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ABSTRACT

Iterative similarity search programs, like psiblast,
jackhmmer, and psisearch, are much more sen-
sitive than pairwise similarity search methods like
blast and ssearch because they build a position
specific scoring model (a PSSM or HMM) that cap-
tures the pattern of sequence conservation charac-
teristic to a protein family. But models are subject
to contamination; once an unrelated sequence has
been added to the model, homologs of the unre-
lated sequence will also produce high scores, and
the model can diverge from the original protein fam-
ily. Examination of alignment errors during psiblast
PSSM contamination suggested a simple strategy
for dramatically reducing PSSM contamination. psi-
blastPSSMs are built from the query-based multiple
sequence alignment (MSA) implied by the pairwise
alignments between the query model (PSSM, HMM)
and the subject sequences in the library. When the
original query sequence residues are inserted into
gapped positions in the aligned subject sequence,
the resulting PSSM rarely produces alignment over-
extensions or alignments to unrelated sequences.
This simple step, which tends to anchor the PSSM
to the original query sequence and slightly increase
target percent identity, can reduce the frequency
of false-positive alignments more than 20-fold com-
pared with psiblast and jackhmmer, with little loss
in search sensitivity.

INTRODUCTION

Protein similarity searching is central to interpreting
genome sequence data. The widely used BLAST program
(1) can routinely identify homologous proteins that di-
verged >2 billion years ago, and share as little as 20–25%
sequence identity. For most large, well-characterized pro-
tein families, a single BLAST search against a comprehen-

sive protein library will yield hundreds, if not thousands of
statistically significant similarity scores from homologous
proteins that share common 3D structures, and often simi-
lar functions. But, despite the enormous growth in protein
sequence databases, and the expectation that most protein
families that exist in nature have homologs in current pro-
tein sequence databases, there are still large numbers of pro-
teins for which little or no structural and functional infor-
mation is known. Likewise, as the number of proteins with
known 3D structures has grown, there are still many exam-
ples of structurally similar proteins that do not share statis-
tically significant similarity in a BLAST search.

Iterative, model-based, similarity search methods like
psiblast (1) and jackhmmer (2) are dramatically more
sensitive than conventional pairwise similarity searching
methods at identifying homologous, structurally similar,
proteins. Iterative similarity searches with psiblast are
usually two- or three-fold more sensitive than single se-
quence searches (3,4), and iterative methods can be 5–100-
fold more sensitive with challenging queries.

Unfortunately, iterative search methods can fail when un-
related sequences are included in the Position-Specific Scor-
ing Matrix (PSSM) or Hidden Markov Model (HMM). In
the worst cases, contaminating non-homologous sequences
can shift the PSSM away from the original homolog fam-
ily causing it to detect more non-homologs (false-positives)
than homologs (true positives). In previous work, Gonzalez
and Pearson (5) showed that PSSMs are often contaminated
when a homologous alignment over-extends into a non-
homologous region and brings additional non-homologous
domains into the PSSM model. In that work, we also
showed that reducing ‘alignment creep’ by fixing the align-
ment boundaries for a sequence included in the PSSM to
the boundaries found at the first significant alignment of
the sequence, could dramatically reduce alignment over-
extension and improve search selectivity (5). An implemen-
tation of this strategy––psisearch––was described by Li
et al. (6).

During the development of psisearch2, an improved
version of psisearch, we found that the strategy used to
construct the PSSM in psisearch occasionally produced
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PSSMs that aligned incorrectly to the homologous domain.
To correct this problem, we explored methods to correctly
‘anchor’ the PSSM by replacing gapped positions in the
subject sequence alignment with the residues from the query
sequence that aligned to the gap in the subject sequence. We
were surprised to find that PSSMs constructed using query-
seeded subject sequences not only reduced PSSM misalign-
ment, they also produced dramatically fewer false-positives.

We compared the ability of conventional psiblast
(1,7) and jackhmmer (2), and query-seeded versions
psisearch2 using either psiblast or ssearch as the
search program to identify homologs in RPD3, a set of full
length protein sequences selected from Pfam28. To simu-
late searches with multi-domain proteins, queries were con-
structed by embedding Pfam domain regions from real pro-
tein sequences into random flanking sequence. We also
searched with intact full-length proteins containing the
same query domains. In psisearch2 searches with ei-
ther psiblast or ssearch, PSSMs derived from sub-
ject sequences with seeded query residues are much less
likely to become contaminated by non-homologous do-
mains. Query-seeding appears to reduce homologous over-
extension by reducing the evolutionary ‘depth,’ or increas-
ing the target sequence identity, of PSSM models.

MATERIALS AND METHODS

Evaluation datasets

psiblast, jackhmmer and psisearch2 iterative
search performance was evaluated using domains and
sequences selected from an updated version of the RefProt-
Dom dataset (8), RPD3, derived from Pfam release 28 (9),
with modifications described below. The query sequences
used for the searches contained a single Pfam28 domain,
embedded in an equal length of random sequence. Query
sequences were iteratively searched against the full-length
protein sequences in RPD3.

RPD3 construction––selection of domain families and clans.
The domain families used to evaluate iterative similarity
search strategies were selected from RefProtDom3, a set
of diverse domains families that met the following criteria:
(i) domain size: Pfam domain model lengths >200 match
states; (ii) domain number: >200 members; (iii) diversity:
domains were present in at least two of the three kingdoms
of life (archaea, bacteria, eukaryota) with at least 20% of
the sequences from the second most abundant kingdom
(100 domains if the most abundant kingdom had >500 do-
mains); (iv) clan length consistency: domain families from
clans were included only if the maximum model length of
the domains in the clan was <1.5-fold the minimum model
length. In Pfam28, there are 1743 domain families and 155
clans that met the domain length, domain abundance, and
clan length consistency criteria. Including the diversity re-
quirement reduced the number of domain families that did
not belong to a clan to 299, and the number of clans to 40,
for a total of 339 non-homologous queries from 428 Pfam28
domain families.

RPD3 construction––selection of sequences. With the dra-
matic increase in bacterial sequencing over the past 5 years,

some of the 339 domain and clan RPD3 families contained
many tens of thousands of sequences containing an RPD3
domain. To reduce the differences in abundance between the
largest and smallest domain families, large domain fami-
lies were randomly down-sampled to a maximum of 5000
entries using a strategy that sought to preserve or enhance
phylogenetic diversity. Thus, if there were 2000 or fewer se-
quences in archaea, bacteria, and eukaroyta, all 2000 were
included, and if the two kingdoms with fewer domains had
<25% of the domains in the largest kingdom, 2000 were
taken from the most abundant, and at least 500 taken from
the less abundant kingdoms. If the less abundant kingdoms
contained >25% of the sequences in the most abundant
kingdom, all three kingdoms were sampled randomly. The
same strategy was used for domains from the 40 clans, but
for domains in clans, all the domain families from the clan
were combined, and then the phylogenetic diversity rules
were used for sampling.

The resulting RPD3 protein set contains 597 753 pro-
teins that contain at least one domain from the 299 Pfam28
families and 40 Pfam28 clans in the RPD3 domain set.
The largest clan/domain family is found in 4719 sequences,
the smallest domain family in 207 (median: 2271, Q1:
1011, Q3: 2482). Thus, the middle 50% of clan/domain
families differed ∼2.5-fold in abundance. The full length
RPD3 sequences contain many domains in addition to
the 339 domains/clans in the RPD3 set. Pfam28 reports
2904 domains in the full alignments (Pfam28 MySQL field
in full=1) among the RPD3 sequence set.

Query sequence selection. To provide a challenging set
of domains for evaluating psiblast, psisearch2,
and jackhmmer, two sets of 100 query domains were
selected from the 339 RPD3 clan/domain families.
We sought sequences that were more distant from the
HMM model that describes the domain family, us-
ing the Pfam28 sequence bits scores as a proxy
for evolutionary distance. For one set of 100 queries
(far50), we randomly selected domains from the bottom
tenth-percentile of sequence bits scores from the
pfamA reg full significant table in the Pfam28
MySQL distribution that covered at least 50% of the
domain model length, and did not overlap other domains.
For the second set of 100 queries (far66), we randomly
selected domains that at least 66% of the model length
from the bottom tenth-percentile. For domain families
that belonged to clans, we selected a domain family near
the median in sequence abundance in RPD3. Domains
were only selected from sequences that were not marked as
is fragment in Pfam28.

The domain region sequences were then embedded into
random sequence, i.e. a 200 residue domain produced a 400
residue query sequence with 100 residues of random se-
quence on either side of the genuine domain sequence, and
used to search the RPD3 sequence set. The embedded do-
main queries were then ranked by their ability to produce
statistically significant alignments in a Smith–Waterman
search (ssearch) of the RPD3 library, and the 100 se-
quences between the 10th and 40th percentiles by family
coverage were selected (far50). For the far66 set of queries,
the 100 embedded domain queries were selected randomly
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Figure 1. The psisearch2 iteration cycle. A query sequence is compared
with a sequence database using either psiblast or ssearch, producing
output in BLAST tabular format including a BTOP encoded alignment.
The tabular BTOP output, together with optional boundary information,
is processed by the m89 btop msa2.pl script to produce both a multi-
ple sequence alignment (MSA) and a FASTA format library file which is
reformatted with makeblastdb. These two files are processed by psi-
blast to produce a PSSM, which can then be used to re-search the se-
quence database for the next iteration.

from the bottom half of queries ranked by family cover-
age after an ssearch search. The two query sets sample
150 of the domain/clan families. Forty-nine families are
shared (with different embedded domain queries) between
the far50 and far66 query sets. We also evaluated the perfor-
mance of query-seeded iterative searching using full-length
protein sequence queries by retrieving the full-length se-
quences from Pfam28 that contained the 100 far50 embed-
ded domains (far50-full) and the 100 full-length sequences
with far66 domains (far66-full).

Challenging Pfam queries. To focus on the domain
queries that produced the largest false discovery rates
(FP/(TP+FP), FDR), we identified 40 queries with the
highest FDR for psiblast and 40 for jackhmmer, and
then found 20 each from the far50 and far66 sets with the
highest average FDR using psiblast and jackhmmer
after 10 iterations.

Iterative searching and PSSM construction

We evaluated the performance of psisearch2, a new
version of the psisearch program (6) that combines
query-seeding and alignment boundary modification. The
psisearch2 script (Figure 1) separates the two parts of an
iterative search: (i) the identification of homologs and pro-
duction of alignments; and (ii) the production of a PSSM
from the alignments for the next iteration. psisearch2
uses a flexible strategy for modifying the boundaries of the
multiple sequence alignment (MSA) and the sequence li-
brary used to construct the PSSM with psiblast.

A block diagram of the search/alignment/PSSM con-
struction process is shown in Figure 1. The iterative pro-
cess begins with a similarity search, using either psi-
blast (7) or ssearch (10), which produces output in the

blast-tabular format that includes the blast BTOP align-
ment encoding (psiblast -outfmt 7 or ssearch -
m 8CB) format. The alignment results are passed to the
m89 btop msa2.pl script to produce a MSA and subject
sequence library. The MSA and subject library files are then
passed to psiblast to produce the PSSM.

We control the PSSM construction process by using
psiblast2.3.0 with the -in msa and -out pssm
options, together with the recently implemented -
save pssm after last round option. We build
the PSSM by aligning the MSA to a sequence database
comprised of the sequences with statistically significant
similarity scores from the previous iteration. We can modify
the properties of the PSSM in two ways: (i) by controlling
the boundaries of the sequences specified in the MSA used
to make the PSSM (boundaries can reflect the current
alignment boundaries, the previous alignment boundaries,
or domain boundaries); and (ii) by modifying the subject
sequences in the sequence database used to calculate the
PSSM (both internal- and end-gaps in the subject sequence
can be ignored, or be substituted with the aligned query
sequence residue, or with a random residue).

The m89 btop msa2.pl program takes the alignments
produced by the psiblast or ssearch similarity search
and produces an MSA and a custom subject sequence
database that psiblast can convert into a PSSM.
m89 btop msa2.pl options control the MSA boundaries
and the sequences in the custom subject sequence database.

Search evaluation

Characterization of true-positives and false-positives. The
200 embedded domain query sequences described above
were used to iteratively search the RPD3 full-length pro-
tein sequence database using psiblast and jackhm-
mer (unmodified), and psisearch2 modified using the
query-seeding and boundary control strategies available
with m89 btop msa2.pl (Figure 1).

For the psiblast and ssearch searches with
psisearch2, alignment output was captured using the
commented tabular format, including the BTOP field. For
jackhmmer, similar information was extracted from the
--domtblout file. The blast-tabular and --domtblout
formats provide both the identifier and expectation value
for the subject library sequences found, and the beginning
and ends of the alignments in the query and subject
sequence. For jackhmmer, we used hmm coordinates as a
proxy for the query coordinates, and the alignment start
and end, not the probabilistic envelope boundaries, for the
subject boundaries.

Because our query sequences contain a genuine protein
domain sequence embedded in random sequence, we count
alignments as true-positives only if the genuine domain in
the query aligns with the same domain in the Pfam28 an-
notated RPD3 protein sequence. If the embedded domain
query sequence domain aligned with a protein that did not
contain the correct domain, the alignment was scored as a
false-positive. If the query and subject sequences contained
the same domain, but the alignment was outside the em-
bedded domain coordinates, the alignment was scored as
a false-positive (Figure 2H). For searches with full-length



e46 Nucleic Acids Research, 2017, Vol. 45, No. 7 PAGE 4 OF 10

100 200 300

A0A022SZ73

100 200 300

D1YVS8
PF003741 68 PF00346 0612 PF00346193 271

PF00346 172/0616
A  psiblast2.3.0+

A0A022SZ73
D1YVS8

PF00374 PF00346 PF00346

PF00346
B  jackhmmer

A0A022SZ73
D1YVS8

PF00374 PF00346 PF00346

PF00346
C  psisearch2

A0A022SZ73
D1YVS8

PF00374 PF00346 PF00346

PF00346
D  psisearch2 - seeded

100 200 300

A0A022SZ73

100 200 300 400

L0HP41
PF003741 87 PF00374 605404

PF00346 0616
E  psiblast2.3.0+

A0A022SZ73
L0HP41

PF00374 PF00374

PF00346
F   jackhmmer

A0A022SZ73
L0HP41

PF00374 PF00374

PF00346
G  psisearch2

A0A022SZ73
R7VQV7

PF00346183 271

PF00346 0616

H  psisearch2 - seeded

true positives:

false positives:

Figure 2. Iterative over-extension with successive iterations psiblast,
jackhmmer, and psisearch. The respiratory-chain NADH dehydroge-
nase domain (PF00346) comprising residues 87–259 from Uniprot protein
accession A0A022SZ73was embedded in 86 residues of random sequence
on the N- and C-terminal sides, and compared to the RPD3 library using
the indicated programs. The two horizontal lines indicate the the query and
subject sequences; the green and blue blocks above and below the align-
ment blocks show all Pfam28 domains on the query and subject sequences.
Green domain alignments in solid colors reflect homology; striped blue
and green domain alignments are non-homologous false positives. The
start, end, and length of the Pfam28 model are shown in the domain
blocks. The gray-shaded blocks show the boundaries of the alignments.
Alignment boundaries in the initial iterations are darkest; boundaries in
the final iterations are lighter. (A–D) Progress of the first five iterations
in alignments to a protein (Uniprot accession D1YVS8) that contains an
homologous PF00346 domain (green) with psiblast (A), jackhmmer
(B), psisearch2 (C) and psisearch2 with query-seeding (D). (E–H)
False-positive alignments to non-homologous regions. The first significant
(E) < 0.001) false-positive alignment to Uniprot accession L0HP41 with
psiblast (E, iteration 2), JACKMMER (F, iter. 3), and psisearch2
(G, iter. 3). psisearch2 with seeding (H) does not produce a significant
alignment with L0HP41, so an alignment with Uniprot accession R2VQV7
at iteration 4 is shown (H). This alignment is to a homologous domain, but
in a non-homologous region, so the alignment is scored as a false-positive.

proteins (far50-full, far66-full), only alignments in the orig-
inal query domain were scored. Thus, for full-length query
sequence H6NQX3, which contains a PF02219/CL0086
domain from residues 326–607, only alignments within this
range of query residues were scored as either true-positive
(if the aligned region contained a CL0086 domain), or false-
positive (if no true-positive domain was found). This con-
trasts with embedded queries, which could be scored as

false-positives when the alignment occurred in the random
flanking sequence (Figure 2H).

Average overall sensitivity and FDR was calculated as
weighted sensitivity (TP/(TP + FN)) or FDR (FP/(TP +
FP)) for receiver operator characteristic (ROC) curves and
Table 1 by treating each family independently, adding up
the total sensitivity or FDR, and dividing by the number
of queries. Thus, when 100 queries were summarized, each
individual query contributed a maximum of 1% of the sen-
sitivity or FDR total; for 20 queries, 5%.

Modifications to Pfam28 annotations. Our evaluation of
search effectiveness and search selectivity depends on ac-
curate Pfam28 annotations. We used Pfam28 coordinate
annotations on the proteins in RPD3 without modifica-
tion. But when we saw significant false-positive alignments,
sometimes with unembedded sequences, and sometimes in
the first iteration, we investigated further. In four cases,
we concluded that Pfam had missed a homology relation-
ship. We added PF09511 to clan CL0078, PF16332 to
CL0579, PF01010 to CL0425, and we formed a new clan
(CL9001) from PF01156 and PF07362. Each of these rela-
tionships was confirmed by finding alignments where an-
notated members of the clan aligned with the candidate ho-
mologous domain, or where the relationship was supported
by SCOOP (11). Adding Pfam domain families to clans al-
lowed us to correct large numbers of false-positives (but also
increased the number of homologs in the family, thus re-
ducing the true-positive fraction). It is unlikely that we have
corrected all the missing relationships, so some of the false-
positives we record are probably the artifact of homologous
domains that are not annotated by Pfam28.

Software availability

The psisearch2.pl, psisearch2.py, and
m89 btop msa2.pl scripts are available as part of
the FASTA software distribution from faculty.virg
inia.edu/wrpearson/fasta/fasta36 directory,
or from the European Bioinformatics Institute (ftp:
//ftp.ebi.ac.uk/pub/software/psi-search2),
or from GitHub (github.com/wrpearson/fasta36).
The RPD3 database is available from GitHub
(github.com/wrpearson/RPD3).

RESULTS

Alignment over-extension and PSSM corruption

PSSM corruption often occurs when an aligned homol-
ogous region produces a strong similarity score that al-
lows the alignment to be continued into an adjacent non-
homologous region, a process we have termed homolo-
gous over-extension (5). Homologous over-extension typ-
ically occurs because the alignment score for an homol-
ogous region is not reduced rapidly enough in the non-
homologous region to terminate the alignment. For exam-
ple, if the homologous region is around 40% identical and
the BLOSUM62 scoring matrix is being used, the alignment
might be extended into non-homologous until the overall
alignment identity is 25% or lower (12). Homologous over-
extension is a particular problem for iterative methods that

ftp://ftp.ebi.ac.uk/pub/software/psi-search2
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Table 1. False discovery rates (FDR) and sensitivity (maximum family coverage) for far50 queries

Program Iter. F50%a FDR 80%b FDR Max.c Sens.d

psiblast 1 – – 0.0014 0.1115
5 0.0001 0.0037 0.0321 0.8833
10 0.0003 0.0112 0.0653 0.9161

jackhmmer 1 – – 0.0097 0.1097
5 0.0009 0.0052 0.0232 0.8955
10 0.0010 0.0061 0.0357 0.9299

psisearch2/ 1 – – 0.0011 0.0984
msa 5 0.0000 0.0016 0.0168 0.8452

10 0.0000 0.0009 0.0319 0.8931

psisearch2/ 1 – – 0.0011 0.0986
msa+seed 5 0.0000 0.0004 3.8X 0.0009 18X 0.8208

10 0.0000 0.0002 4.9X 0.0018 17X 0.8626

psiblast/ 1 – – 0.0014 0.1115
msa 5 0.0000 0.0035 0.0355 0.8873

10 0.0000 0.0193 0.0798 0.9139

psiblast/ 1 – – 0.0014 0.1115
msa+seed 5 0.0000 0.0006 5.9X 0.0050 7.1X 0.8518

10 0.0000 0.0005 38X 0.0149 5.4X 0.8842

aFalse discovery rate (FDR) at 50% weighted family coverage after 5 or 10 iterations (Iter.).
bFDR at 80% family coverage.
cMaximum FDR.
dMaximum weighted family coverage. ‘X’ values show the reduction in FDR compared with unseeded MSAs for psiblast and psisearch2.

build protein family specific PSSMs or HMMs, because
these scoring systems can detect very low identity homologs,
and are thus less effective at terminating alignments as they
extend into non-homologous regions.

When we first identified homologous over-extension as
a major cause of PSSM contamination, we found that we
could reduce contamination using a simple strategy to pre-
vent alignments between the query/PSSM and the subject
sequences from extending with successive alignments (5,6).
This strategy improved search specificity but seemed crude,
since distantly related portions of an homologous region
that failed to align in an early iteration might be excluded
from the PSSM. Thus, we sought a more subtle strategy for
reducing over-extension.

Recently, the fasta programs have been extended to al-
low sub-alignment scoring (10), a process that partitions
the overall similarity score based on sequence annotations,
such as the start and stop of domains annotated by Pfam
(9). Sub-alignment scoring makes it much easier to de-
tect potential non-homologous alignment, because the part
of the alignment that is homologous will have a much
higher score than the over-extended non-homologous re-
gion. When non-homologous over-extension occurs, more
than 80% of the similarity score can be found in the ho-
mologous region, but the non-homologous alignment with
20% of the score may be from 10–100 residues long. Thus,
the score density in the non-homologous region is far lower
than the density across the homologous alignment. Sub-
alignment scoring can detect domains that have been in-
cluded in alignment but do not contribute significantly to
its score.

Our earlier psisearch program (6) performed iterative
searches by searching a database (upper left box in Figure 1)

and then directly building a PSSM by running psiblast
with the query sequence or query PSSM against a library of
subject sequences produced from the significant alignments
in the previous search (lower right box in Figure 1). While
integrating sub-alignment scoring into the scripts that we
used for iterative searching with ssearch, we were sur-
prised to find that on rare occasions the psiblast run
to produce the PSSM did not align the query/PSSM to
the same region of the subject sequence. To provide psi-
blast more guidance and ensure that the appropriate se-
quences were aligned, we wrote the m89 btop msa2.pl
script. m89 btop msa2.pl produces an MSA from the
aligned output of the previous search. psiblast can use
this MSA, together with the set of subject sequences (the
two sets of arrows entering the ”Build PSSM” box in Fig-
ure 1) to produce a PSSM. But despite the MSA input,
psiblast sometimes failed to produce an alignment over
the homologous domain.

To ‘force’ psiblast to accurately reproduce the align-
ments over the homologous domains, we modified the
m89 btop msa2.pl script to insert query residues into the
subject library sequences at positions corresponding to gaps
in the subject sequence in the MSA alignment. This strategy
abolished psiblast misalignment during PSSM genera-
tion, and we were to find that it also dramatically reduced
the number of false-positives found after five, or even ten,
iterations. Including ’X’-residues, or random residues, did
not consistently prevent misalignment.

Figure 2 shows the process of alignment over-extension
that occurs when a sequence with a Pfam28 domain
(PF00346) embedded in random sequence aligns with
full-length Uniprot proteins. The PF00346 domain from
A0A022SZ73 embedded in the query comes from the far50



e46 Nucleic Acids Research, 2017, Vol. 45, No. 7 PAGE 6 OF 10

query set; each of these domains must cover at least 50%
of the Pfam28 model. The A0A022SZ73 domain contains
155 (6–160) of the 271 match state HMM PF00346 model.
This incomplete domain can produce alignments with other
PF00346 containing proteins that extend into the random
C-terminal sequence.

All the alignment beyond the embedded green PF00346
domain in Figure 2 is non-homologous over-extension; out-
side the green domain the subject sequence is aligning to
random sequence in the query (indicated by striped do-
mains in the subject sequences). As Figure 2, panels A–
D illustrate, over-extension occurs with NCBI psiblast,
jackhmmer, and psisearch2 (without query-seeding),
and with psisearch2 with query seeding to a more lim-
ited extent. Many proteins that contain a PF00346 domain
also contain a PF00374 domain (e.g. L0HP41 in Figure
2A-D). When over-extension aligns random sequence in
the query to a PF00374 domain in the subject sequences,
the PSSM ‘learns’ to find PF00374 domains, and pro-
duces false-positive alignments with proteins that contain
a PF00374 domain, but not the homologous PF00346 do-
main (Figure 2E–G, striped blue domains). If the PSSM is
built by aligning the MSA against a library that contains
query residues seeded in the gaps in the subject sequences,
the PF00374 alignment does not occur, though it does align
to a non-homologous part of a PF00346 domain (Figure
2H, striped green domain).

Query-seeding reduces false-positives

Query-seeding reduces the sensitivity of psisearch2 and
psiblast slightly, but decreases the false discovery rate
(FDR) for those iterative methods 5–20-fold (Table 1, Sup-
plementary Table S1, and Supplementary Figure S1). The
100 far50 queries are quite challenging––all the methods
find about 10% of homologs after the first iteration (for the
far66 embedded queries, ∼15% of homologs are found af-
ter one iteration)––but after five or ten iterations, 82–93%
of homologs (the average across the 100 queries) are found.
jackhmmer detects the largest fraction of homologs, but
also has the highest average FDR.

The more remarkable difference in performance
with query-seeding is reflected in FDR after five and
ten iterations. The direct effects of query-seeding can
be seen by comparing the psisearch2/msa and
psisearch2/msa+seed, or the psiblast/msa and
psiblast/msa+seed maximum FDR columns. For
these two pairs, the only difference in how the PSSM was
constructed and used was the inclusion of query residues
in subject sequence gaps.

With the far50 embedded domains, query-seeding drops
the maximum FDR for psisearch2 18-fold after five or
ten iterations (Table 1). For psiblast, query-seeding im-
proves the FDR 7-fold after five iterations and 5-fold af-
ter 10 iterations. For the far66 queries (Supplementary Ta-
ble S1), query-seeding reduced the maximum FDR about
5-fold. At 80% average family coverage, query-seeding im-
proved FDR from 4–38-fold for the far50 queries. For the
far66 queries, the 80% FDR improvement ranged from 38-
fold (psisearch2) to 79-fold (psiblast) at iteration 10
(Supplementary Table S1).
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Figure 3. Sensitivity and selectivity (FDR) for PF00346 (A, B) and 20 chal-
lenging far50 queries (C, D). The distribution of the sensitivity (A, C; frac-
tion of true positives found) and FDR (B, D) are shown for four differ-
ent search strategies, NCBI psiblast , jackhmmer , psisearch2
without query-seeding , and psisearch2 with query-seeding . The
boxplots show the median, first and third quartiles, and 1.5 times the inter-
quartile range. FDR (panel D) is plotted on a log scale. The median bar is
not visible in the psisearch2 seeded box because fewer than half of the
challenging families have false-positives. Data for the far66 query set ares
shown in Supplementary Figure S3.

After 10 iterations, 36 far50 queries produced a false-
positive with unseeded psisearch2, but only 16 pro-
duced a false-positive with query-seeded psisearch2.
Similar results occur with MSA driven psiblast (Figure
1). After 10 iterations, 54 queries produce a false positive
with psiblast/MSA, but only 32 queries produce a false-
positive with psiblast/MSA with query-seeding.

The far50 and far66 queries were selected because they
share significant similarity with the smallest fraction of ho-
mologs in the RPD3 database. But half of the far50 queries
produce no false-positives after five iterations with psi-
blast (Supplementary Figure S1), and more than one
third of the far50 queries produced no false-positives after
10 iterations with psisearch2 (un-seeded). Thus, we fo-
cus on the 20 families from the far50 and far66 query sets
that produced the largest FDR (Figure 3, Supplementary
Figure S3).

Figure 3 shows the sensitivity and selectivity (FDR) of
PF00346 (panels A and B) and twenty of the most chal-
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lenging query sequences from the far50 query set (the
far66 dataset is shown in Supplementary Figure S4). At
iteration 2, psiblast produces 15 false-positive align-
ments in addition to finding 98% of the 2761 true-positives,
whilepsisearch2 (unseeded) produces six false-positives.
jackhmmer reports its first 217 false-positives with
PF00346 at iteration 3 (Figure 3). At iteration 4, jackhm-
mer produces 1541 false-positives. psisearch2 with
seeded query residues produces 1 false-positive at iteration
3, but only 24 after 10 iterations, where the non-seeded iter-
ative strategies produce ∼1700 false-positives.

The process of PSSM contamination depends strongly
on the content of the sequence database and the topolo-
gies of the homologous and non-homologous domains.
For a broader perspective on search performance we plot-
ted the true positive fraction and FDR for the 20 hardest
far50 queries (Figure 3C and D). Here, the median FDR
shows that psiblast begins producing false-positives for
more than half the queries by iteration 2, and jackhmmer
and psisearch2 (unseeded) at iteration 3. psisearch2
(seeded) does not produce any false-positives for half the
queries in the far50 query set after 10 iterations. In the far66
query set, more than half the queries are producing false-
positives with psisearch2 (seeded) at iteration 4, but the
FDR is an order of magnitude lower than psisearch2
without query-seeding (Supplementary Figure S3).

We also compared the performance of PSSMs produced
with and without query-seeding by simply tabulating the
number of query families where the seeding produced more
false-positives, or fewer false positives using the ’R’ bi-
nom.test function. This test confirms that query-seeding
significantly reduces the number of false-positives. For
psiblast and the far50 data set, 46 queries produce more
false-positives after 10 iterations, while 16 queries produce
fewer (P < 10−4, ’R’ binom.test, one-tailed). With the
far66 dataset, the numbers are 55 more and 4 fewer false-
positive queries without query-seeding (P < 10−12). For
psisearch2, 38 families have more false-positives and
nine fewer on the far50 dataset (P < 10−5), while 36 have
more and five fewer on far66 (P < 10−6). When the same
test is done on the number of true positives, query-seeding
reduces sensitivity. For psisearch2 and the far50 set, un-
seeded PSSMs perform better with 63 queries, while query-
seeded PSSMs perform better with 32 (P < 0.001). But
we believe that false-positives pose much more of a threat
to iterative searches than false-negatives (see Discussion).
Query-seeding significantly reduces the number of false-
positives during iterative searches with only a small decrease
in sensitivity.

Controlling alignment extension reduces over-extension

The improvement we see by seeding query residues into
gaps in subject sequences is larger than the improvement
we found by explicitly limiting alignment extension in
psisearch (6). To see whether additional control of align-
ment extension could improve FDR beyond query-seeding,
we examined two alignment strategies for reducing over-
extension: (i) setting alignment boundaries to the values
found the first time the subject sequence was found with a
statistically significant score (alignment) (5,6); and (ii) lim-
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Figure 4. Seeding and over-extension control strategies. Nine iterative
search strategies are shown on the 20 most challenging queries from
the far50 set. In addition to the six strategies shown in Figure 3, three
combinations of two over-extension limiting strategies are shown: (i)
psiblast/msa with alignment extension limited by alignment history
(pblast/seed+aln, ); (ii) psisearch2with seeding limited by align-
ment history (psi2/seed+aln, ) and (iii) psisearch2 seeded with
domain boundaries (psi2/seed+dom, ). Results after five (A, B) or ten
(C, D) iterations. Plots for the far66 dataset are shown in Supplementary
Figure S4.

iting alignment extension to domain boundaries based on
Pfam28 domains (domains). Limiting extension based on
alignment history was tested using both psiblast/MSA
and psisearch2 (both with seeding). Domain based ex-
tension limits only tested with psisearch2, since the ap-
proach uses sub-alignment scores to focus on domains with
significant similarity.

In our tests, limiting alignment over-extension using the
alignment history was generally more effective than the do-
main strategy (Figures 4, 5 and 6A). Looking at the ROC
curve (Figure 4) the up- and down-triangles (�, �) both
produce curves to the left (more selective) of the curves with
seeding alone (+ symbols) after 10 iterations. But the ef-
fect is quite modest. Looking at the distribution of FDR
fractions across 10 iterations (Figure 5 B) suggests that the
alignment history strategy does a better job of controlling
the FDR for more of the 20 hardest queries.

Limiting alignment extension using alignment history
has a small effect on psiseach2 with query-seeding and
the far50 and far66 datasets; the number of false-positives
goes down for seven families but up for four for the far50
queries, and down for eight but up for three with the far66
set. The effect for psiblast is more dramatic; 19 families
have fewer false-positives with using alignment history to
reduce over-extension, while eight families have more false-
positives (P < 0.026 using a one-sided binom.test func-
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Figure 5. Alignment boundary modification modestly improves selectiv-
ity. The sensitivity (A) and FDR (B) for each of the 20 challenging queries
from the far50 set are shown for four variations of psisearch2: with-
out query-seeded PSSMs , with query-seeded PSSMs , query-seeded
PSSMs with over-extension limited by alignment history ( ) or domain
boundaries ( ). The boxplots and data points are drawn as in Figure 3.

Figure 6. Query-seeding reduces over-extension and increases alignment
identity. The distributions of the median over-extension (A) and the bot-
tom quartile of percent identity (B) for all alignments with E() < 0.001 for
the 20 challenging far50 queries is shown. Symbols and colors are as in
Figure 5, with the addition of psi2/msa/10 , which shows the align-
ment progress with psisearch2, without query-seeding, but with a 20-
fold more stringent inclusion threshold (--evalue=0.0001). The same
data for the far66 queries are shown in Supplementary Figure S7.

tion in ’R’). For the far66 set, 17 families have fewer false-
positives and six have more (P < 0.017).

Because query-seeding is very effective, we only see a
modest improvement in search selectivity (FDR) with our
two over-extension control strategies. Figure 6A shows how
the amount of over-extension increases with number of iter-
ations when query-seeding is not used . Remarkably, when
query-seeding is used, the median level of over-extension
without alignment boundary modification is <10 residues;
query-seeding reduces median over-extension more than
50-fold after five and ten iterations. With so little over-
extension without alignment boundary modification, it is
difficult to do much better, and domain-based boundary
modification looks very similar to query-seeding alone.
However, boundary modification using alignment history
reduces over-extension even more, particularly after itera-
tion three.

Seeding query residues into the sequences used to con-
struct PSSMs reduces false-positives by increasing the infor-
mation content at positions with gaps in many homologs, ef-
fectively making the resulting position specific scoring ma-
trix slightly ‘less deep’. But query-seeding also reduces fail-
ures of the PSSM construction process to re-align sequences
properly. To see whether query-seeding improves searches
where over-extension is less likely, we also compared the
unseeded domains from the far50 query set to the RPD3
database. When the far50 domains are not embedded in ran-
dom sequence, there were no significant differences between
un-seeded and seeded PSSM searches (Supplementary Fig-
ures S4 and S5), and, as expected PSSMs built with query
seeding are slightly less sensitive.

Query-seeding and PSSM target identity

Homologous over-extension, the major cause of false-
positives in iterative searching, can be reduced by decreas-
ing the evolutionary distance (equivalent to increasing the
target percent identity) of the scoring matrix used to pro-
duce alignments (12,13). Query-seeding increases the me-
dian percent identity of the bottom quartile of alignments at
iteration five and ten by about 5% identity (e.g. from 13.3%
(far50) to 19.0%, Figure 6B). Overextension does not cause
reduced target identity; higher identity with seeding occurs
with non-embedded searches, which cannot over-extend.

To test whether the higher sensitivity of the matrices con-
structed from unseeded alignments contributes significantly
to alignment over-extension, we reduced search sensitivity
by specifying a 10-fold lower E()-value, 0.0001 rather than
0.002 (the default), for inclusion in the MSA and PSSM
(Figure 6, psi2/msa/10). The more stringent inclusion
threshold is less sensitive than query-seeding with E() <
0.002, but it does not substantially affect either the amount
of over-extension or the target percent identity (Figure 6).
Thus, we believe that the higher information content of
the scoring matrix, rather than the reduced sensitivity of
the search, limits over-extension. Query-seeding effectively
makes the PSSMs less evolutionarily ‘deep,’ which produces
higher identity alignments (14) and less homologous over-
extension (12,13).
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Iterative searches with full-length proteins

Query-seeding dramatically improves search selectivity with
embedded queries (Figures 3–5, Table 1, Supplementary Ta-
ble S1) by reducing alignment over-extension (Figure 6).
But because they are surrounded by random sequence, our
embedded queries encourage alignment over-extension.

Query-seeding also improves search selectivity in with un-
embedded, full-length, protein sequences (Supplementary
Tables S2 and S3). For the far50 full-length proteins, query-
seeding reduced maximum FDR 2–6-fold after five and ten
iterations. For the far66 full-length proteins, query-seeding
reduces FDR 1.4–3.7-fold at 80% coverage, and 3–4-fold
at maximum coverage. Query-seeding reduced sensitivity
about 5%, somewhat >2–3% reduction seen in Table 1 and
Supplementary Table S1. Full-length query sequences have
a lower FDR than embedded domains, but query-seeding
can provide an additional improvement.

DISCUSSION

Iterative sequence similarity searching with psiblast be-
gan with the observation by Henikoff and Henikoff (15) that
position based sequence weights (PSSMs) embedded into
the conserved regions of a query sequence are dramatically
more sensitive than searching with the sequences alone. This
strategy, implemented in the COBBLER program, provided
the basis for psiblast (1), which revolutionized sequence
similarity searching by exploiting conservation information
in sequence databases to dramatically increase the sensi-
tivity of sequence searches. Subsequent improvements in
psiblast have improved performance by more robustly
dealing with composition bias and using more sophisti-
cated methods to initialize the PSSM (16–20). These strate-
gies have improved psiblast performance when identify-
ing homologs, but the same strategies that allow the iden-
tification of more distant relationships––the construction
of more sensitive PSSMs––also increase the likelihood of
alignment over-extension (5,12).

In this paper, we demonstrate that the rediscovery
of the Henikoffs’ original observation (15), that PSSMs
can be embedded in a query sequence, can dramatically
reduce false-positives in iterative search strategies. The
simple strategy we developed and implemented in the
m89 btop msa2.pl script can be combined with either
psiblast or psisearch to construct PSSMs that are
less likely to produce homologous over-extension. Using
query-seeded PSSMs, the number of false-positives drops
from over a thousand to fewer than a dozen with some
queries.

While the weighting of residues and pseudo-counts to
construct better PSSMs has been examined very carefully,
there is much less information available about how to treat
gaps when constructing a PSSM. Gaps tend to be clustered
in the MSA and may be indicative of less well-conserved
regions. Inserting query sequence residues back into the
gapped positions in subject sequences to build the PSSM
is complementary to the original Henikoff seeding strategy,
which embedded the PSSM in the query.

Query sequence seeding reduces alignment over-
extension by increasing the information content at gapped
positions in the MSA that is used to construct the PSSM.

This increased information content shifts the PSSM target
identity to a shorter evolutionary distance (Figure 6B),
which tends to reduce over-extension (12). Since the gaps in
the MSA are often found near the ends of the homologous
domain, the mismatch penalties near the ends of the
domain boundaries are also increased, which reduces the
likelihood of over-extension.

Modifying the PSSM by seeding query residues dramati-
cally reduces false-positives, but it also slightly reduces true
positives (Table 1). On the most challenging far50 query set,
our most effective strategy for reducing false-positives re-
duces sensitivity after 10 iterations from 93.9% (jackhm-
mer) to 86.9% (psisearch2/seed+aln), while reducing
the FDR from 13.9% to 0.2%. On the far66 dataset, sen-
sitivity drops from 93.0% to 88.3% while the FDR drops
from 25.9% to 3.5%. Thus, 5–10% drops in sensitivity yield
8–20-fold, or more, reductions in FDR.

We believe that the modest decrease in search sensitiv-
ity is more than balanced by 10-fold reductions in FDR.
As Pfam clans illustrate, for many large and diverse pro-
tein families it is not possible to build a single model, either
PSSM or HMM, that can reliably detect all the members
of the family. In Pfam30, about one-third of Pfam domain
families belong to clans, but even with multiple models in
clans representing a single domain family, many Pfam do-
main homologs remain unannotated. Complete identifica-
tion of homologous domains requires a mixture of PSSM
or HMM models and a strategy for re-starting the iterative
search to build a new homologous model. Such transitive
strategies are far less likely to become contaminated if false-
positives are avoided.

Most of our false-positives with query-seeded PSSMs
align to the query domain, not to the random sequence sur-
rounding the embedded domain. We cannot be certain that
the false-positives that we find with our most selective meth-
ods are genuine non-homologs; some are likely to be cryptic
homologs. If homologous over-extension can be eliminated
with some combination of PSSM adjustment and alignment
boundary modification, then the problem of false-positive
detection becomes statistical, and it should be possible to
develop better methods with even fewer errors.

CONCLUSION

Improvements in sequence similarity searching require
more sensitive scoring matrices––evolutionarily ‘deep’ ma-
trices that can detect homologs with low sequence identity
by giving low-identity alignments positive alignment scores.
But matrices that give positive scores to low identity ho-
mologs are also much more likely to allow alignments from
homologous domains to extend into non-homologous re-
gions. Iterative searching is effective because the discovery
of one or two distant homologs can reveal hundreds of new
homologs in the next iteration. But this same amplification
process makes it critical to avoid false-positives; one or two
false-positive relationships can quickly lead to hundreds or
thousands of misleading results. Query sequence seeding
dramatically reduces the incidence of false-positives. With
psisearch2 query-seeding and either alignment or do-
main boundary limits, more than half of our most challeng-
ing queries do not produce any false-positives, even after 10
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iterations. The higher selectivity of query comes at a cost of
slightly lower sensitivity, which can be partially offset by in-
creasing the number of iterations, but alternative strategies,
such as re-initiating the search with a distant homolog, may
be required to identify the most distant homologs.
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