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Abstract: In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills
thousands of infants and toddlers annually. Drinking and recreational water contaminated with
Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent
immune system is necessary to clear this parasitic infection. A better understanding of the immune
responses required to prevent or limit infection by this protozoan parasite is the cornerstone of
development of an effective vaccine. In this light, lessons learned from previously developed vaccines
against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines.
In this review, we summarize the immune responses elicited by naturally and experimentally-induced
Cryptosporidium spp. infection and by several experimental vaccines in various animal models.
Our aim is to increase awareness about the immune responses that underlie protection against
cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for
vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity,
with an emphasis on the balance between TH1/TH2 immune responses. Development of more
effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths
in infants and toddlers in developing countries.

Keywords: cryptosporidiosis; Cryptosporidium; immune response; infection; vaccine; innate immunity;
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1. Introduction

Among the causes of mortality worldwide, diarrheal-associated deaths are in the top 10 causes
of mortality in humans and the fourth leading cause in children under 5 years of age (around
499,000 deaths every year) [1]. Human cryptosporidiosis caused by Cryptosporidium hominis and
C. parvum is the second most common cause (following only rotavirus) of moderate-to-severe
diarrhea in 0–11 month-old infants and the third most common in 12–23 month-old toddlers in
sub-Saharan Africa and south Asia [2]. For example, in rural Bangladesh, 77% of children less
than 2 years old were infected with Cryptosporidium spp. [3]. This infection was associated with
failure to thrive and impaired cognitive functions in young children in developing countries [3–5].
More worryingly, around 202,000 deaths are attributable to cryptosporidiosis among children younger
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than 24 months old in sub-Saharan Africa, India, Pakistan, Bangladesh, Nepal and Afghanistan [6].
Among these deaths, around 59,000 are in excess in comparison if these children were Cryptosporidium
spp.-negative [6]. C. hominis was isolated in 77.8% of cryptosporidiosis cases in children in sub-Saharan
Africa and south Asia, with C. parvum present in 9.9% [6]. C. parvum-positive cases can arise from
human-to-human transmission [6], but C. parvum is a zoonotic protozoan parasite and can also be
transmitted from animal hosts to humans [7]. For this reason, veterinary students can sometimes
get infected through contact with C. parvum-infected calves [8–10]. Also, C. parvum oocysts obtained
from livestock can contaminate water [11], and Cryptosporidium spp. constitute a significant public
health concern in developed and developing countries due to its ubiquitous nature [12]. C. hominis
or C. parvum contamination of water can lead to foodborne outbreaks [7] following consumption of
fruits and vegetables irrigated or washed with Cryptosporidium spp.-contaminated water [13]. Many
waterborne outbreaks have been reported in developed countries following contamination with
C. hominis or C. parvum oocysts of drinking (untreated surface water, water-treatment limitations,
water-testing limitations, etc.) or recreational water (swimming pools, etc.) [14]. One of the
most important waterborne outbreaks happened in Milwaukee, USA in 1993, in which 403,000
people showed symptoms of watery diarrhea following Cryptosporidium spp. infection [14,15] and
many immunocompromised people died of the infection [16]. While the source of the infection is
still debated [17], filtration system of Milwaukee’s water treatment plants was deficient and did
not remove all oocysts from the treated water [15]. This outbreak cost USD 64.6 million in lost
productivity and USD 31.7 million in medical costs [18]. Immunocompetent individuals usually
recover spontaneously from a transient gastroenteritis characterized by watery diarrhea and abdominal
cramps [7,15,19]. However, immunocompromised patients, such as HIV/AIDS patients, people
under immunosuppressive treatments (cancer patients undergoing chemotherapy or patients with
solid-organ transplants), patients with inheritable immunodeficiency syndromes (children with Severe
Combined Immunodeficiency Syndrome (SCID)) and infants can develop chronic, severe and even
life-threatening clinical signs [19]. AIDS patients were particularly at risk of lethal cryptosporidiosis
before the availability of effective anti-retroviral therapies [20,21]. Recent advances in anti-retroviral
therapy (ART) have markedly reduced the risk of cryptosporidiosis in HIV-infected individuals [22,23].
As a result, patients co-infected with HIV and Cryptosporidium spp. have much lower mortality rates
compared to 15 years ago [24–26].

From a veterinary point of view, Cryptosporidium spp. infect a variety of mammals, including
calves, dogs, cats, rabbits and birds [14,27]. Bovine cryptosporidiosis caused by C. parvum is a major
problem in the dairy industry because infection is extremely prevalent [28–30] in newborn dairy
calves and can cause life-threatening disease [31,32]. Because C. parvum is a zoonotic parasite and
Cryptosporidium spp. complete the life cycle within a single individual [19], bovine cryptosporidiosis
is also a public health concern. The risk is compounded by the fact that morbidity associated with
infection in both humans and animals occurs at a very low parasite inoculum: 30 C. parvum oocysts are
sufficient to cause a symptomatic human infection [33]. Despite extensive research on chemotherapy
against Cryptosporidium spp., there is still a lack of curative treatments [34]. Moreover, no vaccine is
available to prevent cryptosporidiosis in humans or animals, despite the urgent need [34]. The difficulty
to develop efficient vaccines against Cryptosporidium spp. mostly comes from its unique life cycle
which has already been reviewed [35]. Briefly, the oocysts excyst and sporozoites are released to infect
intestinal epithelial cells (IECs) [36]. Sporozoites mature to become trophozoites and form type 1 meront
(type 1 schizont) containing merozoite precursors [19]. Mature merozoites that become trophozoites
complete the asexual cycle while those that become type 2 meronts continue to the sexual cycle of the
parasite which will lead to production of infectious oocysts [19]. Because most stages of Cryptosporidium
spp. life cycle occur inside IECs and are located intracellularly, but extracytoplasmically [19], surface
proteins of sporozoites and merozoites are thought to be ideal candidate for vaccine development.
However, the pathophysiology of cryptosporidiosis is not fully elucidated and developing an effective
vaccine is a major challenge [37]. The aim of this review is to increase awareness of the immune
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responses that control Cryptosporidium spp. infection to be able to define appropriate targets in
vaccine development.

2. Innate Immunity

The critical role of the innate immune response to C. parvum infection has been covered
elsewhere [38,39]. Briefly, innate immunity is required for controlling the intensity of Cryptosporidium
spp. infection [36]. After ingestion of Cryptosporidium spp. oocysts, sporozoites are released in the
intestinal lumen and migrate to IECs; while IECs are the first physical barrier against infection, they
also are the main target for Cryptosporidium spp. sporozoites [19,36]. Chemokines are first released by
C. parvum-infected IECs to promote chemotaxis at the site of infection; chemokines induce migration
of dendritic cells in the ileum and the draining lymph nodes [40] (Figure 1). Inflammatory monocytes
will also migrate to the subepithelial space in response to C. parvum infection and secrete TNFα
and IL-1β [41]. These cytokines will increase permeability, therefore weakening the integrity of the
intestinal epithelial barrier [41]. Also, nitric oxide NO is important in C. parvum infection clearance
and reduces oocyst shedding in chronically infected nude mice [42]. NO is produced independently of
IFNγ in Cryptosporidium spp. infections [43]. Inhibition of inducible nitric oxide synthase (iNOS) led to
increased parasitism and oocyst shedding in C. parvum-infected piglets [44]. During C. parvum infection,
the protective effect of iNOS depends on arginine availability in mice [42]. In fact, Leitch and He
showed that supplementation with L-arginine decreases oocyst shedding in athymic nude mice [42].
IFNγ mediated production of chemokines by IECs recruits dendritic cells which clear C. parvum
infection [39]. IECs also release antimicrobial peptides to destroy free parasites or can enter apoptosis if
C. parvum infection already occurred [36] (Figure 1). Infection of IECs by Cryptosporidium spp. activates
the MyD88 and NF-kB signalling cascade through Toll-like receptors (TLRs); in particular, TLR2 and
TLR4 induce the production of human β-defensin 2 to help clear parasites [45,46].

Mucosal immunity is important for clearance of Cryptosporidium spp., as reviewed elsewhere [35].
The activation of antigen-presenting cells such as macrophages and dendritic cells is also important in
Cryptosporidium spp. infections [47–51]. Dendritic cells can clear Cryptosporidium spp. from the site of
infection via activation of adaptive immune responses [51,52]. But, dendritic cells, neutrophils and
IFNγ are also important in Cryptosporidium spp. infection because they play a crucial role in pathogen
recognition and clearance of the parasite through direct contact [50,51,53,54] (Figure 1). The crucial role
of mucosal natural killer (NK) cells (non-T, non-B lymphocytes [55]) in Cryptosporidium spp. infection
is an active field of research [56–58]. The important contributions of NK cells and IFNγ in innate
immune responses against C. parvum infection have previously been reviewed [59]. Briefly, NK cells
are an important source of IFNγ in cryptosporidiosis and they are key players in controlling the
infection in mice [56,60]. In the acute phase of infection, C. parvum sporozoites induce production
of IL-12 by macrophages and dendritic cells [61]. IL-12 acts synergistically with IL-18 and TNFα to
activate NK cells [19,62,63] (Figure 1). Thus, the production of IFNγ by NK cells and macrophages in
response to Cryptosporidium spp. is promoted by IL-12 and IL-18 [64,65]. Secreted IFNγ can inhibit
C. parvum invasion and intracellular development by acting directly on enterocytes and preventing
parasite invasion [50,54] (Figure 1). Moreover, NK cells can efficiently kill Cryptosporidium spp.-infected
human IECs [58] by inducing programmed cell death via the action of released cytotoxic granules [62]
(Figure 1).

Apart from its role in inducing IFNγ production by NK cells, IL-18 also has a NK cell-independent
role (Figure 1). Rag2−/−gammac−/− adult mice (deficient for NK, T and B cells) can clear C. parvum
infection due to NK cell-independent IFNγ production [57]. In this case, IFNγ is probably
produced by IL-18- and IL-12-activated macrophages [57]. However, NK, T and B cell-deficient
Rag2−/−gammac−/− adult or neonate mice have more severe C. parvum infections than T and
B cell-deficient Rag2−/− adult mice [56]. Consequently, even if both NK cell-dependent and
-independent IFNγ have a protective role in innate immunity against C. parvum infection, presence of
NK cells significantly helps to contain infection [56].
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Figure 1. Innate immune responses during Cryptosporidium spp. infection. Green solid lines show 
release of molecules, green dotted line illustrates positive feedback, black solid lines present direction 
of effects and red wordings define effects. NK = NK cell, MΦ = macrophage, DC = dendritic cell, S = 
sporozoite and IEC = intestinal epithelial cell. 
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spp. infection is an excellent example of the essential role of IFNγ for the control of cryptosporidiosis 
[66–68]. SCID-IFNγKO mice have heavier infections than SCID mice [69] and IL-12KO mice are 
highly susceptible to Cryptosporidium spp. infection [70,71]. In addition, treatment of newborn SCID 
mice with anti-IL-12 neutralizing antibodies exacerbates cryptosporidiosis [64]. 

3. Adaptive Immunity 

3.1. Cell-Mediated Immune Responses 

The innate response is important for initial control of Cryptosporidium spp. infection, but 
adaptive immune responses are required for resolution of this disease [19,36]. The gut-associated 
lymphoid tissue (GALT) of the intestine is the main line of defense against pathogenic and 
commensal organisms of the gastrointestinal tract [72]. The intestinal environment contains a very 
diverse pool of antigens from food and microorganisms [73]. The mucosal immune system is 
therefore an important barrier to protect against pathogenic organisms and to confer tolerance 
against food antigens and the gut microbiota [74]. The gut immune responses therefore encompass 
high numbers of pro-inflammatory cells to prevent infection and regulatory T cells that regulate 

Figure 1. Innate immune responses during Cryptosporidium spp. infection. Green solid lines show
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The susceptibility of interferon gamma receptor knock-out (IFNγR-KO) mice to Cryptosporidium spp.
infection is an excellent example of the essential role of IFNγ for the control of cryptosporidiosis [66–68].
SCID-IFNγKO mice have heavier infections than SCID mice [69] and IL-12KO mice are highly
susceptible to Cryptosporidium spp. infection [70,71]. In addition, treatment of newborn SCID mice
with anti-IL-12 neutralizing antibodies exacerbates cryptosporidiosis [64].

3. Adaptive Immunity

3.1. Cell-Mediated Immune Responses

The innate response is important for initial control of Cryptosporidium spp. infection, but adaptive
immune responses are required for resolution of this disease [19,36]. The gut-associated lymphoid
tissue (GALT) of the intestine is the main line of defense against pathogenic and commensal organisms
of the gastrointestinal tract [72]. The intestinal environment contains a very diverse pool of antigens
from food and microorganisms [73]. The mucosal immune system is therefore an important barrier
to protect against pathogenic organisms and to confer tolerance against food antigens and the gut
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microbiota [74]. The gut immune responses therefore encompass high numbers of pro-inflammatory
cells to prevent infection and regulatory T cells that regulate homeostasis [75]. Cryptosporidium spp.
infection is more severe (potentially fatal) and longer lasting in immunocompromised individuals with
defective adaptive immune responses [76,77]. The crucial role of T-cell responses in Cryptosporidium spp.
infection is obvious when studying HIV-infected patients [78] and patients with an immunodeficiency
affecting T-cells [76].

As reviewed [60], CD4+ T cells are key actors in mounting adequate immune responses against
cryptosporidiosis. Indeed, during the acute phase of infection involving innate immunity, CD4+ T cells
are essential to clear Cryptosporidium spp. [19]. Cryptosporidium spp. infection is particularly frequent
in AIDS patients with CD4+ T cell counts of <100 cells/µL [79]. CD4+ T cells counts <50 cells/µL are
correlated with worse disease outcomes in immunocompromised patients [50,76,80–82]. TH17 cells
constitute the first subset of CD4+ T helper cells to differentiate upon exposure of antigen-presenting
cells to pathogens and are therefore important during the early stages of an infection [62]. TH17 cells
differentiate from naive CD4+ T cells in presence of IL-6 and TGFβ (produced by dendritic cells), but in
the absence of IL-12 and IL-4 [62] (Figure 2). IL-23 stimulates TH17 cells to produce IL-17, but not
IFNγ or IL-4 [62]. Because IL-17 is involved in cytokine and chemokine secretion, which will have
a chemotactic effect on neutrophils at the site of infection, IL-17 supports innate immunity against
pathogens [62] (Figure 2). Among other TH17 cytokines, IL-17, IL-6, TNFα, TGFβ and IL-23 are found
in increased levels in the gut-associated lymphoid tissue and spleen of immunosuppressed BALB/c
mice infected with C. parvum [83] (Figure 2).
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Promotion of cell-mediated immune responses and killing of infected cells resulted, in part,
from macrophages and dendritic cells secretion of IL-12 and activated NK cells secretion of IFNγ [84]
(Figure 3). In fact, IL-12 and IFNγ induce differentiation of naive CD4+ T cells to TH1 cells which
will, among other effects, secrete IFNγ, produce IgG2 and promote differentiation of cytotoxic T cells
from CD8+ precursors [84] (Figure 2). IFNγ has a positive feedback on IL-12 secretion by activating
macrophages, while having a negative feedback on the TH2 differentiation of naive CD4+ T cells
(Figure 2, insert); consequently, IFNγ strongly promotes a TH1 environment [84]. In contrast, IL-4
induces differentiation of CD4+ TH2 cells which, among other effects, induce production of IgG1,
activate eosinophils and secrete IL-5, IL-4 and IL-10 (Figure 2); IL-4 and IL-10 have a negative feedback
on TH1 cells [84] (Figure 2, insert). There is therefore a balance between TH1 and TH2 immune
responses; cytokines secreted in a TH1 environment inhibit TH2 differentiation and vice versa. During
Cryptosporidium spp. infection, CD4+ intraepithelial lymphocytes (IELs) produce IFNγ which is
essential for innate immunity and adaptive TH1 immune responses and has a direct inhibitory effect
on Cryptosporidium spp. development in host enterocytes [39,60].
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Figure 3. Protective immune responses during Cryptosporidium spp. infection and targets for
vaccination. Green solid lines show release of molecules, green dotted line illustrates positive feedback,
dark blue dotted line represents induction of mixed immune responses, black solid lines present
direction of effects and red wordings define effects. MΦ = macrophage, DC = dendritic cell, NK = NK
cell, TH1 = TH1 T cell, TH2 = TH2 T cell, Tc = cytotoxic T cell, B = B cell, P = plasmocyte, S = sporozoite
and IEC = intestinal epithelial cell.
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The role of cytokines in Cryptosporidium spp. infection has been reviewed elsewhere [69]. Because
of their importance in the immune response to C. parvum infection, they will briefly be reviewed
here as well. As mentioned, IFNγ has a vital role in controlling early phase infection as a major
component of the innate immune response. However, this proinflammatory cytokine also has an
important role in adaptive immunity [69]. IL-12 and IFNγ promote development of naive CD4+ T cells
into TH1 cells [69,84] (Figure 2) which contribute to the killing of intracellular microorganisms, such as
Cryptosporidium spp., by stimulating phagocytosis, neutrophil degranulation, and release of reactive
oxygen species [69,85–87]. In addition, IL-4 has a protective role in Cryptosporidium spp. infection via
IL-4-induced differentiation of naive CD4+ T cells into TH2 cells [69] (Figure 2). In C57BL/6 adult
mice, IFNγ-producing CD4+ T cells were essential in the initial phases of C. parvum infection to control
the severity of infection, while IL-4-producing CD4+ T cells were important to accelerate resolution
of infection [88]. Therefore, even if cytokines associated with TH1 immune responses (e.g., IFNγ and
IL-12) are essential to clear C. parvum infection, some cytokines associated with TH2 immune responses
(e.g., IL-4) have an important supporting role [89]. Wild-type, but not IFNγKO, mice treated with
IL-4 neutralizing antibodies were less susceptible to C. parvum infection than untreated mice; IL-4 can
therefore have an IFNγ-dependent protective role [89]. Thus, typical TH2 cytokines (i.e., IL-4) can
potentially protect against cryptosporidiosis via TH1 immune responses [69] (Figure 3), as already
reported for Leishmania major infection [90].

CD8+ T-cells are also important for clearance of the parasite. CD8+ T-cells also produce IFNγ

in response to infection (Figure 3) and potentially lyse Cryptosporidium spp.-infected IECs through
the secretion of anti-parasitic cytotoxic granules [91]. However, CD8+ T-cells are not major actors in
adaptive immune responses against Cryptosporidium spp. infection. C. parvum-infected SCID mouse
recipients of splenocytes from immunocompetent mice cleared infection unless treated with anti-CD4+
or anti-INFγ monoclonal antibodies, while anti-CD8+ monoclonal antibodies had no effect on the
outcome [92]. SCID mice injected with IELs from immune BALB/c donors shed fewer oocysts and
recovered more rapidly from C. muris infection; protection was abrogated by depletion of CD4+ T
cells, but not CD8+ T cells, from IELs [93]. In addition, BALB/c mice infected with C. muris and
treated with anti-CD4 monoclonal antibodies had increased duration of patent infection and oocyst
shedding, while mice treated with anti-CD8 monoclonal antibodies had only a moderate increase in
oocyst shedding [94].

3.2. Humoral Immune Responses

Although the important role of cell-mediated immune responses is well-described in
Cryptosporidium spp. infection, the importance of humoral immune responses is not fully
understood [35]. As part of mucosal immune responses, B-cells represent a major subset of
GALT immunity [95] and gut resident B-cells undergo V(D)J recombination to produce secretory
IgA [96,97]. Also, systemic Cryptosporidium spp.-specific antibodies, notably serum IgM, IgA and IgG,
are generated following infection [98–100]. Generally, these antibodies are insufficient to prevent and
control Cryptosporidium spp. infection [98] and are not essential for recovery and clearance of the
parasite [101]. However, antibodies may play a supportive role in protection, as hyperimmune bovine
colostrum (HBC) has undeniable prophylactic and therapeutic effects [102–104]. In fact, many studies
report that administration of hyperimmune colostrum/antibodies protects newborn animals against
Cryptosporidium spp. infection [19]. The ability of antibodies to prevent cryptosporidiosis has not been
thoroughly characterized in human medicine and lessons learned from veterinary medicine will be
reviewed here.

3.2.1. Bovine Cryptosporidiosis and Colostrum-Treatment of Calves

As is true for human cryptosporidiosis, mucosal immune responses are also important for control
of bovine cryptosporidiosis [105]. Lamina propria lymphocytes from C. parvum-infected calves express
high levels of IFNγ and IgG1+, and IgG2+ B lymphocytes are present in ileal villi in infected calves [105].



Pathogens 2018, 7, 2 8 of 20

Also, IL-10 expression was reported by IELs of C. parvum-infected calves [106]. Peripheral blood
mononuclear cells from calves recovering from C. parvum infection show CD4+ T cell proliferation and
IFNγ expression [107]. Antibody titers in experimentally-infected calf serum peak 9 days post-infection
(coinciding with the peak of oocyst shedding) and remain high thereafter [108]. Fecal IgM and IgA
titers of experimentally-infected calves also peak 10 days post-infection (2 days after the peak of oocyst
shedding) [109]. In another study, fecal IgM, IgA and IgG titers peaked 14 days post-infection and IgA
titers remained high for at least 30 days post-infection while IgM and IgG titers decreased quickly [110].
Fecal antibody titers tend to raise when oocyst shedding increases and oocyst shedding stops when
antibody titers peak [110].

Among C. parvum sporozoite surface proteins, p23 is one of the most immunogenic. Anti-p23
antibodies (IgM, IgA, IgG1 and IgG2) were detected in feces of C. parvum-experimentally-infected
calves [111]. In that study, one calf which did not excrete detectable fecal anti-23 antibodies died of
infection and another calf with pre-existing anti-p23 IgM antibodies did not shed oocysts [111]. Another
study presented similar results for a calf with pre-existing anti-p23 antibodies [112]. In clinically normal
newborn calves, anti-p23 IgM, IgA, IgG1 and IgG2 antibodies were detected in feces via passive transfer
from colostrum [113], suggesting a maternal source of pre-existing anti-p23 antibodies.

Because newborn calves can get infected as soon as their day of birth [114], a promising approach
against bovine cryptosporidiosis is vaccination of pregnant cows to engender production of HBC that
will protect newborn dairy calves against C. parvum [115]. p23 is a promising antigen for vaccination
against bovine cryptosporidiosis. HBC was produced by pregnant cows vaccinated using p23 and
C. parvum-challenged HBC-treated calves had no diarrhea and oocyst shedding was reduced by
99.8% [115]. In another study, HBC-treated calves showed delayed oocyst shedding with more than
90% reduction in oocysts shed [116]; also, no clinical sign of cryptosporidiosis was reported in the
HBC-treated calves [116].

3.2.2. Antibody Treatment of Immunocompromised Mice

Several studies showing the ability of monoclonal antibodies to partially reduce oocyst shedding
or intestinal parasite burden in immunocompromised mice support the importance of antibodies
for protection against cryptosporidiosis. Oral gavage of C. parvum-infected SCID mice with an
anti-SA-1 (C. parvum surface antigen-1) [117] IgM monoclonal antibody (mAb) reduced oocyst
shedding [118]. A neutralizing anti-CSL (another C. parvum sporozoite ligand) mAb delivered by oral
gavage reduced infection (as well as combination of mAbs raised against P23, GP25-200 and CSL) of
adult IFNγ-depleted SCID mice [119]. IgA mAbs specific for P23 C. parvum surface protein passively
immunized neonatal BALB/c mice and reduced intestinal parasite burden by up to 72% [120]. Oral
treatment of SCID mice with anti-C. parvum IgY egg yolk antibody reduced parasite shedding [121].
An antibody-rich fraction extracted from HBC from cows immunized with C. parvum sonicated
oocysts or sporozoites given orally to adult SCID mice resulted in reduced oocyst shedding and
intestinal parasite burden [122]. Using hyperimmune ovine colostral whey, the intensity of infection
in newborn NMRI mice was inversely proportional to the amount of antibody administered and
number of doses [123]. Therefore, mAbs or hyperimmune colostrum might be an option for therapy of
human cryptosporidiosis.

3.2.3. Treatment of Immunocompromised Cryptosporidium spp.-Infected Patients with Hyperimmune
Bovine Colostrum

It is important to note that the importance of Cryptosporidium spp.-specific antibodies for protection
against cryptosporidiosis might not be equal between humans and animal models. For example, high
levels of fecal C. parvum-specific IgA and IgM antibodies following infection correlate with reduced
oocyst shedding in C. parvum-infected athymic C57BL/6 nude mice [124]. IgA antibodies are present
in Cryptosporidium spp.-infected AIDS patients, but this response is insufficient to protect against
cryptosporidiosis [98,125]. In other words, anti-C. parvum antibodies alone cannot clear infection in
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immunocompromised Cryptosporidium spp.-infected patients without the support of CD4+ T cells [125].
Therefore, conclusions drawn from immunocompromised mouse models may not always be applicable
for immunocompromised humans. In fact, contradictory results are reported in the literature. On one
side, some studies suggest a partial protective role of antibodies from HBC against cryptosporidiosis
in immunocompromised patients [102,126,127] and HBC in concentrate powder form was an effective
therapeutic approach in C. parvum-infected HIV patients as it significantly decreased stool weight and
frequency [128]. On the other side, two studies showed that only some patients had reduced oocyst
shedding after treatment [129] and that HBC had no protective effect compared to placebo to decrease
stool volume or oocyst shedding [130].

4. Vaccines against Cryptosporidium spp. Infection

4.1. DNA Vaccines and Subunit Vaccines

Many types of vaccines exist, such as DNA vaccines, subunit vaccines, live-attenuated vaccines
and vector vaccines [131,132]. Many promising vaccine approaches for cryptosporidiosis have been
reviewed elsewhere [19,35,101]; briefly, some DNA and subunit vaccine candidates will be reviewed
here. DNA vaccines encoding some surface proteins of C. parvum (such as Cp12 and Cp21 [133] or
cp15 and p23 [134] or CP15/60 [135]) lead to protective immune responses via production of high IgG
levels [133,134], elevated TH1 cytokines [134] and/or increase in the numbers of CD4+ and CD8+ T
cells [133]. Protection from DNA vaccines resulted in up to 77.5% reduction in oocyst shedding after
challenge [133,134].

Subunit vaccines have been commonly used in vaccine development against cryptosporidiosis
and several immunodominant proteins have been identified as potential vaccine candidates [136].
As mentioned previously, pregnant cows were vaccinated with C. parvum sporozoite p23 surface
protein and resulting HBC was protective for C. parvum-challenged calves [115]. Also, in another study,
anti-P23 HBC-treated calves showed no clinical sign of cryptosporidiosis and reduced and delayed
oocyst shedding [116]. HBC from pregnant cows immunized with CP15/60 recombinant protein
successfully transferred antibodies to calves via colostrum intake; however, challenge of treated calves
was not presented [137]. In mice, divalent recombinant Cp15-23 led to significant antibody and TH1
cytokine production and elevated numbers of CD4+, but did confer only partial protection against C.
parvum challenge [138].

4.2. Live-Attenuated Vaccine

Live-attenuated vaccines have historically been shown to be best at eliciting long lasting memory
immune responses, whereas subunit vaccines elicit a more modest memory response, often requiring
subsequent booster doses to achieve long lasting immunity [132]. Attenuated vaccines were first
developed for viral and bacterial pathogens because of the inherent complexity of parasitic organisms;
however, some vaccine development is ongoing for a few pathogenic parasites [139].

Live-attenuated vaccines elicit strong TH1 biased immune responses and offer protective
cell-mediated immunity [132]. Several live-attenuated vaccines have been developed against protozoan
parasites causing enteric disease, i.e., Eimeria [140,141]. Early studies showed that chickens receiving
irradiated E. maxima oocysts were protected against coccidiosis-induced weight loss [142]. Also,
live-attenuated Toxoplasma gondii induced protective immunity against toxoplasmosis in sheep for
at least 6 months [143,144]. In addition, live vaccines against another parasite, Leishmania spp.,
have recently been studied [145]. A non-pathogenic species, L. tarentolae, elicits strong protective
TH1 immune responses in mice against L. donovani [146]. Similar responses were observed in mice
vaccinated with attenuated L. donovani [147]. Although this approach is promising, a live-attenuated
vaccine may not be ideal for cryptosporidiosis due to its host requirement for replication [19]. This is
further exacerbated by the lack of a continuous in vitro culture system allowing oocyst production for
Cryptosporidium spp. [148]. Nonetheless, γ-irradiation has been used on Cryptosporidium spp. oocysts
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or sporozoites to reduce their viability and infectivity [149]. Irradiated C. parvum oocysts were shown
to elicit protective immune responses in calves challenged at 3 weeks post-vaccination [150].

4.3. Vaccine Vectors

Vaccine vectors came into play in the early 1990s [151], but the first vaccine vector to be licensed is
a chimeric yellow fever attenuated strain in 2010 [152]. A vaccine against Cryptosporidium spp. should
stimulate mucosal immune responses by promoting uptake of antigens by microfold cells (M cells),
specialized epithelial cells adjacent to enterocytes that facilitate the passage of antigens to Peyer’s
patches [62]. Intestinal antigen delivery to the M cells could be achieved using a vaccine delivery
system such as attenuated bacterial or viral vectors [153,154]. To our knowledge, no viral vectors have
been used in candidate vaccines for Cryptosporidium spp., but several live bacterial vectors have been
studied [155–157].

Bacterial vaccine vectors are very promising for vaccine antigen delivery as they can elicit
protective immune responses against bacterial, viral and protozoan pathogens in both mice and
humans [158]. For instance, delivery of influenza hemagglutinin and neuraminidase using an
attenuated S. typhimurium vector induced strong protective cellular and humoral immunity against
Influenza A virus [159]. Also, delivery of Trichinella spiralis DNA using an attenuated S. typhimurium
elicited protective mixed TH1/TH2 immune responses in mice [160]. Moreover, Plasmodium falciparum
tCSP genes fused to secretion signals were delivered through S. typhimurium and boosted with a DNA
vaccine and elicited strong cellular TH1 immune responses [161]. Overall, the many advantages of
this vaccine approach (ease of administration and low production cost) engender excellent candidates
for vaccine development [162]. Fusing the protein of interest to a secretion signal and a chaperone
binding domain of S. enterica allows secretion of the antigen of interest through the type III secretion
system-dependent for delivery to antigen-presenting cells [163].

A number of attenuated S. typhimurium vectors expressing Cryptosporidium spp. antigens have
been generated [155–157]. Promising humoral and cellular immune responses were obtained from a
prime boost technique with Salmonella enterica serovar Typhi CVD-908-htrA and cytolysin A (ClyA)
fused to either C. hominis apyrase (CApy), profilin or Cp15 [155]. In mice, these vaccines elicited strong
humoral immune responses with high production of IgG1 and IgG2b and interesting cellular immune
responses via production of different levels of several cytokines (IFNγ, IL-2, IL-6, and IL-12) [155].
Attenuated Salmonella enterica serovar Typhimurium vaccine strain SL3261 expressing C. parvum Cp23
or Cp40 fused to fragment C of tetanus toxin elicited humoral immune responses when delivered as an
oral boost after subcutaneous immunization with cp23 or cp40 DNA [156]. An attenuated Salmonella
enterica serovar Typhi CVD 908-htrA expressing Cp15 delivered intranasally in mice showed high
production of IL-6, IFNγ and Cp15-specific IgG [157]. However, vaccination did not result in protection
against C. parvum infection in mice [157]. Another vector system used for Cryptosporidium spp. antigen
delivery is T. gondii [164]. Immunization of mice with T. gondii expressing C. parvum P23 antigen
resulted in high levels of serum IgG, predominantly IgG1, which is characteristic of a TH2 immune
response [164,165]. In another study, Lactobacillus casei Zhang (a probiotic bacterium [166]) was used
to deliver C. parvum P23 to mice and generated increased levels of IFNγ, IL-6, serum IgG and fecal
IgA [167].

Overall, vaccine vectors show promising immunological results and appear to be an interesting
option for vaccine development against cryptosporidiosis. Although one challenge study showed no
protection after vaccination [157], more studies using various vectors and immunogens are needed to
assess the true potential of this method. It will be very interesting to determine if they show better
protection against Cryptosporidium spp. infection than their non-vector strategies. The high carrying
capacity of vectors is also an advantage, as they can deliver multiple antigens and even adjuvants
to the target site [168]. Vaccine vectors can also be used either alone or in combination with DNA or
antigen-based vaccine candidates as a ‘prime-pull’ method [155,161].
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4.4. Prime-Pull Vaccine Approach

The prime-pull vaccine approach primes the immune system with an antigen to elicit strong
systemic T cells immune responses and then ‘pulls’ T cell immune responses at the site of infection
using local delivery of immunogens and/or pro-inflammatory molecules to elicit local protective and
long-lasting memory responses [169]. In other words, the ‘prime’ immunization using intramuscular
delivery of antigen(s) elicits systemic T cell immune responses while the ‘pull’ immunization allows
for the formation of a strong pool of tissue-resident T cells [169]. As mentioned above, the prime-pull
approach has been used in combination with vaccine vectors against Cryptosporidium spp. infection
in various delivery schedules and methods [155–157]. In some studies, C. parvum DNA was used to
‘prime’ mice and the C. parvum antigen-expressing Salmonella spp. vector was given as a boost [156].
In other studies, the Salmonella spp. vector vaccine was given as a ‘prime’ and then boosted with
recombinant protein given intraperitoneally [155,157]. Overall, the prime-pull method elicits much
stronger immune responses than the vector or the antigen alone [155–157].

5. Conclusions and Future Directions

As Cryptosporidium spp.-infected immunocompetent individuals only present with transient
diarrhea while immunocompromised patients and infants in developing countries can have very
severe and life-threatening cryptosporidiosis, the competency of the host immune system to raise
adequate immune responses is the key factor to clear Cryptosporidium spp. parasites. The pathogenesis
of cryptosporidiosis is incompletely understood because this protozoan parasite induces complex
host immune responses. Innate immunity can contain C. parvum infection via the action of
IL-18- and IL-12-activated macrophages and NK cells which induce NK cells-dependent and NK
cells-independent IFNγ production (Figures 1 and 3). Adaptive immunity will clear C. parvum
infection via the action of CD4+ TH1 cell-mediated immune responses which induce IFNγ production
and killing of infected IEC; TH2 immune responses and humoral immunity have a non-negligible
supportive role (Figures 2 and 3).

To sum up, protective immune responses against Cryptosporidium spp. infection require strong
mucosal TH1 cell-mediated immune responses with the support of a TH2-dependant Cryptosporidium
spp.-specific humoral immunity (Figure 3). A vaccine that induces such immune responses, if safe
for use in children and immunocompromised individuals, should be the best candidate to prevent
cryptosporidiosis. Furthermore, because Cryptosporidium spp. infects the intestinal epithelia, a vaccine
against cryptosporidiosis would ideally elicit strong mucosal immune responses [35]. Vaccine vectors
using the ‘prime-pull’ approach represent a new era in vaccine development and we believe that these
new techniques have the potential to elicit more targeted immune responses and localized protection
against Cryptosporidium spp. infection [156]. Results from ongoing studies will determine potential of
this new vaccine approach against Cryptosporidium spp. infection.
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