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Abstract

Breast cancer is a heterogeneous disease. In clinical practice, tumors are classified as hor-

monal receptor positive, Her2 positive and triple negative tumors. In previous works, our

group defined a new hormonal receptor positive subgroup, the TN-like subtype, which had a

prognosis and a molecular profile more similar to triple negative tumors. In this study, prote-

omics and Bayesian networks were used to characterize protein relationships in 96 breast

tumor samples. Components obtained by these methods had a clear functional structure.

The analysis of these components suggested differences in processes such as mitochon-

drial function or extracellular matrix between breast cancer subtypes, including our new

defined subtype TN-like. In addition, one of the components, mainly related with extracellu-

lar matrix processes, had prognostic value in this cohort. Functional approaches allow to

build hypotheses about regulatory mechanisms and to establish new relationships among

proteins in the breast cancer context.

Introduction

Breast cancer is one of the most prevalent cancers in the world [1]. In clinical practice, breast

cancer is classified according to the expression of hormonal receptors (estrogen or progester-

one) and Her2, into positive hormonal receptor (ER+), HER2+ and triple negative (TNBC). In

previous studies, our group defined a new ER+ molecular subgroup, named TN-like, with a

molecular profile and a prognosis more similar to TNBC tumors [2]. We denoted the remain-

ing ER+ tumors as ER-true. We also found significant molecular differences among breast

cancer subtypes. For instance, differences related with metabolism of glucose were described

between ER-true, TN-like and TNBC tumors [2, 3].
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Proteomics supplies complementary information to genomics experiments. Proteomics has

been used to find differences between subtypes on a proteomic level in sporadic and hereditary

breast tumors [4]. In addition, proteomics coupled with super-SILAC has been also used to

define molecular signatures that are differentially expressed between breast cancer subtypes

[5].

Proteomics provides useful information about biological process effectors and may quantify

thousands of proteins. Undirected probabilistic graphical models (PGM), based on a Bayesian

approach, allow characterizing differences between tumor samples at functional level [2, 3, 6,

7]. In this study we explored the utility of Bayesian networks in the molecular characterization

of breast cancer. The main feature of targeted Bayesian networks is that they provide a hierar-

chical structure and targeted relationships between proteins.

Bayesian networks (BN) have been previously used to inference protein signaling networks

using phase-reverse protein array data from a breast cancer cell line [8]. In this study, the

authors also experimentally tested some of the relationships by an inhibition approach. Bala-

dandayuthapani et al. also applied BN to phase-reverse protein array data, in this case from a

panel of ovarian and breast cancer cell lines. Their model was capable to distinguish between

both cell line types [9] Most recently, BN has been used to determine genes related to bone

metastasis development in breast cancer [10]. Also related to gene expression, BN inference

leaded to the identification of TRIB1 as a regulator of cell cycle progression and survival in tri-

ple negative cancer cells [11]. BN have been also used to suggest therapeutic targets in breast

cancer. In the study of Vundavilli et al., applying BN to gene expression data, the resulting net-

work was used to rank different interventions in order to achieve an apoptosis induction [12].

Beretta et al. used BN to study the inference of signaling downstream of tyrosine kinase recep-

tors, comparing predictions about inhibition of several nodes with experimental data [13]. BN

was applied even to rank treatments in triple negative breast cancer datasets [14]. Finally, BN

have demonstrated its utility in making associations between clinical data in breast cancer

patients [15] or between lifestyle factors in breast cancer survivors [16].

In this work, we aim to explore if BN can be applied to proteomics expression data and if

that the results provided by these analyses provide useful biological and clinical information.

For this, we used mass-spectrometry proteomics data and Bayesian networks to characterize

protein relationships in a cohort of breast cancer tumor paraffin samples. These networks

maintained a functional structure and some of them showed prognostic value. This approach

also reflected previously described protein-protein interactions and it could be used to propose

new hypotheses and mechanisms of regulation of these proteins.

Materials and methods

Ethics statement

Written informed consent had been obtained for the participants on the study. The approval

of the study was obtained from Hospital Doce de Octubre and Hospital Universitario La Paz

Ethics Committees.

Samples

One hundred and six FFPE samples from patients with breast cancer were recovered from I

+12 Biobank and from IdiPAZ Biobank, both integrated in the Spanish Hospital Biobank Net-

work. The histopathological characteristics were reviewed by a pathologist to confirm tumor

content. Samples had to include no less than half of tumor cells. The endorsement of the study

was obtained by Hospital Doce de Octubre and Hospital Universitario La Paz Ethics Commit-

tees. These samples were utilized in previous studies [2, 3, 17].
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Protein preparation

Proteins were extracted from formalin-fixed paraffin-embedded (FFPE) samples as previously

described [18]. Briefly, FFPE sections were deparaffinized in xylene and washed twice with

absolute ethanol. Protein extracts from FFPE samples were set up in 2% SDS buffer using a

protocol based on heat-induced antigen retrieval. Protein concentration was quantified using

the MicroBCA Protein Assay Kit (Pierce-Thermo Scientific). Protein extracts (10 μg) were

processed with trypsin (1:50) and SDS was removed from digested lysates using Detergent

Removal Spin Columns (Pierce). Peptide samples were additionally desalted using ZipTips

(Millipore), dried, and resolubilized in 15 μL of a 0.1% formic acid and 3% acetonitrile solution

before mass-spectrometry (MS) experiments.

Label-free proteomics

Samples were analyzed on a LTQ-Orbitrap Velos hybrid mass spectrometer (Thermo Fischer

Scientific, Bremen, Germany) coupled to NanoLC-Ultra system (Eksigent Technologies, Dub-

lin, CA, USA) as described previously [2, 3]. Briefly, after separation, peptides were eluted with

a gradient of 5 to 30% acetonitrile in 95 minutes. The mass spectrometer was operated in data-

dependent mode (DDA), followed by CID (collision-induced dissociation) fragmentation on

the twenty most intense signals per cycle. The acquired raw MS data were processed by Max-

Quant (version 1.2.7.4) [19], followed by protein identification using the integrated Androm-

eda search engine [20]. Briefly, spectra were searched against a forward UniProtKB/Swiss-Prot

database for human, concatenated to a reversed decoyed fasta database (NCBI taxonomy ID

9606, release date 2011-12-13). The maximum false discovery rate (FDR) was set to 0.01 for

peptides and 0.05 for proteins. Label free quantification was calculated on the basis of the nor-

malized intensities (LFQ intensity). Quantifiable proteins were defined as those detected in at

least 75% of samples in at least one type of sample (either ER+ or TNBC samples) showing two

or more unique peptides. Only quantifiable proteins were considered for subsequent analyses.

Protein expression data were log2 transformed and missing values were replaced using data

imputation for label-free data, as explained in [21], using default values. Finally, protein

expression values were z-score transformed. All the mass spectrometry raw data files acquired

in this study may be downloaded from Chorus (http://chorusproject.org) under the project

name Breast Cancer Proteomics.

Network construction

PGM are graph-based representations of joint probability distributions where nodes represent

random variables and edges (directed or undirected) represent stochastic dependencies

among the variables. In particular, we have used a type of PGM called Bayesian networks (BN)

[13]. With these models, the dependences between the variables in our data are specified by a

directed acyclic graph (DAG). The obtained networks will indicate causality i.e. if protein A

and B are connected and protein A changes its expression value, protein B changes its expres-

sion value as well [22].

Firstly, we find the BN that best explains our data [23]. There are different algorithms to

learn a DAG from data but we have selected the well-known PC algorithm (named as its inven-

tors Peter Spirtes and Clark Glymour), a constraint-based structure learning algorithm [24]

based on conditional independence tests. The PC algorithm was shown to be consistent in

high-dimensional settings [25]. Moreover, an order-independent version of the PC algorithm,

called PC-stable, was proposed in [26]. All these procedures are implemented in R within

packages pcalg [25] and graph [27]. We used protein expression data without other a priori

information.

PLOS ONE Directed networks established functional differences in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0234752 June 11, 2020 3 / 12

http://chorusproject.org
https://doi.org/10.1371/journal.pone.0234752


In this way, our data are represented by a large graph that can be partitioned into several

connected components. Then, we focused on finding suitable subgraphs that give us a much

clearer understanding of the interrelations therein.

STRING v11 (https://string-db.org/) was used to check if some of the protein relations

obtained in the DAG analysis were previously described.

Gene ontology analyses

Protein to Gene Symbol conversion was performed using Uniprot (www.uniprot.org) and

DAVID (www.david.ncifcrf.gov) [28]. Gene Ontology Analysis was also done in DAVID

selecting only “Homo sapiens” background and GOTERM-FAT (http://geneontology.org/),

Biocarta (http://doi.org/10.1089/152791601750294344) and KEGG (https://www.genome.jp/

kegg/kegg1.html) databases.

Component activity measurements

Component activities were calculated as previously described [2, 3]. Briefly, activity measure-

ment was calculated by the mean expression of all the proteins of each component related with

the established major component function.

Statistical analyses

Network visualization was performed using Cytoscape software [29]. Statistical comparison

between tumor groups were done in GraphPad Prism v6 using a non-parametric Mann-Whit-

ney test. Prognostic signatures were developed using R v3.2.4 and BRB Array Tools, developed

by Dr. Richard Simon and BRB Array Tools Development Team [30]. Briefly, functional node

activities were ranked according their p-values in a Kaplan-Meier analysis. Then, a Cox regres-

sion including a leave-one-out validation using 1,000 random permutations was used to vali-

date the prognostic capability. P-values under 0.05 were considered statistically significant.

Results

Patient characteristics

Clinical characteristics of this patient cohort have been previously described [2, 3, 31]. Briefly,

one hundred and six patients were enrolled into the study. They all had node positive disease,

Her2 negative and all had received adjuvant chemotherapy and hormonal therapy in the case

of ER+ tumors. Among ER+ tumors, 50 patients were characterized as ER-true and 21 were

defined as TN-like (S1 Table) [2].

Mass spectrometry analysis

Proteomics analyses from these samples have been previously described [2]. In summary, one

hundred and two FFPE samples had enough protein to perform the MS analyses. After MS

workflow, 96 samples provided useful protein expression data. After quality criteria, 1,095 pro-

teins presented at least two unique peptides and detectable expression in at least 75% of the

samples in at least one type of sample (either ER+ or TNBC).

Directed networks

Using proteomics data, directed acyclic graphs (DAG) were performed. Altogether, it was pos-

sible to establish 789 edges of which 662 were guided and 127 are undetermined. These edges
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formed 303 components formed by different number of nodes or proteins. An overview of the

number of nodes (proteins) included in each component is provided in Table 1.

We characterized components from DAG analysis. Components including less than 9

nodes were dismissed because they were little informative. All components were named with

the number of nodes included by the DAG analysis.

Afterwards, components were interrogated for biological function. Characteristics about all

components are supplied in Table 2 and S1 File.

Component activity measurements

Component activities were calculated for each node. There were significant differences

between ER-true, TN-like and TNBC tumors in the component activity for component 23:

mitochondria, component 17: RNA binding, component 13: extracellular matrix, and compo-

nent 10: extracellular exosome (Fig 1).

Component 13: Extracellular matrix

Component 13 activity showed prognosis value in our series, splitting our population into a

high and a low risk group and it can be used as a distant-metastasis free survival (DMFS) pre-

dictor (p = 0.045, HR = 0.35, 30–70%) (Fig 2). Interestingly, the predictor classified all the TN-

like tumors and most of TNBC tumors into the high-risk group (Table 3).

Component 13 contains thirteen proteins mainly related to extracellular matrix (Fig 3). The

five proteins related by gene ontology analysis to extracellular matrix were OGN, BGN, LUM,

CMA1, and DCN, all of them, with the exception of CMA1, belonged to small leucine-rich

proteoglycan family of proteins.

Additionally, the existence of described connections was checked using STRING v11

(Fig 4). Interestingly, some of the connections suggested by BN analysis in Component 13,

(NDUFB2 and NDUFB4; CPA3 and CMA1; and BGN, LUM, and DCN) were connected both

in the DAG graph and in the STRING network, meaning that these interactions have been pre-

viously described.

Table 1. Characteristics of the components obtained from DAG.

Number of nodes 1 2 3 4 5 6 8 9 10 11 12 13 15 17 18 23 464

Number of components 188 62 13 18 6 4 2 1 1 1 1 1 1 1 1 1 1

Number of nodes = number of proteins contained in each component, Number of components = directed components obtained.

https://doi.org/10.1371/journal.pone.0234752.t001

Table 2. Features of components obtained by DAG analysis.

Component Number of nodes Main function

Component 23 23 Membrane and mitochondria

Component 18 18 Cytoskeleton

Component 17 17 RNA binding

Component 15 15 Extracellular exosome

Component 13 13 Extracellular matrix

Component 12 12 RNA binding and translation

Component 11 11 Proliferation and oxphos

Component 10 10 Extracellular exosome

Component 9 9 RNA binding and splicing

https://doi.org/10.1371/journal.pone.0234752.t002
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Discussion

In this study, we used proteomics and DAG to characterize relationships between proteins in

breast cancer tumor samples. Unlike other approaches, such as Genes2FANS [32], our DAG

method supplies directed relationships between proteins and a hierarchical structure. Tradi-

tionally, protein-protein interaction (PPI) networks, such as STRING, are based in relation-

ships described in the literature. However, we built a directed network, i.e. a graph formed by

edges with a direction, using protein expression data without other a priori information, so it

was possible to propose new hypotheses about protein interactions. We used probabilistic

graphical models (PGM) because they offer a way to relate many random variables with a com-

plex dependency structure.

As it has been previously mentioned, arrows in directed networks indicate causality

between two proteins. This approach allows making hypotheses about causal relationships

between proteins and proposes a hierarchical structure. In some cases, an experimental rela-

tionship between two proteins connected in the directed network had been previously

described. For instance, in component 18, it has been widely described that PIP binds AZGP1

Fig 1. Component activity measurements for ER-true, TN-like and TNBC respectively.

https://doi.org/10.1371/journal.pone.0234752.g001
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in breast cancer [33]. Another example is component 11 which related COX5A, MT-CO2 and

COX6C, all proteins of mitochondrial complex IV [34].

We demonstrated in previous works that non-directed graphs provided functional infor-

mation [2, 3]. Interestingly, a functional structure also appeared in this type of networks. Com-

ponent activities suggested differences in functions such as extracellular matrix and

mitochondria. Differences in mitochondria between these subtypes have been previously

described using non-directed PGMs [2, 3].

On the other hand, component 13, composed by thirteen proteins, five of them related to

extracellular matrix, had prognostic value in our series. Of these five proteins, four of them

belonged to the small leucine-rich proteoglycan (SLRP) family (lumican, biglycan, osteoglycin,

and decorin). Biglycan (BGN) could promote migration in breast cancer [35]. It has been

widely described the anti-metastatic role of decorin (DCN1) in breast cancer [36–38]. Lumican

(LUM) significantly attenuated cell functional processes, including proliferation, migration

and invasion [39]. In the same study, it was described that lumican modulates matrix effectors

in MCF7 and MDAMB231 cells. Finally, osteoglycin (OGN) has been suggested as a biomarker

of ECM in TNBC [40]. On the other hand, chymase 1 (CMA1) is secreted by mast cells and

may play a role in angiogenesis [41]. It is also involved in extracellular matrix degradation.

Higher levels of this protein were observed in Luminal subtype [42]. DCN, OGN, BGN, and

Fig 2. Component 13 activity prognostic value in the whole cohort.

https://doi.org/10.1371/journal.pone.0234752.g002

Table 3. Number of patients classified by the DMFS predictor into a low or a high-risk group.

Subtype Number in low-risk group Number in high-risk group

ER-true 26 24

TN-like 0 21

TNBC 3 22

https://doi.org/10.1371/journal.pone.0234752.t003
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LUM appeared also interconnected in the STRING network, so the DAG graph reflected pro-

tein interactions previously described. NDUFB2 and NDUFB4 were also connected in both

networks.

Other proteins included in this component related to cancer are NUMA1, SERPINA1, and

PAFAH1B3. Nuclear mitotic apparatus (NUMA1) is a structural component of the nuclear

matrix. The encoded protein interacts with microtubules and plays a role in formation and

organization of the mitotic spindle during cell division. It also modulates p-53 mediated tran-

scription in cancer cells [43]. Serpin family A member 1 (SERPINA1) is a direct estrogen

Fig 3. Component 13. Orange nodes: Proteins related to extracellular matrix ontology.

https://doi.org/10.1371/journal.pone.0234752.g003

Fig 4. Network built with the proteins from Component13 using STRING.

https://doi.org/10.1371/journal.pone.0234752.g004
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receptor target and a predictor of survival in breast cancer patients [44]. Platelet activating fac-

tor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3) encodes an acetylhydrolase that cata-

lyzes the removal of an acetyl group from the glycerol backbone of platelet-activating factor. A

study identified PAFAH1B3 as a key metabolic driver of breast cancer pathogenicity that is

upregulated in primary human breast tumors and correlated with poor prognosis [45]. This

enzyme may be dysregulated across many cancer types [46].

In previous studies we have used functional node activities from non-directed network to

develop prognostic predictors [7]. Now, this approach is also validated in directed networks.

We used a mathematical method as DAG analysis and applied them to proteomics data of

breast cancer tumors in order to infer causal relationships between these proteins. This

method supplied some known relationships but also proposed new ones. Additionally, it asso-

ciated proteins with a similar function. Therefore, it seems that it is a good approach to pro-

pose new hypotheses about mechanisms of action. Moreover, it was possible to associate the

results obtained by DAG analysis with prognosis and built a prognostic signature. As far we

know, this is the first time that this type of analysis is applied to clinical data and is associated

with clinical outcome.

Our study has some limitations. Proteomics provides complementary information to other

techniques such as genomics. However, an improvement in the number of detected proteins is

still necessary. On the other hand, breast cancer clinical scenario is far more complex, and

stratified analyses (by molecular or clinical subtypes, for example) could provide more com-

plex and insightful information. Finally, all these mathematical approaches (and others),

despite being useful by themselves, should be combined to obtain more information about the

clinical scenario analyzed, as long as it seems that different analyses provide different and com-

plementary information from the same data.

To sum up, in this study, we used proteomics and directed networks to characterize rela-

tionships between proteins in breast cancer tumors. This approach reflected some previously

described interactions and it could be used to propose new hypotheses and mechanisms of

action.
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