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Abstract

Tissue segmentation and classification in MRI is a challenging task due to a lack of signal

intensity standardization. MRI signal is dependent on the acquisition protocol, the coil pro-

file, the scanner type, etc. While we can compute quantitative physical tissue properties

independent of the hardware and the sequence parameters, it is still difficult to leverage

these physical properties to segment and classify pelvic tissues. The proposed method inte-

grates quantitative MRI values (T1 and T2 relaxation times and pure synthetic weighted

images) and machine learning (Support Vector Machine (SVM)) to segment and classify tis-

sues in the pelvic region, i.e.: fat, muscle, prostate, bone marrow, bladder, and air. Twenty-

two men with a mean age of 30±14 years were included in this prospective study. The

images were acquired with a 3 Tesla MRI scanner. An inversion recovery-prepared turbo

spin echo sequence was used to obtain T1-weighted images at different inversion times

with a TR of 14000 ms. A 32-echo spin echo sequence was used to obtain the T2-weighted

images at different echo times with a TR of 5000 ms. T1 and T2 relaxation times, synthetic

T1- and T2-weighted images and anatomical probabilistic maps were calculated and used

as input features of a SVM for segmenting and classifying tissues within the pelvic region.

The mean SVM classification accuracy across subjects was calculated for the different tis-

sues: prostate (94.2%), fat (96.9%), muscle (95.8%), bone marrow (91%) and bladder

(82.1%) indicating an excellent classification performance. However, the segmentation and

classification for air (within the rectum) may not always be successful (mean SVM accuracy

47.5%) due to the lack of air data in the training and testing sets. Our findings suggest that

SVM can reliably segment and classify tissues in the pelvic region.

Introduction

Tissue segmentation and classification is an important topic in Magnetic Resonance Imaging

(MRI). It helps to study anatomical structures, to develop surgical planning, plan radiation

therapy and perform quantitative analyses [1,2].
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Most of the available segmentation and classification methods operate on conventional

contrast-weighted MR images (T1-, T2-, and proton density-weighted images). However, the

segmentation and classification of tissues from contrast-weighted MR images is fundamentally

complex. This is due to the specific sequences used which impact the grayscale values of the

resulting MR images. So, as opposed to CT-scan images, one cannot know a priori the gray-

scale values of a given tissue without acute knowledge of the exact acquisition protocol. As

such, MR images are highly sensitive to acquisition parameters [3] such as the inversion time

(TI), the echo time (TE), the repetition time (TR), the flip angle and the voxel size, as well as

the sequences used to acquire the images [4]. MR images are also affected by various signal

artifacts like partial volume effects, transverse coherences or spoiling, B0- and B1-inhomogene-

ities [5], as well as hardware characteristics (e.g. intra- and inter-scanner variations, magnetic

field intensity, coil sensitivity [6]). Furthermore, the tissue properties themselves have an

impact on the acquired MR images (e.g. relaxation times, proton density and physiological

parameters). The interaction of these factors determines the image voxel intensity and, there-

fore, makes automatic tissue segmentation and classification challenging, especially for unsu-

pervised methods [7].

Furthermore, the complexity of image formation leads to an unfortunate loss of physical

meaning of the absolute voxel intensity [8]. This is because MR images are acquired in arbi-

trary units that are not comparable between studies [9]. Hence, segmentation and classification

are performed by comparing contrast differences among arbitrary voxels’ intensities. As the

intensity scaling is also arbitrary, MRI segmentation and classification methods require the

implementation of complicated filtering and normalization techniques [10,11], which add

additional steps to the segmentation and classification process. Moreover, these methods often

have a strong heuristic flavor and do not generalize well to images that violate the hypotheses

they are built upon.

To avoid these difficulties, some automatic methods work directly on parametric maps

(quantitative MRI) or on generated synthetic images based on intrinsic properties of tissues

such as T1 and T2 relaxation times. This is possible because in the T1 and T2 parametric maps,

the voxel intensities represent individual tissue physical properties. These properties are scan-

ner and pulse sequence independent, and have numerical meaning rather than representing

signal intensity on an arbitrary scale [3,12]. i.e. quantitative MRI has the benefit of being inde-

pendent of MRI settings and hardware imperfections [8]. A further advantage of the integra-

tion of imaging physics into the classification process is that it allows the optimization of the

MR pulse parameters in a way that reduces the probability of misclassification [3].

Various segmentation and classification methods using the tissues’ physical properties have

been proposed. For example, Chen et al. [13] performed segmentation of white matter (WM),

gray matter (GM), and cerebrospinal fluid (CSF) using a region-based active contour method

applied on T1 relaxation maps. Traynor et al. [14] utilized both T1 and T2 relaxation times to

segment the thalamus in 16 regions using a genetic algorithm. Iglesias et al. [15] implemented

an atlas-based method using generated synthetic images from the T1 relaxation times to seg-

ment the hippocampus. Knowing that the intensities of T1-weighted, T2-weighted or proton

density images are the product of different physical variables, Iglesias et al. [15] computed syn-

thetic T1-weighted images using the tissues’ physical properties to achieve image homogeniza-

tion and perform atlas matching to segment the hippocampus. As mentioned by the authors,

the drawback of their method is that the T1 value of at least one tissue must be known a priori.

This is a major weakness considering that the true relaxation times of tissues are still not mea-

sured with sufficient accuracy and precision [5].

To the best of our knowledge, most previous methods have been designed for brain and

thorax imaging, and little effort has been devoted to pelvic imaging, although prostate cancer
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is the most commonly diagnosed cancer for men worldwide [16]. For prostate cancer, MRI is

currently the imaging modality of choice for early detection and classification of tumorous

areas. An accurate segmentation and classification of prostate cancer is required to guide

radiotherapy or surgery, to perform volume estimation and to track disease progression [17].

However, the segmentation and classification of prostate is particularly challenging in MRI

because signal intensity is not standardized, and image appearance is for a large part deter-

mined by acquisition protocol, coil profile, scanner type and field strength [18]. These are

major obstacles in the development of prostate segmentation and classification methods.

In this paper, we use a machine learning method to learn the relation between the T1/ T2

intrinsic parameters for six different tissues namely prostate, fat, muscle, bladder, bone mar-

row, and air (within the rectum). As such, a Support Vector Machine (SVM) is used to seg-

ment and classify the relevant structures within the pelvis. The MRI feature descriptors are the

T1 relaxation time, the synthetic generated pure T1-weighted images (with different TI), the T2

relaxation time and synthetic generated pure T2-weighted images (with different TE), and a

probabilistic shape prior which encodes the location of anatomical regions.

Materials and methods

To carry out the segmentation and classification of the different tissues present in an image,

our approach exploits the information obtained from different standard MR sequences. The

sequences are used to obtain T1-weighted and T2-weighted images in order to compute the T1

and T2 relaxation maps. These maps serve as the input feature vectors of the SVM used for tis-

sue segmentation-classification. Furthermore, the relaxation times are utilized to generate

pure synthetic T1- and T2-weighted images that are also used as input features. A shape proba-

bilistic map is also used as a feature descriptor to include anatomical information in the seg-

mentation-classification method. The segmented image contains the labels and boundaries of

the various tissues within. The different steps of our method are illustrated in Fig 1 on one

slice of a volunteer.

Image acquisition

The images were acquired with a 3T Trio TIM clinical scanner (Siemens Medical Solutions,

Germany) using a phased-array body coil. Twenty-two men gave their informed consent to

participate in the study, which had been approved by the local institutional review board and

the local ethic committee (the IRB of the University Hospital of Dijon (France) approved the

research). The French law and regulation was followed, and the management of the patient is

endorsed by the University Hospital of Dijon, that assume having participant consent by

default when the participant is supervised by our institution. The study procedures were in

accordance with the ethical standards of the committees with responsibility for human experi-

mentation and with the Helsinki Declaration of 1975, as revised in 2008. Certain pathologies

may alter tissue relaxation values and so subjects with systemic pathologies such as hematolog-

ical diseases (anemias, myelodysplasias) and muscular disorders (atrophy, Duchenne and

Becker diseases, etc.) should be excluded from the study. The group was comprised of 22

healthy volunteers. The age range was from 22 to 63 years old (mean 30 ± 14). Four to five

slices were acquired depending on the anatomy of the subject. MRI slices were acquired with

the same FOV, resolution and position at the level of the pelvis for both T1- and T2-weighted

images. Axial pelvic orientations were chosen as it is commonly used in prostate MRI.

An inversion recovery-prepared turbo spin echo sequence was used to obtain the T1-

weighted images. These images were acquired at eight different inversion times (i.e. TIs were

from 50 ms to 10000 ms). The TIs were chosen to assure maximum contrast among tissues
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Fig 1. Pipeline of the segmentation and classification process using the SVM classifier. After obtaining the T1- and T2-weighted images (a-b)

from their corresponding sequences, the body region is found using a threshold method on the T2-weighted images (c). Then, the fit procedure

is applied to obtain the relaxation maps and other different variables from the received signal model (d-e). These variables are then used to

generate the synthetic T1- and synthetic T2-weighted images (f-g). Later, an independent process using the training data is used to generate

tissues probabilistic maps, i.e. the probability of a voxel belonging to different tissues (h). At this point, all feature descriptors are normalized (i)

to be used by the multi-class SVM classifier (j), which predicts the different classes (k).

https://doi.org/10.1371/journal.pone.0211944.g001
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and to cover the whole span of T1 relaxation times of tissues present in the slice section. Other

nominal sequence parameters are repetition time (TR) of 14000 ms, echo time (TE) of 7.4,

echo train length (ETL) of 11, field of view (FOV) from 180 x 280 mm to 220 x 380 mm, slice

thickness of 5 mm, number of excitations (NEX) = 1 and matrix size of 168 x 256. The average

acquisition time per TI was 3 min 33 s.

A 32-echo spin echo sequence was used to obtain the T2-weighted images. The T2-weighted

images were acquired at different TE from 8.8 to 281.6 ms in 8.8 ms steps with a TR of 5000

ms. The same nominal values for FOV, NEX and matrix size were defined as for the T1

sequence of every volunteer. The acquisition time was 14 minutes for the T2-weighted spin

echo sequence.

Segmentation and classification

In our method, MR images are segmented by classifying each pixel with a multi-class linear

SVM classifier [19]. As mentioned in the introduction, the grayscale values of a given tissue

can vary significantly from one acquisition to another. As such, raw input data suffer from a

large variance making it hardly separable. While non-linear classifiers such as random forests

[20], Adaboost [21], neural networks [22] or Kernel-SVM [23] could be used, the large vari-

ance of the data can lead to overfitting and poor generalization, especially when the training

set accounts for a limited number of subjects. In this paper, we use features with a much lower

variance while making classes linearly separable. While linear models are less prone to overfit-

ting (and thus ensure a lower generalization error) they are also much faster, easier to train

and have fewer hyper-parameters. The features used are the T1 relaxation time, the synthetic

T1-weighted images, the T2 relaxation time, the synthetic T2-weighted images, and a probabi-

listic shape prior, which are explained in the following section.

The labels of the training data were defined by manually selecting ROIs corresponding to

the different tissues present in the imaged anatomical areas, i.e. prostate, fat, muscle, bone

marrow, bladder and air. ROIs were outlined by a radiologist with 20 years of experience

based on a T1- and/or T2-weighted image that best depicted the tissues. Selected ROIs and

their corresponding labels are illustrated in Fig 2.

T1 relaxation time

The longitudinal relaxation time, T1 feature, is calculated from a magnitude monoexponential

fit to the signal recovery data for each voxel using the bisquare weights nonlinear least squares

fitting method [24]. This method was chosen for its capacity to eliminate the influence of noise

by reducing the weight of outliers during the fit. A three-parameter model was used to describe

the received signal at different inversion times (S(TI)):

SðTIÞ ¼ jS0ð1 � ae
� TI=T1Þj ð1Þ

where T1 is the relaxation time, S0 the equilibrium magnetization and α the inversion effi-

ciency. These parameters represent the fitting variables of the model. S(TI) is the measured sig-

nal value for a given value of TI. The model describes a magnitude signal (only positive values)

because the phase component of the received signal is not used during the reconstruction (i.e.

the acquired MR images were magnitude images with no phase component).

The fitting interval restrictions on the model were set to the values defined in [24]

(S0 [1, 65535], α[0, 2] and T1[0, 3000]). The interval on S0 considers any potential signal inten-

sity expected in a MR DICOM image, the α intervals span all the potential inaccuracies of the

scanner inversion pulse from 0˚ to 180˚, and the T1 intervals span all the expected T1 relaxa-

tion times of tissues present in the image.

Tissue classification on pelvic MRI
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To reduce the fitting time, the background is automatically extracted and the fit is per-

formed only with voxels that belong to the body region. This is achieved by creating a body

mask from the T2-weighted image with the shortest TE (8.8 ms) with a threshold of 4% of the

highest voxel intensity. At this TE, the tissues have almost full transversal magnetization and

their intensity is maximum (Stissue�25�Sbackground or noise), which allows an easy separation

between the body region and the background. The body region is defined by performing con-

nected component analysis, i.e. two regions are identified and the region with the largest num-

ber of voxels is labeled as the body region (Sizebody region� 4 Sizebackground).

The accuracy of the fit was measured by the Rsquare metric. Only the Rsquare values of voxels

describing�85% of the data were considered as good fits. The fitting stops when a maximum

number of iterations is reached or a good fit is found. Fig 1D shows the process of the T1 relax-

ation time calculation.

Since the fit was performed in a voxel by voxel fashion, the obtained relaxation times

formed a T1 relaxation map which has the appearance of an image (structures can be identi-

fied), conceptually different from a T1-weighted image, in that individual pixel values now

have a numerical meaning (i.e. T1 values in ms at each location in the anatomical area), rather

than representing signal intensity on an arbitrary scale.

Once the parameters from the fit are calculated, the inverse process is performed to obtain

a synthetic T1-weighted image.

Synthetic T1-weighted images

Synthetic MR images can be generated with arbitrary contrast weighting, if the appropriate

MR signal model is used [25]. In this case, the synthetic T1-weighted images are generated

using the following model:

SðTIÞ ¼ S0ð1 � 2e� TI=T1Þ ð2Þ

This model describes a signal with a perfect inversion pulse of 180˚ (i.e. α = 2) and depends

on only three variables: S0, T1 and TI. An example of the signal modeling is shown in Fig 3A.

To generate the synthetic T1-weighted images, S0 is assigned a constant maximum intensity

value commonly used by MR scanners [26] (i.e. 4095). This constant value simulates a perfect

homogeneous B0 for every voxel. The T1 relaxation values are set from the values found from

the T1 fit calculation. The TIs were defined to span all the relaxation times of tissues present in

2

3

54
1

6

Fig 2. Selected ROIs on a T1-weighted image of the pelvic area. 1) air, 2) fat, 3) muscle, 4) prostate, 5) bone marrow,

and 6) bladder.

https://doi.org/10.1371/journal.pone.0211944.g002
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the image, and to sample the signal intensities where they could produce the maximum con-

trast among tissues (TIs = 25 ms, 200 ms, 400 ms, 700 ms, 900 ms, 1000 ms, 1100 ms, 1200 ms,

1500 ms, 2000 ms, 3000 ms, 4000 ms, 5000 ms). Examples of generated synthetic T1-weighted

images are provided in Fig 4.

The idea behind the chosen TIs is to sample the relaxation signal of tissues at precise

moments where signal differences are maximal among tissues (e.g. at TI = 1200 ms, Fig 4), and

to avoid sampling at those TIs where the signal of tissues are not easy to differentiate. However,

it is difficult to define the perfect TIs a priori because the precise T1 relaxation times of tissues

are still not measured with sufficient accuracy and precision [5]. A practical workaround is to

use many TIs to cover a large span of T1 relaxation times (and by focusing on TI values that

maximally differentiates tissues). This is because short TIs sample points favor the short T1

relaxation times, and long TIs sample times favor the long T1 relaxation times [8].

The synthetic T1-weighted images have important advantages with respect to the T1-

weighted images: 1) The proton density influence and the effects of B0 and B1 inhomogeneities

are removed; 2) The evolution of the signal has now a phase and not only a magnitude (i.e. it

goes from negative to positive values). This is important because in magnitude images, tissues

with different T1 relaxation times could be mapped with the same signal intensity (e.g. a signal

intensity of 50 is equal to |-50| in magnitude images); 3) There is image homogenization

through all the synthetic T1-weighted images (i.e. all intensities are in the range of [-4095,

4095]); 4) The dynamic range doubles with respect to the acquired T1-weighted images (i.e.

from [0, 4095] to [-4095, 4095]); and 5) The synthetic images are independent of the scanner

hardware and acquisition protocol.

T2 relaxation time and synthetic T2-weighted images

For the T2 relaxation time, a mono-exponential fit using a bisquare weights nonlinear least

squares fitting method was applied to the data [24]. The following three-parameter model was

used to describe the received signal at different echo times (S(TE)):

SðTEÞ ¼ S0e
� TE=T2 þ C ð3Þ

where T2, S0 and the y-offset (noise floor C) are the fitting parameters [27].

Fig 3. Model of a T1 and T2 relaxation signal. The T1 relaxation curve is simulated with an ideal inversion pulse (α = 2 = 180˚) and magnetic field homogenization (S0

= 4095) (a). The T2 signal is also simulated with magnetic homogenization (S0 = 4095). Reported T1 and T2 values at 3 Tesla from the literature were used to generate the

signal: fat (385 ms, 121ms), bone marrow (585 ms, 127 ms), muscle (1295 ms, 40 ms), prostate (1700 ms, 74 ms), and bladder (3000 ms, 50 ms) [24,33,34], respectively.

TIs and TEs were chosen to cover the complete span of relaxation times of the previous tissues.

https://doi.org/10.1371/journal.pone.0211944.g003
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Fig 4. Process by which the synthetic T1-weighted image is computed. The relaxation times of tissues and the selected

inversion times (TI) are used to generate the synthetic T1-weighted images using the model describing a received signal

from a perfect inversion pulse.

https://doi.org/10.1371/journal.pone.0211944.g004
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The fit was calculated only for voxels belonging to the region of the body defined during

the T1 processing. The fits of voxels with Rsquare� 85% were kept. The model interval restric-

tions were defined to reduce the fitting time (S0 [1, 65535], T2 [0, 3500] and C [0, 5000]).

Fig 1E shows the process of the T2 relaxation time calculation.

Once the parameters from the fit are calculated, the inverse process is performed to obtain

a synthetic T2-weighted image. This inverse process is similar to the one used to generate the

synthetic T1-weighted image. The synthetic T2-weighted images are generated using the model

described in Eq 3. S0 is kept constant (4095, a common maximum intensity value found in MR

images), without y-offset (C = 0), and the T2 relaxation values are set from the values found

from the T2 fit calculation. An example of the signal modeling is shown in Fig 3B.

As for the synthetic T1-weighted image, it is difficult to define the perfect TEs a priori, as

many TEs were used to cover a large span of T2 relaxation times. This is because short TEs

sample points favor the short T2 relaxation times, and long TEs sample points favor the long

T2 relaxation times [8].

The synthetic T2-weighted images have important advantages with respect to the T2-

weighted images: 1) The effects of B0 inhomogeneities, B1 inhomogeneities, proton density

influence and noise (C) are removed; and 2) There is signal intensity homogenization (i.e. all

the synthetic images are generated using the same signal scale: 0 to 4095).

Shape prior

In order to enforce anatomically plausible results, we created a probabilistic shape prior P(C|x)

which encodes the posterior probability of having a tissue of a certain class C given a voxel

position x. The process for computing this shape prior consists in the following steps:

1. We localize the body center of mass for every volunteer in the training set.

2. Every voxel in the ROIs drawn by the expert is translated into an accumulator grid using

the body center of mass as the reference point. Each bin in the accumulator grid records the

number of tissue instances for the different tissues. The accumulator grid has a size of 80 x

80 cm2 and covers all possible variations. The bin dimensions of the grid are set to 5 x 5

mm2, a trade-off between the partial volume effects (bigger bins increase the possibility of

this effect) and the computation time (smaller bins increase the computation time and the

amount of memory to handle the probabilistic maps).

3. Finally, the probability that a certain voxel belongs to a particular tissue is computed for

every bin by averaging out the ground truth labels of each training image.

The process is illustrated in Fig 5. The posterior probability values from the shape prior will

later on be used as feature descriptors.

Feature normalization

At this point, we have 36 features: one T1 relaxation time, one T2 relaxation time, 12 synthetic

T1-weighted images at different TIs, 16 synthetic T2-weighted images at different TEs, and six

shape prior probabilities of the different tissue classes (fat, muscle, prostate, bone marrow,

bladder, and air).

Each of the 36 features is normalized [28] so they have zero mean and unit variance:

fnorm ¼
fold � m
s

ð4Þ

where fold is the old feature value, fnorm is the normalized value, and μ and σ are the mean and

Tissue classification on pelvic MRI
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standard deviation of the original feature range. The main advantage of normalization is to

avoid features spanning across a large numeric range to dominate those with a smaller

numeric range.

Classification

The tissue classification is performed using the multi-class linear SVM implementation from

the libLinear software package [19]. A One-vs-All method was used to solve the multi-class

classification problem. It consists in developing for each class a binary classifier that separates

that class from the rest of the data. A linear SVM kernel was chosen due to the lack of prior

data suggesting the use of a non-linear SVM kernel (with our features), and due to the lower

vulnerability for overfitting compared with non-linear kernels [29]. The method then com-

bines the classifiers for multi-class inference [30].

Evaluation

To evaluate the performance of the multi-class SVM classifier, a leave-one-out cross-validation

was implemented. The overall database contains images from 22 subjects. We repeatedly

trained our method on data from 21 subjects and tested on the remaining one. The reported

cross validation accuracy is the percentage of data correctly classified pixel-by-pixel.

By its very nature, the dataset is highly imbalanced with far more pixels from the fat, muscle

and bone marrow classes than from the prostate, bladder and air classes. To avoid biasing the

classification toward the larger classes, the number of voxels from the fat, muscle and bone

marrow classes were randomly down-sampled to match the number of voxels in the prostate

class. Since the bladder and air ROIs are smaller than the prostate, we kept every pixel from

those classes.

The mean accuracy was calculated for different combination of features to find the one

with the higher prediction accuracy. Note that the classification process predicts a class label

for each pixel, but accuracy is reported based on the ROIs manually outlined by the radiologist

as shown in Fig 2.

Results

The segmentation-classification accuracy for the different tissues with different feature combi-

nations is shown in Table 1. For most of the SVM models, the prostate classification accuracy

was excellent (>80%), except for some models using a single feature descriptor (i.e. T1
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accumulator grid (b) and the instances of every different tissue in the different bins are counted to create the probabilistic map (c). From the probabilistic map, six-

features descriptors are formed: air, fat, muscle, bone marrow, prostate and bladder.

https://doi.org/10.1371/journal.pone.0211944.g005
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relaxation time (� 72%), T2 relaxation time (0%) or synthetic T1-weighted images (� 75%)).

The classification accuracy of fat and muscle was also excellent (>90%), except for the model

using only the shape prior as feature descriptor (< 80%). The classification accuracy of bone-

marrow only achieved good results in SVM models including the shape prior feature (> 85%),

otherwise the SVM classification failed (< 25%). The bladder classification accuracy was excel-

lent (> 80%) for those SVM models including most of the features (i.e. synthetic T1- and T2-

weighted and shape prior; and all the features). Please note that the reported accuracy of the

bladder was computed on the slices in which it is visible. The classification of air within the

body was not always satisfactory (<48%) in all the SVM models, mainly due to the small size

of this region and the difficulty to model air signal (classified as noise). The use of synthetic

T1- and T2-weighted features resulted in an overall better segmentation-classification accuracy

than just using T1 and T2 relaxation times as features descriptors for the SVM classifier.

Fig 6 presents an example of the computed T1 and T2 relaxation maps and the correspond-

ing segmentation-classification results using all features. Visual inspection of the T1 map indi-

cates a clear difference among the relaxation times of prostate (�1700 ms), muscle (� 1500

ms), fat (� 380 ms) and bladder (� 2950 ms) so tissues from the various classes could easily be

linearly separated. However, in the T2 map, the differences among the relaxation times of pros-

tate (� 70 ms)—fat (� 90 ms)—bladder (� 60 ms) and fat—bone marrow (� 95 ms) are not

visually perceptible. Nevertheless, the segmentation-classification accuracy for prostate, mus-

cle, fat and bone marrow was excellent (� 90%). The bladder and air segmentation-classifica-

tion accuracy was less accurate with around 10 and 45%, respectively.

Another example of the T1 and T2 relaxation maps and segmentation-classification results

is shown in Fig 7 for a volunteer affected with benign prostatic hyperplasia. The T1 relaxation

map has considerably spurious relaxation times (�2000 ms) in the muscle areas, and as

expected fat and bone marrow are not easily differentiated. In the T2 relaxation map, only two

areas are observable: 1) values below 70 ms (muscle) and 2) values above 71 ms (prostate, fat,

Table 1. Classification accuracy.

Combination of features Classification accuracy (mean)

Prostate Fat Muscle Bones Bladder Air

T1 Relaxation time 72.49 99.24 15.87 0.40 0.00 0.00

Synthetic T1-weighted 75.31 93.83 88.41 17.14 30.35 0.38

T2 Relaxation time 0.00 97.70 98.87 0.00 0.00 0.00

Synthetic T2-weighted 82.92 93.97 90.00 0.00 18.43 13.38

T1 and T2 Relaxation times 87.48 97.76 95.88 0.00 0.00 0.00

Synthetic T1- and T2-weighted 91.68 94.04 94.46 24.46 42.27 14.05

Shape prior 93.54 78.35 75.61 87.32 62.46 0.00

T1 Relaxation time and shape prior 93.73 96.37 93.35 89.59 64.87 11.50

Synthetic T1-weighted and shape prior 93.03 96.48 94.83 90.02 66.35 9.50

T2 Relaxation time and shape prior 92.41 95.03 95.00 89.35 62.69 9.12

Synthetic T2-weighted and shape prior 93.56 95.71 95.25 90.19 65.11 35.28

T1 and T2 Relaxation times + Shape prior 93.13 96.62 95.43 89.66 67.60 29.35

Synthetic T1- and T2-weighted and Shape prior 94.41 96.85 95.93 91.03 83.60 43.58

All features 94.23 96.90 95.89 91.05 82.10 47.55

Accuracy for SVM classification with leave-one-out validation for prostate, fat, muscle, bone marrow, bladder and air, including the list of the feature combination for

each of the models. The overall classification accuracy is excellent (above 80%) for most regions when using at least a combination of 3 features. Results for the air class

are less accurate, mainly because of the small size of that region.

https://doi.org/10.1371/journal.pone.0211944.t001
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bone marrow and feces). However, despite these difficulties the segmentation-classification

accuracy for prostate (89.1%), muscle (98.8%), fat (100%) and bone marrow (89.7%) was high.

A particular example of the T1 and T2 relaxation maps and classification-segmentation

results is shown in Fig 8. For this volunteer, the prostate does not present a homogeneous set

of T1 relaxation times. Its values overlap those of muscle and bladder (1300 ms to 3000 ms). In

Fig 6. Relaxation maps and segmentation map of volunteer 1. Both T1 and T2 relaxations maps show homogeneous time values

within the area of each tissue: prostate, muscle, fat, bladder and bone marrow. In the T1 and T2 maps, fat and bone marrow are not

visually separable. The same happens in the T2 map for prostate and fat, muscle and bladder. However, the SVM classifier accuracy

is rather excellent for prostate = 99.6%, fat = 92.5%, muscle = 99.3%, and bone marrow = 96.7%. Accuracy is lower for bladder

(10.4%) and air (45%) mostly because of the small size of these regions.

https://doi.org/10.1371/journal.pone.0211944.g006

Fig 7. Relaxation maps and classification results of volunteer 3. Even though this volunteer is affected by noncancerous prostatic

hyperplasia, the T1 map presents a rather homogeneous range of values in the prostate area (1600–2000 ms). The T1 map also

presents a considerable amount of misleading values (�2000 ms) in the muscle areas. On the T2 map, the muscle areas are well

defined (<70ms) and clearly differentiable from the rest of the tissues (prostate, fat, and bone marrow) which seem to merge in a

single region. In any case, the SVM accuracy is excellent: prostate = 89.1%, muscle = 98.8%, fat = 100%, and bone marrow = 89.7%.

Bladder and air are not present. All features were used to perform the classification.

https://doi.org/10.1371/journal.pone.0211944.g007
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the T2 relaxation map, the prostate values overlap those of fat and bladder (� 100 ms). How-

ever, the bladder is easily differentiated in the T1 relaxation map, but not in the T2 relaxation

map (i.e. its values overlap with those of prostate and fat). Nevertheless, the good accuracy of

our method for prostate (89.1%), bladder (71.9%) and fat (100%) shows that a linear classifier

works well, even for challenging images.

Discussion

In this paper, we presented a new methodology to classify tissues within the pelvic. The

approach uses a multi-class linear SVM and MRI relaxation times features to segment prostate,

fat, muscle, bone marrow, bladder and air. The overall accuracy of the method indicates that

our approach is a viable option to automatically classify and segment these tissues and that the

proposed features allow to linearly separate tissues. The lower accuracy for bladder and air

compared with the other tissues is due to the lack of enough training and testing data for those

two tissues (besides, they were not always visible in all imaged slices). Since the performances

of SVM depend on the availability of training data, the lack of enough samples of bladder and

air affects its performance. Also, since air and bladder cover a small area, an error of just a few

millimeters drastically reduces accuracy, especially when T1- and T2-weighted images are not

rigorously aligned. A possible solution for the lack of samples is data augmentation, i.e. bladder

and air samples could be cloned with random distortions to increase the number of training

samples. As for the misalignment, it can be due to rectal distension and rectal contraction

between acquisitions. The implementation of a non-rigid registration technique could be a

solution for this problem. The air classification accuracy also depends on the capacity of the

SVM classifier to model the air signal. However, if the air signal is present, it is classified as

noise (air does not give any signal when exposed to the radio frequency pulse of MR imaging).

Therefore, the SVM classifier is trying to model a noisy signal to classify air. Since noise is

Fig 8. Relaxation maps and classification results of volunteer 20. The T1 relaxation map shows heterogeneous values for the

bladder and prostate areas, and homogeneous non-distinctive areas for fat and bone marrow which complicate the classification

process. The T2 map only shows two discernible areas: 1) fat-bone marrow-prostate-bladder (�100ms) and 2) muscle (<100 ms)

adding additional complexity to the classification process. Nevertheless, the SVM classifies accurately labeled the different areas:

prostate = 89.1%, fat = 100%, muscle = 98.8%, bone marrow = 89.7%, bladder = 71.9% and air was not present. All features were

used to perform the classification.

https://doi.org/10.1371/journal.pone.0211944.g008
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formed randomly during each acquisition, its modeling is challenging. Thus, this could be

another reason for the low performance of the air classification accuracy.

The accuracy of the SVM classifier also depends on the chosen feature descriptors. The fea-

ture descriptors are T1 relaxation time, synthetic T1-weighted images, T2 relaxation time, syn-

thetic T2-weighted images and the tissue prior probabilistic maps. The accuracy of the results

indicates that the chosen feature descriptors characterize well the variability of the tissue

characteristics.

The T1 and T2 relaxation times are optimal feature descriptors because they represent phys-

ical properties that can be compared between cohorts. They are independent of scanner’s

hardware and acquisition protocol, and they can be used to generate synthetic weighted

images.

The synthetic T1- and T2-weighted images have been used as a "perfect" tissue descriptor

because they are independent of hardware and artifacts affecting MR image reconstruction.

They can generate a specific TI and TE to achieve reliable differentiation of all desired tissues.

This is unlike combining several contrast weighting techniques which is usually insufficient to

distinguish tissues [6]. When generated with the correct TIs or TEs sample points, synthetic

weighted-images bring to light the subtle differences between tissues with close relaxation

times, which help to increase classification accuracy. In fact, the inclusion of the synthetic

weighted images as features increased the bladder classification accuracy to satisfactory levels

(>80%), which was not possible using only the T1 and T2 relaxation times (<68%). Moreover,

synthetic images can be generated at the same relaxation sample point for every subject. This

forms a common framework which increases the intra- and inter-scanner reproducibility,

which could certainly help to carry out multi-center studies. Multi-center studies are difficult

because merging data across scanners is problematic (i.e. the way tissues’ properties are

changed to signal intensities is scanner dependent rather than tissue dependent [3], and these

signal intensities are arbitrary). However, the standardized nature of synthetic weighted

images facilitates comparison across sites and time points.

The diagnostic value of synthetic T1- and T2-weighted images was not thoroughly evaluated

although their quality when compared to conventional MR images has been shown sufficient

[31,32]. Future research could further explore the true diagnostic value of synthetic images.

Also, while this work focuses on relaxation time features, it could be easily extended to work

with other tissues’ physical properties such as the apparent diffusion coefficient, which could

be used to generate synthetic diffusion weighted images.

Tissue segmentation and classification with machine learning and relaxation times features

has received increasing interest recently. The work that relates the most to our study is a deci-

sion tree model method of tissue segmentation and classification based on the T1 and T2 relax-

ation times and anatomical knowledge proposed in [24]. In their study, prostate, fat, muscle

and bone marrow are segmented and classified. However, their study does not take advantage

of the relaxation time capacity to generate synthetic T1- and T2-weighted images neither does

it go further to localize other body regions (i.e. bladder and air). Moreover, their method uses

a special procedure to localize bone marrow, while in our method bone marrow is localized

directly by the SVM classifier.

The corner stone of the proposed method are the T1 and T2 relaxation times, for this reason

an inversion recovery and spin echo sequences were used to compute them. These sequences

are considered as the gold standard for MRI relaxometry. However, the trade-off is a long

acquisition time required to acquire the T1- and T2-weighted images, which could be a diffi-

culty in clinical practice. Hence, faster sequences could be adapted to compute the relaxation

times in the pelvis (e.g. the Variable Flip Angle steady state spoiled gradient recalled echo

(SPGR) imaging technique provides a series of high resolution T1-weighted images in a
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clinically feasible time [35]), and the method should work with these sequences thus it mostly

depends on the relaxation times to perform the segmentation-classification, i.e. it is sequence

independent.

Age related modifications in relaxation times are complex, but can be summarized as (i) a

decrease in the degree of hydration of tissues with age and (ii) an increase in fat content in

muscles [36,37]. A decrease in tissue hydration will lead to shorter T1 and especially T2 relaxa-

tion times in tissues, whereas an increase in tissue fat content will reduce T1, but increase T2.

However, it could be infer that these variations are modest thus the SVM classification accu-

racy was excellent for muscle, fat, and bone marrow for the range of ages involved in the study

(22–63 years old), since these tissues are the most affected by age related modifications in their

relaxation times. Nevertheless, a bigger cohort with an ample range of ages is necessary to vali-

date how well the SVM method can cape with these T1 and T2 age related variations.

Moreover, classification of prostate cancer tissue is not addressed in this study and an addi-

tional type of tissue (corresponding to prostate cancer) should be considered with a T1 slightly

higher and a T2 considerably lower than the ones of normal prostate gland.

The main limitation of this study is the small number of volunteers. Twenty-two subjects

are not enough to claim generalization, even though the fact that the SVM results came from a

careful leave-one-out cross validation which reduces the bias of the reported accuracy values.

Further validation on a much larger cohort that would include man of all ages, races and body

masses is necessary.

Conclusion

We presented a reliable multi-linear SVM method to segment and classify the structures pres-

ent in prostate MR examination: prostate, fat, muscle, bone marrow, bladder and air using the

intrinsic T1 and T2 relaxation times of tissues. The SVM results provide solid information

about these structures and could be potentially useful to measure the prostate volume for

radiotherapy applications or for multi-modality registration (e.g. PET/MRI) to generate atten-

uation maps, and to perform quantitative analyses.
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