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ABSTRACT Here, we announce the draft genome sequences of four endophytic ba-
cilli isolated from surface-sterilized seeds of three cucurbit species, Bacillus sp. strains
EKM417B and EKM420B (from Citrullus lanata [watermelon]) and EKM501B (from Cu-
curbita moschata [butternut squash]) and Paenibacillus sp. strain EKM301P (from Cu-
curbita pepo L. var. pepo L. [pumpkin]). These strains previously demonstrated bio-
stimulant and biocontrol activities.

Plant microbiomes have evolved to perform defensive/growth-promoting functions
(1–3). 16S Illumina sequencing of cucurbit seeds revealed the dominance of

spore-forming, Gram-positive bacteria (e.g., Bacillus/Paenibacillus genera) (4), consistent
with aerobically cultivated microbiota (5). We isolated unique colonies from cultivated
surface-sterilized cucurbit seeds. They were identified as Bacillus sp. strains EKM417B
and EKM420B (from Citrullus lanata [watermelon]), Bacillus sp. strain EKM501B (from
Cucurbita moschata [butternut squash]), and Paenibacillus sp. strain EKM301P (Cucurbita
pepo L. var. pepo L. [pumpkin]) using 16S rRNA gene primer pair 799F and 1492R and
then submitted to GenBank (accession numbers KT281355, KT281357, KT281359, and
KT281432, respectively) (5). Since many commercial microbial fertilizers/biocontrol
agents are Bacillus/Paenibacillus based (1, 2), these candidate endophytes were tested
for beneficial traits in vitro/in planta (5, 6). All four strains showed in vitro protease
activity (5) and acetoin/diacetyl production (volatiles) and suppressed Phytophthora
capsici (6). Other in vitro traits were scored, albeit inconsistently, as follows: EKM417B/
EKM420B displayed pectinase and RNase activities; EKM417B secreted cellulase and
reduced the disease severity of Podosphaera fuliginea (foliar fungal pathogen) in planta;
EKM501B grew on N2-free medium, produced indole-3-acetic acid (IAA/auxin) and
ribonucleases, and suppressed Rhizoctonia solani; and EKM301P secreted cellulase and
antagonized Fusarium graminearum and Rhizoctonia solani (5, 6).

The strains were cultured overnight on LB agar from original �80°C glycerol
stocks. Single colonies were inoculated into lysogeny broth (overnight, 37°C,
250 rpm). Genomic DNA was extracted using DNeasy UltraClean microbial kits
(Qiagen, catalog number 12224-50) and adjusted to 50 ng/�l. Libraries were con-
structed using TruSeq DNA Nano library prep kits (KAPA HyperPrep kit, catalog
number KK8504) and then sequenced using the Illumina NovaSeq 6000 system to
produce 1,461,384 (EKM417B), 1,659,509 (EKM420B), 1,823,824 (EKM501B), and
2,124,086 (EKM301P) raw reads in 150-bp paired-end format. Quality-trimmed reads
(with a quality score of 30) were de novo assembled using the EvoCAT pipeline
(Evogene Clustering and Assembly Toolbox) and identified using KmerFinder 3.2 (7)
by conducting a BLAST search against Bacillus velezensis strain KD1 (GenBank
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accession number NZ_CP014990.2) (EKM417B and EKM420B), Bacillus cereus strain
FORC087 (NZ_CP029454.1) (EKM501B), and Paenibacillus polymyxa strain SQR-21
(NZ_CP006872.1) (8) (EKM301P) as the top genome matches (Table 1). The protein
predictions were completed using Prodigal (9) and then matched against the NCBI
nonredundant protein database using Blastp (10). Peptide domains were identified
using InterProScan 5.32-71.0 (11). Default parameters were used for all software unless
otherwise specified. The statistics of the genomes are provided in Table 1.

Genome mining identified candidate genes involved in biofertilizer/biocontrol met-
abolic pathways, including those discussed above. These genes encode proteins in-
volved in nitrogen fixation, phytase, alkaline phosphatase, carbon-nitrogen hydrolase,
trehalose-6-phophate hydrolase, and tryptophan synthase (IAA/auxin production) (12–
14). Biocontrol/systemic resistance elicitor candidate genes encode hydrolytic enzymes
(�-glucanase, chitinase, cellulase, proteases, pectin/pectate lyases, lipases, ribonucleases)
(14–16), exopolysaccharide synthesis protein (colonization ability) (17), butanediol-
dehydrogenase-like (acetoin production) (18), iron-siderophore-like, polyketide synthase,
nonribosomal peptide synthase (NRPS) (19), phenazine biosynthesis PhzF protein (except
EKM301P) (20), bacteriocins (class IId [EKM417B/EKM420B], class IIb [EKM501B], and
thiopeptide-type [EKM301P]) (21), and phenylalanine/histidine ammonia-lyases (except
EKM301P) (22). The exception is that EKM501B lacked �-glucanase, pectate lyase, and
phytase but encoded aerobactin siderophores (23). In conclusion, cucurbit seeds host bacilli
as vectors that encode candidate beneficial traits for plants.

Data availability. This whole-genome shotgun project and the Illumina raw reads
have been deposited in DDBJ/EMBL/GenBank and the SRA, respectively, under the
accession numbers provided in Table 1.
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