knockout of USP18 as the
major deISGylation enzyme leads to massive accumulation of
ISGylated proteins after IFN-I treatment. Hence, sites
differentially regulated between Usp18-/- and wild-type cells
correspond to actual ISG15 sites, assuming that ubiquitylation
and NEDDylation are not affected in Usp18-/- cells. Their
approach eventually uncovered 796 ISG15 modification sites
on 476 substrate proteins. In addition, the authors validated
110 of the identified targets in the same cellular system by ISG15
IP followed by LC-MS/MS. Together, both approaches led to the
joint discovery of 679 USP18-dependent substrates of ISG15.

Finally, a recent proteomics study on ISGylation generated the
first list of porcine ISG15 substrates in a porcine alveolar
macrophage cell line treated with IFN-I (58). Similar to previous
studies, the authors relied on an antibody against porcine ISG15 to
isolate ISGylated proteins prior to in-solution digestion and MS
analysis. Even without specific enrichment, MS analysis allowed to
identify GG-modified peptides and map 190 ISGylation sites on 97
substrate proteins. Evidently, this study demonstrates the capacity
of contemporary MS-based proteomics to map ISG15
modification sites directly after ISG15 pulldown, albeit with a
lower efficiency compared to standard GG-peptidomics.
COMMON SUBSTRATES AND FUTURE
PERSPECTIVES

In the above studies two strategies were used to map ISG15
substrates: i) enrichment of ISGylated proteins on the protein
level and ii) pulldown of GG-modified peptides to identify the
protein along with the modification site(s) (Figure 2A).
Together, both strategies led to the discovery of 1,563 ISG15
substrates of which 64 were validated by orthogonal approaches
(Supplementary Table S1), with a coverage increasing over time
thanks to more performant MS technologies and improved
methods to study ISG15 (Figures 2B, C). For example, GG-
Frontiers in Immunology | www.frontiersin.org 5
peptidomics alone resulted in more identified ISGylation
substrates than all previous approaches combined. By looking
at the overlap across all screens, 29 ISG15 substrates were
identified in half of the studies, suggesting that despite the
different species, cell types and strategies employed, there is a
degree of selectivity for certain ISG15 substrates (Figure 2D).
Among these 29 proteins are many metabolic proteins, especially
glycolytic enzymes, and ISGs such as STAT1 and IFIT1, in line
with previous reports (44, 52, 56, 59).

Aside from protein substrates, three studies additionally
uncovered 1,916 ISG15 modification sites (Supplementary Table
S2). However, unlike SUMOylation (60), these studies did not
report any sequence motif that would drive the specificity for
ISG15 conjugation (56, 57). We ranked ISG15 substrates based on
their number of identified GG sites, which allowed us to highlight
the top most modified ISG15 substrates in each study
(Figures 2E–H). By looking at the overlap, the molecular
chaperone HSPA8 and the glycolytic enzyme GAPDH were found
as most modified ISG15 substrates. GAPDH was found in six out of
fourteen screens, while HSPA8 was found in eleven screens, so far
without any further characterization. Likely, ISGylation of these key
proteins regulates their activity or interaction state, influencing the
cellular processes in which they are involved.

Despite the gain of knowledge through ISG15 site-seeing,
studies by Zhang and Pinto-Fernandez relied on genetic
approaches with Isg15-/- animals or Usp18-/- cells to discern
bona fide ISG15 sites. Since both proteins are regulators of
IFN-I signaling, but also other processes (3, 61) (Figure 1),
their absence could potentially introduce artefacts which might
also affect the identification of ISG15 sites. Future studies will
need to address this caveat by developing novel genetic
approaches that preserve both IFN-I signaling and endogenous
ISG15 conjugation. In analogy to strategies employed for the
identification of SUMO sites (62, 63), one could envision to
mutate ISG15’s C-terminal sequence to LRLKGG, which after
endopeptidase Lys-C digestion will generate ISG15-derived GG-
modified peptides that can be specifically enriched and identified
by MS. However, such genetic approaches cannot easily be used
in a clinical setting.

To overcome the need for genetic approaches and expand the
repertoire of applicable samples, alternative approaches could be
based on novel antibodies or technologies that combine
enzymatic and chemical methods. Unlike trypsin digestion
which generates the same GG-modified peptides for ubiquitin,
NEDD8 and ISG15, digestion with endopeptidase Lys-C leads to
remnants that are specific for each UBL. Hence, antibodies
developed against this fragment could be used to fish for
ISG15-modified peptides. In the case of ubiquitin, this strategy
led to the proteome-wide identification of 63,000 unique
modification sites (64). Another elegant strategy would be to
include a treatment with USP2 (a ubiquitin-specific protease)
ahead of trypsin digestion and GG-peptide enrichment to deplete
the sample from ubiquitin-modification sites. Similarly, the
specificity of proteases such as USP18 could be leveraged to
reveal free lysine residues at ISG15 modification sites available
for chemical labeling and enrichment by affinity precipitation
August 2021 | Volume 12 | Article 720765
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FIGURE 2 | MS-based discovery of ISG15 substrates. (A) Commonly used workflows to identify ISG15 substrates by mass spectrometry. Upper panel: many
studies rely on pulldown of ISGylated proteins from induced cells using antibodies or resins against endogenous or overexpressed (tagged) ISG15. Pulled down
proteins are separated by SDS-PAGE to trypsinize specific gel bands. Alternatively, proteins are digested directly on-bead. In both cases, the released peptides are
analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Non-specific binders can be controlled by parallel analysis of cells expressing no ISG15
or non-conjugatable ISG15 (e.g. ISG15AA) or by using an antibody isotype control. Lower panel: to identify exact sites of ISG15 modification, recent studies applied
diglycine (GG) peptide enrichment from induced cells or tissues. Here, trypsin digestion of extracted proteins generates GG-modified peptides derived from
conjugated ISG15, ubiquitin or NEDD8. These GG-modified peptides can be captured with specific anti-K-ϵ-GG antibodies prior to their identification by LC-MS/MS.
To distinguish ISG15 modification sites from ubiquitin and NEDD8 sites, genetic controls are included such as Isg15-/- mice or Usp18-/- cells. Consequently,
comparison with a wild-type condition allows to pinpoint bona fide ISG15 sites based on their absence in Isg15-/- or increased abundance in Usp18-/- conditions.
Figure created with BioRender.com. (B) Overview of MS-based proteomics studies reporting ISG15 substrates, listing relevant information on the number of
identified substrates and the experimental design. (C) Bar chart showing the increase of identified ISG15 substrates in the different studies over time. (D) Bar chart
showing 29 ISG15 substrates that were reported in ≥7 studies. (E) Venn diagram showing the overlap between the most modified ISG15 substrates listed in panel
(F–H). (F–H) Bar charts showing the most modified ISG15 substrates (substrates with ≥5 sites) in the three GG-peptidomics screens.
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(65) or diagonal chromatography (66). Beyond label-free
quantification, improvements in quantification methods also
have the potential to increase site identification by GG-
peptidomics, as demonstrated by the incorporation of SILAC
and TMT-labeling in several ubiquitin studies (67, 68).
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