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Abstract: Background: Ultraviolet (UV) and non-thermal plasma functionalization are surface
treatment modalities that seem able to improve osseointegration. The aim of this systematic review
and meta-analysis is to assess the effect of the two methods and possible differences. Materials
and Methods: The systematic research of pre-clinical animal studies was conducted up to May
2020 in the databases PubMed/Medline, Scopus and the Cochrane Lybrary. A meta-analysis was
performed by using the DerSimonian–Laird estimator in random-effects models. Results: Through
the digital search, 518 articles were identified; after duplicate removal and screening process 10 papers
were included. Four studies evaluating UV treatment in rabbits were included in the meta-analysis.
The qualitative evaluation of the included studies showed that both UV photofunctionalization and
non-thermal plasma argon functionalization of titanium implant surfaces might be effective in vivo to
improve the osseointegration. The meta-analysis on four studies evaluating UV treatment in rabbits
showed that bone to implant contact values (expressed as standardized mean differences and raw
mean differences) were significantly increased in the bio-activated groups when follow-up times
were relatively homogeneous, although a high heterogeneity (I2 > 75%) was found in all models.
Conclusions: The present systematic review and meta-analysis on pre-clinical studies demonstrated
that chair-side treatment of implants with UV or non-thermal plasma appear to be effective for
improving osseointegration. This systematic review supports further clinical trials on this topic.

Keywords: dental implants; UV photofunctionalization; non-thermal plasma
functionalization; osseointegration

1. Introduction

Prosthetic rehabilitation with dental implants represents a successful therapy for the replacement
of severely compromised or missing teeth, with long-term success rates above 95% [1]. The success
of dental implants largely depends on a safe integration into the maxillary bone, or rather achieving
stable osseointegration over time [2]. Osseointegration is considered a demarcation response to
a foreign body of Ti when the Ti implant is immobile in bone [3]. This demarcation is immune-driven
and is classified as a type IV hypersensitivity [4]. Based on the original definition, the modification
of a Ti implant surface implies that the surface would be more biocompatible, thereby increasing
the bioaffinity of the hard tissue and accelerating the bone response to the surface. In order to
improve the biological response to Ti implants, various techniques have been suggested in order to
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modify Ti surface roughness, chemistry, topography, and electrical charge, focusing on the biological
performance of Ti surfaces [5–7] Higher bone–implant contact (BIC) values, better bone apposition
and peri-implant bone maintenance over time were demonstrated on implants with rougher surfaces
compared to machined surfaces, including stimulation of cell migration and proliferation [6–8]. BIC
values in modern implants normally vary between 65 and 73% but do not reach the ideal 100% [9].
Moreover, titanium surface modifications showed, in short-term evaluations, an enhanced connective
fiber attachment and a similar inflammatory response [10,11].

In recent years, various methods (ultraviolet (UV), non-thermal plasma functionalization, blasting,
etching, and anodization) were proposed to improve the hydrophilicity of the titanium surface, its
functionality and in order to improve its chemistry as well as reduce surface contamination [5,12].
Among them, (UV) and non-thermal plasma functionalization are surface treatment modalities that
are able to improve all the biological aspects mentioned above and can be applied chair-side [11,13].
They allow maintaining the micro- and nano-topographical features of titanium surfaces, enhancing
the biological potential before implant surgery, without damaging the surface topography. Various
in vitro studies about UV and non-thermal plasma functionalization showed that this method is able
to increases hydrophilicity, turning the electrostatic charge to positive, and removing hydrocarbons
from the surface. Positive effects are induced also on alkaline phosphatase activity, calcium deposition,
spreading of human stem cells, protein absorption capacity, osteoblast migration, attachment, spread,
and proliferation [13–17].

The aim of this systematic review was to assess in pre-clinical animal studies the effect of UV
photofunctionalization or non-thermal plasma functionalization on the osseointegration of dental
titanium implants.

2. Material and Methods

This systematic review fully adhered to the guidelines of the preferred reporting of
systematic reviews and meta-analyses (PRISMA) statement [18] and the protocol was registered
on Prospero (CRD42020185209). The proposed focused question was: “What is the effect of UV
photofunctionalization and non-thermal plasma of argon activation of titanium dental implants on
osseointegration in animals?” The focused question was established according to the PICO strategy:

• Population: Healthy animals with at least one titanium dental implant.
• Intervention: Any surface activation with UV or non-thermal plasma.
• Comparison: Any type of “non-activated” titanium dental implant.
• Outcomes: Bone-to-implant contact (BIC), implant stability quotient (ISQ) or removal torque.

2.1. Search Strategy

An electronic search in PubMed®/MEDLINE, Scopus, and the Cochrane Central Register of
Controlled Clinical Trials (CENTRAL) databases was performed starting April 2020. No publication
year nor language limit was applied, so that the search could include all the available papers until 21
May 2020. The search was complemented by manual searches of the reference lists of all full-text articles
selected. The following search terms were used: “photofunctionalization”, “photofunctionalized”,
“ultraviolet(s)”, “uv”, “plasma(s)”, “argon”, and “dental implants”. More details on research queries
and Boolean operators are available in the electronic supplementary material (Table S1).

2.2. Eligibility Criteria

All articles on animals that presented a test group and a control group were considered eligible.
Studies were required to have recruited a minimum of five healthy animals, have at least one titanium
dental implant and have a minimum follow-up of two weeks. The studies were required to have
compared implants treated with UV or non-thermal argon plasma (test group) and untreated implants.
In addition, the studies to meet the inclusion criteria were required to have assessed the outcomes of
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interest (BIC value, removal torque and ISQ). Studies that did not met all the above-mentioned inclusion
criteria were excluded. Review studies, retrospective studies, report studies based on questionnaires
and interviews, studies without a clinical evaluation, case reports and redundant articles, studies on
mini-implants and/or for orthodontic anchoring, and genomic and/or epigenomic analysis studies
were also excluded.

2.3. Selection of Studies

Two reviewers (P.P. and E.D.G.) independently read titles and abstracts of the entries yielded
from the initial electronic database search. After this initial assessment, both reviewers read separately
the full-text versions of the studies that could be potentially included in this systematic review. The final
selection of articles was made on the basis of the eligibility criteria described above. Any disagreement
in the final selection was resolved by open discussion between both reviewers. In the case that no
agreement could be reached, one of the co-author (L.C.) acted as arbiter.

2.4. Data Extraction

Data from the studies included in the final selection were extracted by one of the authors (E.D.G)
using the Microsoft Excel spreadsheet software (Excel 16.4, Microsoft CO, Redmond, WA, USA).
The accuracy of data was verified independently by another coauthor (P.P.). The following data were
extracted were study design, title, author, publication year, follow-up period, number of patients
(animals) and implants, implant design and surface characteristics, and the outcomes of interest (BIC,
ISQ and removal torque). If data were missing, the authors of the original articles were contacted and
asked to provide further details.

2.5. Quality Assessment

The overall quality of evidence at the outcome level in animal studies was independently assessed
by two authors (E.D.G and P.P.), according to SYRCLE’s RoB tool (Systematic Review Centre for
Laboratory Animal Experimentation). Risk of bias in individual studies was assessed independently
and in duplicate by the two coauthors as part of the data extraction process. This evaluation was
conducted using the Cochrane-recommended approach for assessing risk of bias in animal intervention
studies [19], including ten quality parameters: sequence generation, baseline characteristics, allocation
concealment, random housing, blinding, random outcome assessment, incomplete outcome data,
selective outcome reporting, and other sources of bias. Disagreements were discussed in order to aim
for consensus. Each parameter was rated as: yes (low risk of bias); no (high risk of bias); or unclear
(unclear risk of bias).

2.6. Statistical Analysis

The statistical heterogeneity among studies was expressed as τ2 and estimated by the Cochran’s
Q test. The I2 was calculated to assess variability due to heterogeneity rather than chance (I2 = 25%:
low; I2 > 25% and = 50%: moderate; I2 > 50% and = 75%: considerable; I2 > 75%: high heterogeneity).
H2 was calculated as the ratio between total and sampling variability. Maximum likelihood (ML)
and restricted maximum likelihood (RML) with Akaike information criteria (AIC) were returned
for model fit statistics. The estimates of the effects were expressed as standardized mean difference
(SMD) or raw mean difference (RMD). Study estimates were pooled with the random effects model
and the DerSimonian–Laird estimator. In the random-effects models, the selected studies and their
outcomes are assumed to be a random selection from a larger population of studies. A forest plot was
created for each measured outcome to illustrate the effects in the meta-analysis of the different studies
and the global estimation. Contour-enhanced funnel plots with Kendall’s Tau and Egger’s regression
were used for publication bias assessment. For further evaluation of residual heterogeneity, a normal
quantile–quantile (Q–Q) plot was evaluated. Statistical significance was assumed in each test with P
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value < 0.05. Statistical analysis was carried out by using the R software (version 3.6.3; R Foundation
for Statistical Computing. Vienna, Austria) with the metafor package (version 2.1-0).

3. Results

3.1. Bibliographic Search and Study Selection

The initial database search yielded a total of 518 entries; of which, 220 were found in
PubMed®/MEDLINE, 285 in Scopus, and 13 in Cochrane Library. A flow chart that depicts the screening
process is displayed in Figure 1. After excluding all duplicates, the total number of entries was reduced
to 407. A total of 368 articles were excluded after review of title and abstract. Hence, full-text
examination was conducted for 39 articles. A total of 28 additional articles were excluded after full-text
review and application of the eligibility criteria. The final selection consisted of 10 articles, of which 4
were included in the meta-analyses. Detailed data for the 10 included studies are listed in Tables 1
and 2. Four authors were contacted to obtain missing information, and only one of them [20] answered.
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Table 1. Main characteristics and outcomes of the studies on plasma included.

Study Title Reference Year No of
Animals Specimens Surface

Treatment
Plasma Argon

Treatment Follow-Up Outcome Results

Argon-based
atmospheric

pressure plasma
enhances early

bone response to
rough titanium

surfaces

Coelho PG
et al. [21] 2012

Six dogs
(adult
beagle)

Two Ti-6Al-4V implants
each side.

The different implant
surfaces (Ti or Ti-Plasma)
were alternately placed

from proximal to distal at
distances of 1 cm from

each other along
the central region of

the bone.

Alumina-
blasted/acid-

etched

Atmospheric
pressure plasma

(CaP-plasma)
treatment with

Ar gas for
a period of 60 s
per quadrant

with
a KinPenTM

device

1 and 3
weeks

BIC (%)
BAFO

(bone area
fraction

occupacy)

No significant difference was
found for BIC and BAFO

between surfaces at 1 week.
At 3 weeks in vivo, bone

formation in close contact to
the implant surface (BIC) was

strongly observed in
the Ti-plasma group, where

an increase of over 300% was
observed when compared to

the control (p < 0.001). No
significant differences were

observed in BAFO (p > 0.14),
although an improvement of

30% was observed for
the Ti-plasma group

Assessment of
a chair-side
argon-based
non-thermal

plasma treatment
on the surface

characteristics and
integration of

dental implants
with textured

surfaces

Teixeira H et
al. [22] 2012

Six dogs
(adult
beagle)

Three root-form
endosseous grade IV

titanium alloy implants
placed into each limb.

Test: 20 sand 60 s
plasma-treated implants;

control: untreated
implants.

Alumina-blasted
and

acid-etched
surface

Twenty or sixty
seconds of

non-thermal
plasma per
quadrant

applied with
a KinPenTM

device

2 and 4
weeks

Removal
torque
(Ncm)

Torque value at 2 weeks:
control: 35;

plasma: 20 s—43;
plasma: 60 s—55.

Torque value at 4 weeks:
control: 43;

plasma: 20 s—67;
plasma 60 s—72.
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Table 1. Cont.

Study Title Reference Year No of
Animals Specimens Surface

Treatment
Plasma Argon

Treatment Follow-Up Outcome Results

Osseointegration
assessment of

chairside
argon-based non

thermal
plasma-treated

Ca-P coated
dental implant

Giro G et al.
[23] 2013

Six dogs
(adult
beagle)

Two Ti-6Al-4V implants
each side.

Different implant surfaces
were alternately placed

from proximal to distal at
distances of 1 cm from

each other along
the central region of

the bone, and the start
surface site (CaP or
CaP-Plasma) was

alternated between
animals. The implant

distribution resulted in an
equal number of implants

for 1 and 3 weeks.

Calcium-
phosphate

(CaP)

Ar gas at
atmospheric
pressure for

a period of 20 s
per quadrant

with
a KinPenTM

device

1 and 3
weeks

BIC (%)
BAFO

(bone area
graction

occupacy)

No significant difference was
found for BIC and BAFO

between surfaces at 1 week.
At 3 weeks, BIC and BAFO
were strongly observed in

the CaP-plasma group.
The morphologic findings for

both 1 and 3 weeks were
supported by

the morphometric results at
the 3-week period, as

CaP-plasma BIC increased by
more than 100% and an

improvement of 82% was
found for BAFO when

compared to the CaP group.

Hard and soft
tissue changes

around implants
activated using

plasma of argon:
a histomorphometric

study in dog

Canullo L et
al. [24] 2018

Eight dogs
(adult
beagle)

For each hemi-mandible,
four implants with a ZirTi

surface were used;
two implants were treated
with argon plasma (test),

while the other two
implants were left

untreated (control).

ZirTi surface

Treated for 12
min at room
temperature

with plasma of
argon in

a plasma reactor
(Diener

electronic)

1 and 2
months

BIC (%)
old bone

total
amount of
mineralized

bone

One month of healing:
new bone in close contact
with the implant surface:

treated (60.1% ± 15.6%; 95%
CI 56.5%–78.0%); untreated

(57.2% ± 13.1%; 95% CI
49.3%–67.5%) (p = 0.400).
Old bone: treated (4.4% ±
3.0%; 95% CI. 2%–5.4%);

untreated (3.4% ± 3.1%; 95%
CI. 6%–4.9%) (p = 726).

Total amount of mineralized
bone: treated

(95% CI 59.5%–82.3%);
untreated (95% CI

53.3%–73.5%) (p = 0.208).
Two months of healing of
new bone: treated sites:
72.5% ± 12.4% (95% CI

69.6%–86.8%);
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Table 1. Cont.

Study Title Reference Year No of
Animals Specimens Surface

Treatment
Plasma Argon

Treatment Follow-Up Outcome Results

untreated: 64.7% ± 17.3%
(95% CI 59.4%–83.3% (p =

0.012).
Old bone: treated sites: 3.1%
± 1.7% (95% CI 1.8%–4.2%);
untreated sites: 3.8% ± 1.9%

(95% CI 3.2%–5.8%)
(p = 0.270).

Total amount of mineralized
bone: treated: 75.6% ± 13.0%

(95% CI 73.3%–91.3%);
untreated 68.4% ± 16.8%
(95% CI 64.2%–87.6%).

Effects of non
thermal plasma
on sandblasted
titanium dental

implants in beagle
dogs

Hung YW et
al. [25] 2018

Nine dogs
(adult
beagle)

Four implants in each dog;
control group: one

implant withot
non-thermal plasma was

inserted into each jaw;
test group: one implant

treated with non-thermal
plasma was inserted into

each jaw.

Sandblasting
and etching

Non-thermal
plasma

apparatus (Line
through ISO

9001) generates
plasma in
a dielectric

barrier. Each
implant receive
60s of plasma

spray

4,8 and
12 weeks ISQ Value

ISQ values:
Control group:

Initial: 68.04 ± 3.37
4 weeks: 66.53 ± 7.40
8 weeks: 69.20 ± 2.55

12 weeks: 74.20 ± 2.68
Plasma group:

Initial: 67.36 ± 0.52
4 weeks: 70.17 ± 0.76
8 weeks: 71.50 ± 1.41

12 weeks: 77.00 ± 5.87
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Table 2. Main characteristics and outcome of included studies about UV.

Study Title Reference Year No of
Animals Specimens Surface Treatment UV

Treatment Follow-Up Outcome Results

Photo-induced
hydrophilicity

enhances
initial cell behavior

and early bone
apposition.

Sawase, T
et al. [26] 2008 Six rabbits

(tibia)

One implant each
side of the tibia;

cpTi screw implants
(Nobel Biocare RP
Mark III fixtures;

Nobel Biocare AB,
Göteborg, Sweden).

Post-annealed from
the titanium implant;

tetraisoproxide
plasma by the plasma

source; ion
implantation

UV irradiation
for 24 h 2 weeks BIC

(%)
BIC untreated: 17.97%;
BIC UV: treated 28.2%.

The effect of
ultraviolet C

irradiation via
a bactericidal

ultraviolet sterilizer
on an anodized

titanium implant. A
study in rabbits

Park K.H
et al. [27] 2013

Fourteen
rabbits
(tibia)

Twenty-five titanium
discs and 56 screw
tipe implants. Each

rabbits received four
control or test
implants (UV

treated).

Anodized implants
UV irradiation

via a 15W
lamp for 24 h

4 and 12
weeks

BIC
(%)

Four-week mean value:
control group (12): 42.92%;

test group (12): 55.11%.
Twelve-week value:

control group (14): 55.81%;
test group (14): 57.78%.

The in vivo bone
response of

ultraviolet-irradiated
titanium implants

modified with
spontaneusly formed

nanostructures

Shen J et
al. [20] 2016

Forty
rabbits
(femur

and tibia)

A total of 160
screw-shaped

implants divided in 5
groups:

(1) SLA new
(2) SLA old

(3) modified SLA
(4) UV SLA

(5) UV modified SLA.

Sandblasted and
acid-etched

UV irradiation
via a 15W

bactericidial
lamp for 24 h

3 and 6
weeks

BIC
(%)
RT

(removal
torque)

BIC mean value at 3
weeks:

group (1): 40.05%
group (2): 30.2%
group (3): 35.3%
group (4): 59.6%
group (5): 61.8%

BIC mean value at 6
weeks:

group (1): 41.6%
group (2): 31.3%
group (3): 39.3%
group (4): 69.5%
group (5): 72.0%

Torque removal mean at
value 3 weeks:
group (1): 42
group (2): 30
group (3): 39
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Table 2. Cont.

Study Title Reference Year No of
Animals Specimens Surface Treatment UV

Treatment Follow-Up Outcome Results

group (4): 70
group (5): 90

Toque removal mean
value at 6 weeks:

group (1): 70
group (2): 42
group (3): 60
group (4): 82

group (5): 105

Photofunctionalised
Ti6Al4V implants

enhance early phase
osseointegration.

Yamauchi,
R et al.

[28]
2017 Five rats

(femur)

One implant each
side; implant made

from pure Ti and
Ti6Al4V (B. Braun

Aesculap Japan Co.,
Ltd. Tokyo, Japan).

Specimens: pure Ti
and Ti6Al4V with
average surface

roughness values of
0.66 and 0.34 µm,

respectively

Exposure to
UV irradiation

for 15 min
using a photo

device
(TheraBeam

Affinity;
Ushio Inc.,

Tokyo, Japan)
at an intensity
of 3 mW/cm2

2 and 4
weeks

BIC
value

(BV/TV
%)

Pure Ti value:
Untreated 2-week value:

39.8%;
treated 2-week value:

56.8%.
Untreated 4-week value:

61.6%;
treated 4-week value:

80.7%.
Ti6Al4V value:

Untreated 2-week value:
44.4%;

treated 2-week value:
65.0%;

untreated 4-week value:
58.6%;

treated 4-week value:
76.3%.

Effects of ultraviolet
Photoactivation on
osseointegration of
commercial pure
titanium dental

implant after 8 weeks
in a rabbit model

Sanchez-Perez
A et al.

[29]
2020 Five

rabbits
Twenty commercial

implants.

Group 1: as received;
group 2:

UV treated

A 6W UVC
source for 15
min (Analizer

VL 6c)

8 weeks BIC
(%)

BIC mean value:
Control group: 26.835%;

test group 24.225%.
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3.2. Description of Included Studies

Detailed data for the 10 included studies are listed in Tables 1 and 2. All studies included in
the present review are studies performed on test case animals, with a study group and a control group.
Four studies were performed on rabbits [20,26,27,29] and one on rats [28]. Five studies were performed
on beagle dogs [21–25] The studies included in the review showed wide variations regarding length of
the follow-up. The majority of them had a follow-up of a few weeks only and only two had a follow-up
up to 12 weeks [25,27].

3.3. Excluded Studies

Out of the 39 papers for which the full-text was analyzed, 29 articles [13,30–57] were excluded
from the systematic review (Table A1). The main reasons for exclusion were the following: small
sample size, (articles that recruited less than five animals); outcome, (articles that did not evaluated
BIC value, removal torque, or ISQ); and specimens, (articles that did not evaluated titanium dental
implants).

3.4. Quality Assessment

According to SYRCLE’s RoB tool (Systematic Review Centre for Laboratory Animal
Experimentation), risk of bias of animal studies is assessed and displayed in Figure 2 [19]. No
article showed low risk of bias for all domains.
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3.5. Qualitative Assessment of Outcomes

Differences in bone-to-implant contact (BIC) values between test and control groups were evaluated
in eight studies [20,22–28]. In these studies, the functionalization treatment of the implant surfaces,
both by UV and by non-thermal plasma, led to better BIC results than the control group. Only one
study in rabbits reported lower BIC values in the test groups (UV-treated) than in the control group [29].
In fact, in the study by Sanchez-Perez et al., at 8 weeks, a minimal variation in the BIC values between
the test group and the control group was noted, with BIC values of 26.835% for the control group
and 24.225% for the test group. Differences in ISQ values between test group and control group were
evaluated in one study [25], in which ISQ values were higher in the test group at 8 and 12 weeks of
follow-up compared to the group control. Differences in removal torque values between the test group
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and control group were evaluated in two studies [20,22]. In all studies the removal torque (Ncm)
values were higher in the test groups than in the control groups.

3.6. Quantitative Assessment of Outcomes

The meta-analysis was conducted only if at least three articles presented the same treatment
method for functionalization of the implant surface, and the same kind of sample and the same
outcome of interest (BIC value) was evaluated. Following these criteria, four articles were included
in the quantitative evaluation [20,26,27,29], as reported in the PRISMA flow chart (Figure 1). Based
on the peculiarities of the follow-up recorded in some of the studies meeting the enrollment criteria
(follow-up at different time-points in two studies, with slightly different numbers of implants),
the analysis was conducted on multiple datasets identified on the basis of the different follow-up
periods in order to even the follow-up time-points, applying the criterion of n = 1 study with unique
follow-up for a single dataset. Following this approach, four datasets were assessed. The first dataset
(Table S2) took into consideration the following follow-up periods: 2 weeks [26], 4 weeks [27], 3
weeks [20], and 8 weeks [29]. The second dataset (Table S3) resulted in 2 weeks [26], 12 weeks [27],
6 weeks [20], and 8 weeks [29]. The third dataset (Table S4) returned 2 weeks [26], 4 weeks [27],
3 weeks [20], and 8 weeks [29]. Finally, the fourth dataset (Table S5) resulted in 2 weeks [26], 12
weeks [27], 6 weeks [20], and 8 weeks [29].

3.6.1. First Dataset

The first dataset included 33 animals and 84 implants (Table S2). The pooled SMD of
the random-effects model was 1.20 (95% CI: 0.10–2.30) (p = 0.032), while the model fit statistics were
ML = −5.91 (AIC = 15.82) and RML = −4.87 (AIC = 13.75). The model showed a high heterogeneity (I2

= 80.33%; H2 = 5.08; τ2 = 0.996; Q = 15.25; p = 0.002). In the normal Q–Q plot, no study was outside
the confidence area (Figure S5A). The forest plot is presented in Figure 3. Publication bias assessment
returned no statistical significance for Kendall’s Tau (p = 0.333) or Egger’s regression (p = 0.076) (Figure
S9A). The results of the same model with RMD as effect size are presented in the Supplementary
Material (Figures S1, S5B and S9B).
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dataset (effects size: standardized mean difference of the bone–implant contact).

3.6.2. Second Dataset

The second dataset included 34 animals and 88 implants (Table S3 (Supplementary Materials)).
The pooled SMD of the random-effects model was 1.13 (95% CI: −0.19–2.46) (p = 0.095), while the model
fit statistics were ML = −7.84 (AIC = 19.68) and RML = −6.62 (AIC = 17.24). The model showed
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a high heterogeneity (I2 = 86.66%; H2 = 7.49; τ2 = 1.524; Q = 22.48; p ≤ 0.001). In the normal Q–Q plot,
one study resulted outside the confidence area (Figure S6A). The forest plot is presented in Figure 4.
Publication bias assessment returned no statistical significance for Kendall’s Tau (p = 0.750), differently
from Egger’s regression (p < 0.001) (Figure S10A). The results of the same model with RMD as effect
size are presented in the Supplementary Material (Figures S2, S6B and S10B).
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Figure 4. Forest plot for the random-effects model with the DerSimonian–Laird estimator in the second
dataset (effects size: standardized mean difference of the bone–implant contact).

3.6.3. Third Dataset

The third dataset included 33 animals and 84 implants (Table S4). The pooled SMD of
the random-effects model was 1.09 (95% CI: 0.11–2.07) (p = 0.028), while the model fit statistics
were ML = −5.25 (AIC = 14.51) and RML = −4.34 (AIC = 12.68). The model showed a high
heterogeneity (I2 = 76%; H2 = 4.17; τ2 = 0.746; Q = 12.50; p = 0.006). In the normal Q–Q plot, no study
was outside the confidence area (Figure S7A (Supplementary Materials)). The forest plot is presented
in Figure 5. Publication bias assessment returned no statistical significance for Kendall’s Tau (p = 0.333)
or Egger’s regression (p = 0.181) (Figure S11A). The results of the same model with RMD as effect size
are presented in the Supplementary Material (Figures S3, S7B and S11B).
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3.6.4. Fourth Dataset

The fourth dataset included 34 animals and 88 implants (Table S5). The pooled SMD of
the random-effects model was 0.85 (95% CI: −0.19−1.89) (p = 0.110), while the model fit statistics were
ML = −5.98 (AIC = 1.95) and RML = −5.00 (AIC = 13.99). The model showed a high heterogeneity (I2

= 80.32%; H2 = 5.08; τ2 = 0.89; Q = 15.24; p = 0.002). In the normal Q–Q plot, no study was outside
the confidence area (Figure S8A). The forest plot is presented in Figure 6. Publication bias assessment
returned no statistical significance for Kendall’s Tau (p = 0.750), differently from Egger’s regression
(p = 0.021) (Figure S12A). The results of the same model with RMD as effect size are presented in
the Supplementary Material (Figures S4, S8B and S12B).
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4. Discussion

This systematic review focused on the evaluation of the effects of the functionalization treatment
of the implant surfaces by means of UV or non-thermal Plasma on the peri-implant bone, and, more
specifically, it investigated the effects on the biological process of osseointegration, as evaluated by BIC,
ISQ (implant stability quotient), and removal torque. The eligibility criteria of the studies were first
determined so as to include in the systematic review studies with the following: a minimum number of
five animals, which had at least one titanium dental implant; a test group subjected to treatment with
UV or non-thermal plasma and a control group; analysis the BIC value with a minimum follow-up of
two weeks; and ISQ and/or removal torque. A qualitative analysis of the results was performed on all
included studies, and a quantitative analysis was performed on 4 of the 10 included studies.

Summary of the Results and Possible Limitations

The qualitative analysis of the results shows for the majority of the studies, higher BIC
(bone-to-implant contact) values in the test groups subjected to the functionalization treatment
of the implant surfaces by UV or by non-thermal plasma. With regard to studies that used UV
treatment [20,26–28], BIC values were better in the test group when compared to the control group
at all the time points. Two studies that used treatment with non-thermal plasma [21,23] did not find
significant differences in BIC between the test and the control group at the first follow-up (1 week), but
they found significant differences in BIC values between the test and the control group at the second
follow-up (3 weeks) with better values for the test group.
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The third study evaluating non-thermal plasma treatment [24] showed higher BIC values in
the test group than in the control group at both 4 and 8 weeks of healing. Only one study [29] reported
slightly higher BIC values for the control group than for the UV-treated test group. Despite this, there
is a greater homogeneity of the BIC in the test group compared to the control group.

ISQ values were evaluated in a single animal study [25], demonstrating higher ISQ values in
the test group subjected to functionalization treatment with non-thermal argon plasma compared to
the control group.

Removal values were evaluated in two studies: one [20] evaluating UV functionalization treatment,
and one [22] using functionalization treatment with non-thermal argon plasma. In all these three
studies, the removal torque (Ncm) values were higher in the test groups than in the control groups.

The meta-analysis was conducted for four studies [20,26,27,29], in which the test groups were
subjected to UV treatment. The assessed outcome was the BIC value. A quantitative analysis of
the studies in which the test groups underwent treatment with non-thermal plasma, presenting the same
outcome of interest, was not possible due to the lack of data. For the studies included in the quantitative
evaluation, following the differences in the follow-up, an analysis was conducted on several datasets
identified on the basis of the different follow-up periods without prejudice to the criterion of n = 1 study,
and with unique follow-up for each individual dataset [26]. The meta-analysis showed statistically
significant difference in favor of the test groups in the first and third dataset, for both SMD and RMD
as effect size. No significant differences occurred in the second and fourth dataset. The relatively more
homogeneous follow-up of the first and third dataset may have contributed to the model outcomes.
However, in all models, a high heterogeneity was found, although the highest I2 and Q values occurred
for the second and fourth dataset. Normal Q–Q plots showed overall satisfactory profiles, with all
or most of the studies falling within the confidence region in each model. Notably, no significance
for publication bias was returned by the models evaluated by entering the first and third dataset.
Data from the present meta-analysis confirmed the importance to increase surface energy to stimulate
bone formation through the exposition to UV. However, a similar effect was obtained also through
the activation of the electronic mantel following plasma of argon bio-activation [49]. Additionally, it
must be noted that despite the increase in surface energy, these procedures were proven to not affect
the bacterial contamination of the implant surface (or bone augmentation material), confirming to
finally result positive for bone growth [58–62].

Limitations can be attributed to the high heterogeneity of the studies, the applied methodology,
(including numerosity of the samples, especially in studies on UV treatment), and type of samples
tested (dental implants or disks), etc. Different types of devices and time of application were used to
functionalize the surfaces of the implants. Three studies [20,26,27] used a source of UV radiation for
24 h; two studies [28,29] used a UV-emitting device for 15 min. However, even if a different application
time was employed, all studies obtained better results in the UV-treated groups. The minimum
irradiation time required to obtain a clinically appreciable effect is yet to be determined [29]. Three
studies [21–23] used a plasma device (KinPen Device) for 60 s or for 20 s. The third study [24] used
a plasma reactor (Diener electronic) for 12 min. The fourth study [25] used a Plasma reactor (Line
through ISO 9001) for 60 s. Further studies should evaluate the better application time of UV and
Plasma in order to standardize the technique.

Another limitation is the definition of osseointegration itself, which is a clinical outcome and not
a histological one. Surrogates for osseointegration are used to conduct research, for example, BIC and
ISQ. These are measures of specific elements of the bone–implant interface; however, there is little
evidence that BIC correlates with long-term clinical outcomes of dental implant therapy, and the use of
ISQ, although widely used, remains enigmatic [63].

Further limitations are secondary to the incomplete publication of data. BIC and standard
deviation values are not reported in three studies [20,21,23] The authors of the aforementioned articles
were contacted to supplement the missing data; however, only the BIC values of a single article were
obtained [20].
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From the clinical point of view, both methods can be used chair-side by the clinician before
implant insertion.

Both the investigated techniques of functionalization are easy to apply, cost effective and are
devoid of contraindications.

This study and data from animal experiments presented promising outcomes for UV and
non-thermal plasma functionalization. An improvement in osseointegration might be expected
following biofunctionalization of dental implants. However, it must be emphasized that these results
must be taken with caution, as data from animal studies cannot be directly extrapolated to the clinical
practice, and the clinical efficacy of these treatments is yet to be established. Human studies are needed
to confirm if biofunctionalization of dental implants might affect the bone–implant interface in the short
and in the long term.

5. Conclusions

Based on the qualitative and quantitative assessment conducted as part of the present systematic
review, it can be concluded that the treatment of titanium dental implant surfaces using UV or
non-thermal plasma may represent an effective method for improving the osseointegration process.
Randomized human studies are needed to validate the obtained results.
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Appendix A

Table A1. Table reporting the excluded studies and reasons for exclusion.

Article Excluded Reason for Exclusion

Shon et al., 2013 [30] Specimens material (zirconia implants)
Naujok et al., 2019 [31] Sample size
Aita H et al., 2009 [32] Outcome

Suzuki T et al., 2009 [13] Outcome
Ueno T et al., 2010 [33] Outcome
Ueno T et al., 2010 [34] Outcome
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Table A1. Cont.

Article Excluded Reason for Exclusion

Minamikaw et al., 2014 [35] Outcome
Hirota M et al., 2016 [36] Sample size

Ishijima M et al., 2016 [37] Outcome
Soltanzadeh P et al., 2017 [38] Outcome

Sugita Y et al., 2014 [39] Outcome
Taniyama et al., 2020 [40] Outcome
Jimbo R et al., 2011 [41] Specimens

Hayashi M et al., 2014 [42] Specimens
Yamazaki M et al., 2015 [43] Outcome

Kim H.S et al., 2017 [44] Farmacological treatment (alendronate)
Lee J.B et al., 2019 [45] Sample size
Miki T et al., 2019 [46] Specimens

Hirakawa et al., 2013 [47] Surface treatment
Pyo et al., 2013 [48] Sample size
Ishii et al., 2016 [49] Outcome
Mehl et al. 2018 [50] Sample size

Funato et al., 2013 [51] Case series
Suzuki et al., 2013 [52] Cross-sectional retrospective analysis
Funato et al., 2013 [53] Retrospective analysis

Kitajima et al., 2016 [54] Cross-sectional retrospective analysis
Hirota et al., 2016 [55] Complex cases
Hirota et al., 2018 [56] Outcome
Puisys et al., 2018 [57] Specimens
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