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Th22 cells constitute a recently described CD4+ T cell subset defined by its production of
interleukin (IL)-22. The action of IL-22 is mainly restricted to epithelial cells. IL-22 enhances
keratinocyte proliferation but inhibits their differentiation and maturation. Dysregulated IL-
22 production has been associated to some inflammatory skin diseases such as atopic
dermatitis and psoriasis. How IL-22 production is regulated in human T cells is not fully
known. In the present study, we identified conditions to generate Th22 cells that do not
co-produce IL-17 from naïve human CD4+ T cells. We show that in addition to the
transcription factors AhR and RORgt, the active form of vitamin D3 (1,25(OH)2D3) regulates
IL-22 production in these cells. By studying T cells with a mutated vitamin D receptor
(VDR), we demonstrate that the 1,25(OH)2D3-induced inhibition of il22 gene transcription
is dependent on the transcriptional activity of the VDR in the T cells. Finally, we identified a
vitamin D response element (VDRE) in the il22 promoter and demonstrate that 1,25(OH)2
D3-VDR directly inhibits IL-22 production via this repressive VDRE.

Keywords: Th22 cells, IL-22, IL-17, vitamin D, vitamin D receptor, vitamin D response element (VDRE)
INTRODUCTION

Various subsets of effector CD4+ T helper (Th) cells, classified by the lineage-specific master
transcription factors they express and the cytokines they secrete, have been described (1, 2). Th22
cells constitute a recently described CD4+ T cell subset defined by their production of interleukin
(IL)-22 (3, 4). The biological functions of IL-22 is mainly restricted to non-hematopoietic cells such
as epithelial cells located in the skin, gut, lung, liver, pancreas and kidney (5–7). In the skin and gut
epithelium, IL-22 induces secretion of several anti-microbial peptides that contribute to the defence
mechanisms against microorganisms (8–10). Furthermore, IL-22 enhances proliferation of
keratinocytes while inhibiting their differentiation and maturation, implying an important role of
IL-22 in the homeostasis of the skin (11–13). The role of IL-22 in epithelial homeostasis is further
underlined by its association to inflammatory skin and gut diseases such as atopic dermatitis (14,
15), psoriasis (16) and colorectal cancers (17). Th22 cells are closely related to Th17 cells, and Th17/
Th22 cells co-producing IL-17A and IL-22 have been described (10, 18, 19). However, distinct
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IL-22-producing Th22 cells that do not produce IL-17 have been
isolated from both humans (3, 4, 20) and mice (21).

Other types of immune cells than Th22 cells, such as innate
lymphoid cells (ILC), gd T cells and natural killer (NK) cells can
produce IL-22 (22–24). It has been found that the transcription
factor RORgt plays an important role in the regulation of IL-22
secretion in human and mouse ILC3 (25–28). Furthermore, IL-
21 and the aryl hydrocarbon receptor (AhR) play regulatory roles
in IL-22 production in mouse CD4+ T cells (29). However, the
transcription factors involved in IL-22 regulation in human Th22
cells are still not fully known. One study has found that both
RORgt and AhR are important for Th22 differentiation and IL-22
production (20), whereas another study found that RORgt is
undetectable in Th22 cells (4).

The active form of vitamin D3, 1,25(OH)2D3, modulates the
expression of many genes via binding to the intracellular vitamin
D receptor (VDR) (30, 31). Ligand-bound VDR form
heterodimers with retinoid X receptors (RXR) and translocate
to the nucleus (30, 31). Here, 1,25(OH)2D3-VDR : RXR
heterodimers act as transcription factors by binding to vitamin
D response elements (VDRE) located in the regulatory regions of
vitamin D-regulated genes (30–34). Binding of 1,25(OH)2D3-
VDR : RXR heterodimers to VDRE leads to either activation or
repression of target gene transcription (32). Interestingly, 1,25
(OH)2D3 regulates the differentiation of CD4+ T cells. Thus, 1,25
(OH)2D3 promotes differentiation of Th2 cells by enhancing IL-4
production and concomitantly represses Th1 differentiation by
repressing interferon (IFN) g production. Moreover, 1,25(OH)2
D3 promotes the differentiation of regulatory T (Treg) cells and
inhibits Th17 cell differentiation (35–41). The effect of 1,25(OH)
2D3 on human Th22 cell differentiation and IL-22 secretion is not
fully known. Some studies have suggested that 1,25(OH)2D3

promotes the differentiation of Th22 cells (4, 42), whereas other
found that 1,25(OH)2D3 inhibits IL-22 production (43).

The aim of this study was to determine how 1,25(OH)2D3

controls IL-22 production in human T cells.
First, we established the conditions for in vitro differentiation of

human naïve CD4+ T cells to Th22 cells. We found that activation
of naïve CD4+ T cells with allogeneic dendritic cells (DC) in the
presence of TNFa, IL-6, IL-23, IL-1b, the AhR agonist FICZ and the
transforming growth factor-b (TGFb) receptor type 1 inhibitor
galunisertib led to optimal generation of Th22 cells. We confirmed
that the transcription factors AhR and RORgt regulate IL-22 in
these cells. Importantly, we found that 1,25(OH)2D3 inhibits IL-22
production in human Th22 cells. We show that 1,25(OH)2D3-
mediated inhibition of IL-22 was not due to inhibition of AhR,
RORgt or STAT-3. In contrast, we identified a novel VDRE in the
il22 promoter by which 1,25(OH)2D3-VDR : RXR complexes
directly represses IL-22 transcription.
MATERIALS AND METHODS

Reagents and Chemicals
TNFa (210-TA), IL-1b (201-LB), IL-6 (206-IL) and IL-23 (1290-
IL) were purchased from R&D systems. Galunisertib
(LY2157299) was purchased from Selleckchem. 1,25(OH)2D3
Frontiers in Immunology | www.frontiersin.org 2
(BML-DM200-0050) were from, Enzo Life Sciences, Inc., Ann
Arbor, MI. Stock 1,25(OH)2D3 solution of 2.4 mM were diluted
in >99.5% ethanol anhydrous. AhR agonist (FICZ, 5304) and
AhR antagonist (CH-223191, 3858) were from TOCRIS Inc.
FICZ and CH-223191 were solubilized in DMSO to make a 25
mM and a 100 mM stock solution, respectively. RORgt
antagonist (SR-2211) was from TOCRIS Inc. SR-2211 (4869)
was solubilized in DMSO to make a 10 mM stock solution.
Recombinant human IL-21 (200-21) was from PeproTech and
anti-IL-21 (NBP1-76740) was from Novus Biologicals.

T Cell Isolation and Activation
All procedures involving the handling of human samples were in
accordance with the principles described in the Declaration of
Helsinki and the samples were collected and analysed according
to ethically approval by the Regional Ethical Committee of the
Capital Region of Denmark (H-16033682). Peripheral blood
mononuclear cells (PBMC) were purified from healthy donor’s
blood by density gradient centrifugation using Lymphoprep
(Axis-Shield, Oslo, Norway). Subsequently, naive CD4+ T cells
were isolated by negative selection using Easysep Human Naive
CD4+ T cell Enrichment Kit (19155 Stemcell Technologies)
according to the manufacturer’s protocol. In short, PBMC
were incubated with antibodies targeting undesired cells, and
subsequently magnetic particles were used to bind undesired
cells. Hereafter, these cells were retained using an EasySep
Magnet (18000, Stemcell Technologies). The resulting cell
population consisted of >95% naïve CD4+ T cells. The
obtained cells were cultured at a concentration of 1 x 106 cells/
ml serum-free X-VIVO 15 medium (BE02-060F, Lonza,
Verviers, Belgium), and activated with allogeneic dendritic cells
(DC) in a 1:10 DC:T cell ratio or activated with Dynabeads
Human T-activator CD3/CD28 (111.31D, Life Technologies,
Grand Island, NY) in a 2:5 bead:T cell ratio in flat-bottomed
24 well culture plates (142475, Nunc). T cells were activated for
four days at 37°C, 5% CO2 under polarizing conditions for Th0
cells (un-supplemented X-VIVO 15 medium) and Th22 cells (X-
VIVO 15 medium supplemented with TNF (10 ng/ml), IL-1b (10
ng/ml), IL-6 (30 ng/ml), IL-23 (20 ng/ml), FICZ (0.3 µM) and
galunisertib (10 µM)). In some experiments CH-223191, SR-
2211, 1,25(OH)2D3, anti-IL-21 and recombinant human IL-21
were added at the indicated concentrations to the medium
during the activation period. For kinetic experiments, naïve
CD4+ T cells were cultured in flat-bottomed 24-well culture
plates in X-VIVO 15 medium and activated with beads or with
allogeneic dendritic cells as described above in the presence of
Th22 polarizing conditions for 0-144 h.

Dendritic Cell Differentiation
Dendritic cells (DC) were differentiated from isolated human
monocytes. Human monocytes were purified from PBMC using
Easysep Human Monocyte Enrichment Kit (19059, Stemcell
Technologies) according to the manufacturer’s protocol. 1.5 x
106 monocytes were cultured in flat-bottomed 6-well culture
plates (140675, Nunc) for six days in 3 ml DC medium (RPMI-
1640 medium (R5886, Sigma Aldrich) supplemented with 1%
Penicillin/Streptomycin, 1% L-Glutamine and 10% heat-
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inactivated and endotoxin-free fetal bovine serum (FBS)
(10082-147, Gibco)) in the presence of GM-CSF and IL-4
(both 50 ng/ml, AF-HDC, Peprotech). After three days, fresh
DC medium was added. On day five, differentiated DC were
supplemented with GM-CSF (50 ng/ml) and treated with heat-
killed mycobacterium Tuberculosis (HKMT) (10 ng/ml) (tlrl-
hkmt, InvivoGen) for 24 h. Activated DC were washed with PBS
and resuspended in X-VIVO 15 for mono- and co-cultures. For
mono-culture, 5 x 105 DC/ml were cultured in flat-bottomed,
24-well plates and activated for 0-120 h with the indicated
concentration of HKMT under Th22 polarizing conditions. For
co-culture experiments, 1 x 106 naïve human CD4+ T cells were
co-cultured with 1 x 105 allogeneic DC per ml in flat-bottomed,
24-well culture plates in X-VIVO 15 medium under Th22
polarizing conditions.

Cell Lines
The malignant T cell line MyLa 2059 was previously established
from a plaque biopsy specimen of a patient with cutaneous T cell
lymphoma (CTCL) (44). 5 x 105 cells/ml were cultured in flat-
bottomed, 24-well plates in RPMI-1640 supplemented with 1%
Penicillin/Streptomycin, 1% L-Glutamin and 10% heat-
inactivated and endotoxin-free FBS in the absence or presence
of Th22 polarizing conditions and the indicated concentrations
of 1,25(OH)2D3 for 48 h.

Antibodies and Flow Cytometry
Anti-CD4 BV711 (SK3), anti-CD80 BV605 (L307), anti-CD25
PE-Cy7 (M-A251), anti-CD38 BV421 (HIT2) were purchased
from BD Biosciences (Franklin Lakes, NJ). Fixable viability dye
(efluor 780) was purchased from eBioscience (San Diego, CA).
Anti-IL-17 APC (EBIO64DEC17) and anti-IL-22 PE (22URTI)
were purchased from ThermoFisher Scientific (Life Technologies
Europe BV, Roskilde, DK). Anti-IgG1k APC (QA16A12) was
purchased from Biolegend (San Diego, CA) and anti-IgG1k PE
(MOPC-21) was purchased from BD Biosciences (Franklin
Lakes, NJ). For analyses of intracellular cytokines, cells were
re-stimulated with PMA (1 µg/ml) (P8139, Sigma), ionomycin
(1 µg/ml) (I0634, Sigma) in the presence of monensin (2 µg/ml)
(M5273, Sigma) for 4 h at 37°C, 5% CO2. The cells were stained
for surface markers, fixed and permeabilized with the Fixation/
Permeabilization Solution Kit (BD Bioscience) and subsequently
stained cytokine-specific antibodies. The cells were analysed on a
Fortessa 5 laser flow cytometer using FACSDiva software and
further analysed using FlowJo software. Neutralizing anti-IL-21
antibodies (NBP1-76740) were from Novus Biologicals.

RT-qPCR
mRNA levels for various targets were measured by RT-qPCR.
Following cell isolation, cells were lysed in TRI reagent (T9424,
Sigma Aldrich) and mixed with phase separation reagent 1-
bromo-3-chloropropane (B9673, Sigma Aldrich). The RNA
phase was isolated and mixed with isopropanol supplemented
with glycogen for RNA precipitation (10814-010, Invitrogen).
The RNA pellet was then washed in RNase free 75% ethanol
3 times. cDNAwas synthesized from quantified RNA using High-
Capacity RNA-to-cDNA™ Kit (4387406, Applied Biosystems)
Frontiers in Immunology | www.frontiersin.org 3
according to manufacturer’s instructions. For RT-qPCR, 12.5 ng
of cDNA was mixed with TaqMan®Universal Master Mix II with
UNG (4440038, Applied the target primer and RNase and DNase
free water for normalization. The following target primers were
used: IL-22 (Hs01574154_m1), STAT-3 (Hs01047580_m1), AhR
(Hs00907314_m1), RORc (Hs01076122_m1), IL-21
(Hs00222327_m1), GAPDH (Hs99999905_m1). The plate-
based detection instrument LightCycler ® 480 II from Roche
was used for real-time PCR amplification.

Cytokine Measurements
IL-17A and IL-22 in the supernatant were measured by ELISA
according to the manufacturer´s instruction (InVitroGen, IL-
17A 88-7176-22 and IL-22 88-7522-88).

Western Blotting Analysis
For Western blotting analysis, cells were lysed with lysis buffer
containing 50 mM Tris-base, 150 mM NaCl, 1 mM MgCl2
supplemented with 1% (v/v) Triton X-100, 1 x Protease/
Phosphatase Inhibitor Cocktail (5872S, Cell Signalling
Technology) and 5 mM EDTA. The lysates were vortexed for 5
seconds every 5 minutes for 25 minutes at room temperature and
subsequently centrifuged at 10.000 G for 10 minutes at 4°C.
Loading buffer containing lithium dodecyl sulphate (LDS)
(NP0007, Life Technologies) along with reducing agent
(NP0009, Life Technologies) was added and the lysates
separated by electrophoresis through NuPAGE™ 10% BisTris
gels (NP0302BOX or NP0301BOX, Life Technologies). The
proteins were transferred to nitrocelulose membranes (LC2001,
Life Technologies). The membranes were blocked in 5% skim
milk dissolved in Tris-buffered saline with 0,1% tween (TBST),
washed 3 times in TBST for 3 minutes and incubated overnight
at 4°C with target-specific primary antibodies (anti-STAT-3
(D1B2J) and anti-phospho-STAT3 (9145) from Cell Signaling
Technology, anti-VDR (D-6), anti-AhR (sc-5579), anti-RORgt
(sc-293150) and anti-GAPDH (sc-365062) from Santa Cruz
Biotechnology) diluted in TBST supplemented with 5% BSA.
The membranes were subsequently washed and incubated with a
secondary antibody (swine anti-rabbit Ig or rabbit anti-mouse Ig
(P0399 and P0260 from Dako, Glostrup, Denmark S/A),
conjugated with horseradish peroxidase (HRP) and diluted in
5% skim milk. Finally, membranes were washed and exposed to
ECL luminescence reagent (RPN2232, Sigma Aldrich). The
corresponding signals were detected using a ChemiDocTM MP
Imaging System (Bio Rad) and the software ImageLab.

Plasmids
To investigate the presence of VDRE in the il22 promoter,
bioinformatics analys is of the i l22 gene (HGNC :
HGNC:14900) was performed using JASPAR, an open-access
database of transcription factor binding profiles, where several
combinations of the VDR-RXR complex binding profile on
several genes are described (45). The cloning of the il22
promoter into the pMCS Tluc16 Hygro Vector expressing
luciferase (88255 from ThermoFisher Scientific) was performed
by using the restriction enzymes KpnI and Hind III via
Invitrogen GeneArt Gene Synthesis. The generated plasmid
August 2021 | Volume 12 | Article 715059
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construct contained the il22 promoter, including the putative
VDRE located 2159-2173 bases upstream from the start codon,
driving the expression of Tluc16 luciferase gene (IL-22-Tluc
VDRE-WT) and having the antibiotic resistance genes
ampicillin (AmpR) and hygromycin (HygroR).

Directed Mutagenesis
The generation of the construct IL-22-Tluc with deletion of the
VDRE (IL-22-Tluc VDRE-KO) was performed using the
GeneArt™ Site-Directed Mutagenesis System (A13282,
ThermoFisher Scientific) according to the manufacturer’s
protocol for long plasmids ~10 Kb. The following primers
were designed and used to remove the VDRE:

Forward primer: 5 ’-ATTCCTTCTAATTGTATCGTAC
CTCTCCCCATCCTCCT-3’

Reverse primer: 5’-AGGAGGATGGGGAGAGGTACGATA
CAATTAGAAGGAAT -3’
Luciferase Assay
Nucleofection of 5 x 105 Myla 2059 cells/well with 200 ng of the
constructs IL-22-Tluc VDRE-WT and IL-22 VDRE-KO were
performed using the P3 Primary Cell 96-well Nucleofector™ Kit
(V4SP-3096) and program EH-140 on the Lonza Nucleofector 96-
well Shuttle (LZ-AAM-1001S). Subsequently, 5 x 105 electroporated
cells/ml were cultured in flat-bottomed 24-well plates in RPMI-1640
with 1% L-glutamine and 10% heat-inactivated and endotoxin-free
fetal bovine serum in the presence of the indicated concentrations of
1,25(OH)2D3 at 37°C in 5%CO2. After 48 h of incubation, luciferase
activity was measured as counts per second (CPS) using the
TurboLuc™ Luciferase One-Step Glow Assay Kit (88263)
according to the manufacturer’s protocol.

Statistical Analysis
Two-tailed, paired Student’s t-tests were used to compare
responses in the same group of cells treated in two different
ways. Significance levels are indicated as follows: * p < 0.05; ** p <
0.01; *** p < 0.005; **** p < 0.001. Data are presented as mean
values with one standard error of the mean (SEM). The number
of donors as well as the number of independent experiments are
indicated in the figure legends.
RESULTS

Differentiation of Human Th22 Cells
In Vitro
Presently, there is no consensus on the conditions required for in
vitro generation of human Th22 cells. One study has identified
IL-1b and IL-23 as the optimal cytokine cocktail to generate
Th22 cells that do not produce IL-17 (20), whereas another study
found that tumour necrosis factor (TNF) and IL-6 were required
for optimal Th22 cell generation (4). To establish conditions for
efficient differentiation of human CD4+ T cells to Th22 cells in a
physiological-like setting, we activated naïve CD4+ T cells with
Frontiers in Immunology | www.frontiersin.org 4
allogeneic DC and investigated the combinatory effect of several
factors believed to induce IL-22 transcription. After 96 h of
culture, we measured IL-22 and IL-17 in the supernatant. In our
hands, neither the IL-1b/IL-23 nor the TNF/IL-6 combination
significantly increased IL-22 production compared to untreated
cells (Figure 1A). The combination of TNF, IL-1b, IL-6, and
IL-23 induced both IL-22 and IL-17 secretion (Figure 1A). The
AhR agonist FICZ and the TGF-bR inhibitor galunisertib
markedly increased IL-22 secretion without stimulating IL-17
secretion. Although modestly, addition of FICZ and the
cytokines to galunisertib significantly increased the secretion of
IL-22 without increasing the secretion of IL-17. Thus, in our
hands medium supplemented with TNF, IL-1b, IL-6, IL-23,
FICZ and galunisertib (from here on termed Th22 medium)
resulted in optimal differentiation of human naïve CD4+ T cells
towards Th22 cells that secreted high levels of IL-22 and no
IL-17 (Figure 1A).

Next, we wanted to characterize differentiation of naïve CD4+

T cells in mono-cultures versus in co-cultures with allogeneic DC
and furthermore to determine the time required for efficient
differentiation to Th22 cells and secretion of IL-22. To do this, we
measured the IL-22 concentration at day 1-6 in the supernatants
of allogeneic DC-T cell co-cultures, of mono-cultures of CD4+ T
cells activated with CD3/CD28 beads and of mono-cultures of
activated DC all in Th22 medium. We found that the allogeneic
DC-T cell co-cultures produced significantly more IL-22 than T
cells activated with CD3/CD28 beads in mono-culture
(Figure 1B). Moreover, we observed that DC in mono-culture
did not secrete IL-22, underlining that IL-22 is produced by T
cells. Furthermore, we found that IL-22 production reached
maximum and plateaued out at 96 h in the DC-T cell co-
cultures (Figure 1B). Consequently, we chose DC-T cell co-
cultures incubated for 96 h for the following Th22
differentiation experiments.

AhR and RORgt Regulate IL-22 Production
in Human Th22 Cells
Conflicting data on the role of AhR and RORgt in IL-22
production in human Th22 cells have been presented (4, 20).
To determine the role of these transcription factors, we
stimulated naïve CD4+ T cells with allogeneic DC in Th22
medium and increasing concentrations of the AhR antagonist
CH-223191 or the RORgt antagonist SR-2211. After 96 h of
culture, we measured IL-22 in the supernatant. We observed that
both the AhR and the RORgt antagonist down-regulated IL-22
production (Figures 2A, B). The AhR and RORgt antagonists
did not affect T cell activation or viability in the concentrations
used in the present study (Supplementary Figure 2). To further
explore the regulatory role of AhR on IL-22 production, we
activated naïve CD4+ T cells in Th22 medium in the absence or
presence of the AhR agonist FICZ and the AhR antagonist CH-
223191. We found that the AhR agonist up-regulated and the
AhR antagonist down-regulated IL-22 mRNA and IL-22
secretion (Figures 2C, D). Taken together, these data indicate
that AhR and RORgt play key roles in the regulation of IL-22 in
human Th22 cells.
August 2021 | Volume 12 | Article 715059
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1,25(OH)2D3 Inhibits IL-22 Production in
Human Th22 Cells
Contradictory data on the effect of 1,25(OH)2D3 on IL-22
production in human Th22 cells have been published (4, 42, 43).
To determine the effect of 1,25(OH)2D3 in Th22 cells, we activated
naïve CD4+ T cells with allogeneic DC in Th22 medium in the
Frontiers in Immunology | www.frontiersin.org 5
absence or presence of 1,25(OH)2D3. After 96 h of culture, we
subsequently measured IL-22 mRNA expression levels in the cells
and IL-22 in the supernatant. We found that 1,25(OH)2D3

inhibited IL-22 mRNA expression and IL-22 secretion
(Figures 3A, B). In accordance, the frequency of IL-22+

activated CD4+ T cells and their IL-22 mean fluorescent intensity
A B

FIGURE 1 | Differentiation of human Th22 cells in vitro. (A) IL-22 and IL-17 in the supernatant of naïve CD4+ T cells co-cultured with allogeneic DC for 96 h in the
absence or presence of TNFa (10 ng/ml), IL-1b (10 ng/ml), IL-6 (30 ng/ml) IL-23 (20 ng/ml), FICZ (0.3 µM) and TGFbR inhibitor (galunisertib,10 µM), (mean + SEM,
two independent experiments with 5 donors). (B) IL-22 in the supernatant of DC-T cell co-cultures, T cell mono-cultures activated with CD3/CD28 beads and DC
mono-cultures after 24-144 h of culture in Th22 medium (mean ± SEM, two independent experiments with 4 donors).
A B

DC

FIGURE 2 | AhR and RORgt regulate IL-22 production in human Th22 cells. IL-22 in the supernatant of naïve CD4+ T cells co-cultured with allogeneic DC for 96 h in
Th22 medium and the presence of (A) the AhR antagonist CH-223191 or (B) the RORgt antagonist SR-2211 in the indicated concentrations. (mean + SEM, n = 4).
(C) Relative mRNA expression and (D) IL-22 production in DC-T cell co-cultures in Th22 medium in the absence or presence of FICZ (0.3 µM) or CH-223191 (3 µM).
For mRNA expression, the data are normalized to the values obtained from DC-TC co-cultures in Th22 medium in the absence of FICZ and CH-223191 (mean +
SEM, one experiment with 4 donors).
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(MFI) were down-regulated by 1,25(OH)2D3 (Figures 3C, D, for
gating strategy please see Supplementary Figure 1A). We found
that Th22 express the VDR and that 1,25(OH)2D3 inhibits IL-22
production in Th22 mono-cultures, supporting a direct inhibitory
effect of 1,25(OH)2D3 on the Th22 cells (Supplementary Figure 3).
Furthermore, we found that 1,25(OH)2D3 did not affect T cell
activation or viability in the concentrations used in the present
study (Supplementary Figure 5).

To establish that the inhibitory effect of 1,25(OH)2D3 on IL-
22 expression and production was mediated via the VDR, we
determined the effect of 1,25(OH)2D3 on IL-22 in parallel in
CD4+ T cells from controls and from a patient with hereditary
vitamin D resistant rickets. This patient has a mutation in the
DNA-binding domain of the VDR that abolishes the
transcriptional activity of the VDR (46). Whereas 1,25(OH)2D3

clearly down-regulated IL-22 expression and production in
Frontiers in Immunology | www.frontiersin.org 6
control T cells, it had no effect on IL-22 in T cells from the
patient (Figures 3E, F). Taken together, these data demonstrated
that 1,25(OH)2D3 inhibits IL-22 expression and secretion in
human Th22 cells and that the 1,25(OH)2D3-induced inhibition
of IL-22 is dependent on the transcriptional activity of the VDR.

1,25(OH)2D3 Does Not Inhibit IL-22
by Affecting AhR, RORgt or
STAT-3 Expression
Recently, it has been reported that the transcription factors AhR,
RORgt and STAT-3 play critical roles in IL-21-mediated
induction of IL-22 in mouse T cells (29). In the present study,
we found that the transcription factors AhR and RORgt regulate
IL-22 secretion in human Th22 cells. To investigate whether 1,25
(OH)2D3 indirectly inhibits IL-22 production in human Th22
cells through down-regulation of AhR, RORgt or STAT-3, we
A B

D

E F

C

FIGURE 3 | 1,25(OH)2D3 inhibits IL-22 production in human Th22 cells. (A) Relative mRNA expression (B) and production of IL-22 in naïve CD4+ T cells co-cultured
with allogeneic DC for 96 h in Th22 medium and the indicated concentrations of 1,25(OH)2D3. The data in (A) are normalized to the values obtained from DC-TC
co-cultures incubated in Th22 medium in the absence of 1,25(OH)2D3 (mean + SEM, six independent experiments with 10 donors). (C) Frequency of IL-22+

CD25+CD4+ T cells after activation of naïve CD4+ T cells with allogeneic DC for 96 h in Th22 medium and the indicated concentrations of 1,25(OH)2D3 (mean
percentage of positive cells + SEM, three independent experiments with 5 donors). (D) Mean fluorescent intensity (MFI) of IL-22 in the IL22+CD25+ T cells described
above (mean expression of IL-22 + SEM, three independent experiments with 5 donors). (E) Relative mRNA expression and (F) IL-22 production in naïve CD4+ T
cells from healthy individuals (black) and from the HVDRR patient (white) activated with allogeneic DC for 96 h in Th22 medium and the indicated concentrations of
1,25(OH)2D3. The data are normalized to the values obtained from CD4+ T cells activated in the absence of 1,25(OH)2D3 (mean + SEM, two independent
experiments with 4 donors).
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activated naïve CD4+ T cells with allogeneic DC in Th22 medium
in the absence or presence of 1,25(OH)2D3. After 96 h of culture,
we determined the mRNA and protein expression levels of AhR,
RORgt and STAT-3. We found that the mRNA and protein
expression levels of AhR (Figures 4A, B), RORgt (Figures 4C,
D) and STAT-3 (Figures 4E, F) were not significantly affected by
1,25(OH)2D3. Furthermore, 1,25(OH)2D3 did not significantly
affect the phosphorylation of STAT-3 (Figure 4F). Thus, 1,25
(OH)2D3 did not inhibit IL-22 expression and production by
inhibition of AhR, RORgt or STAT-3 expression or STAT-3
phosphorylation in human Th22 cells.
Frontiers in Immunology | www.frontiersin.org 7
IL-21 Does Not Rescue IL-22 Production in
1,25(OH)2D3-Treated Th22 Cells
In mice, IL-21 promotes IL-22 production in CD4+ T cells (29). To
investigated whether 1,25(OH)2D3 regulate IL-21 in human Th22
cells, we activated naïve CD4+ T cells in Th22 medium in the
absence or presence of 1,25(OH)2D3 and measured IL-21
concentration in the supernatant at day 4. We found that 1,25
(OH)2D3 down-regulated IL-21 mRNA and protein expression in
human Th22 cells (Figure 5A and Supplementary Figure 4A).
Even though we did not find IL-21 to up-regulate IL-22 in the
absence of 1,25(OH)2D3 (Figure 5B), the possibility existed that
A B

D

E F

C

FIGURE 4 | 1,25(OH)2D3 does not inhibit IL-22 by affecting AhR, RORgt or STAT-3 expression. (A) Relative AhR mRNA expression and (B) representative Western
Blot (lower panel) and quantification (upper panel) of AhR with GAPDH as loading control from naïve CD4+ T cells co-cultured with allogeneic DC for 96 h in Th22
medium and the indicated concentrations of 1,25(OH)2D3. (C) Relative RORC mRNA expression and (D) representative Western Blot (lower panel) and quantification
(upper panel) of RORgt with GAPDH as loading control from naïve CD4+ T cells co-cultured with allogeneic DC for 96 h in Th22 medium and the indicated
concentrations of 1,25(OH)2D3. (E) Relative STAT-3 mRNA expression and (F) representative Western Blot (lower panel) and quantification (upper panel) of STAT-3
and phosphorylated STAT-3 (p-STAT3) with GAPDH as loading control from naïve CD4+ T cells co-cultured with allogeneic DC for 96 h in Th22 medium and the
indicated concentrations of 1,25(OH)2D3. The data are normalized to the values obtained from DC-T cell co-cultures incubated in Th22 medium in the absence of
1,25(OH)2D3. (mean + SEM, two experiment with 4 donors).
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1,25(OH)2D3 indirectly inhibited IL-22 production by inhibition of
IL-21. If this was the case exogenous IL-21 should rescue 1,25(OH)2
D3-mediated IL-22 inhibition. Consequently, we activated naïve
CD4+ T cells with allogeneic DC in Th22 medium in the absence or
presence of 1,25(OH)2D3 and increasing concentrations of
exogenous IL-21. After 96 h of culture, we determined IL-22
mRNA expression and IL-22 secretion. We found that IL-21 did
neither rescue IL-22 mRNA expression nor IL-22 secretion in Th22
cells treated with 1,25(OH)2D3 (Figures 5C, D). Likewise, we found
that anti-IL-21 antibodies did not inhibit IL-22 production although
it strongly neutralised IL-21 in the culture supernatants
(Supplementary Figures 4A, B).

1,25(OH)2D3 Inhibits IL-22 Production in
the CTCL Cell Line Myla 2059
IL-22 is highly expressed and involved in the establishment of the
pro-tumorigenic environment in the skin of patients with CTCL
(47). To investigate the effect of Th22 medium and 1,25(OH)2D3

on IL-22 expression in CTCL cells, we cultured the CTCL cell
line Myla 2059 in the absence or presence of 1,25(OH)2D3 in
RPMI in the absence or presence of the Th22 promoting factors
as defined in the Th22 medium. After 48 h of culture, we
measured the frequency of IL-22+ Myla 2059 cells and the IL-
22 concentration in the supernatants. We found that the Th22
promoting factors significantly increased the proportion of IL-
22+ Myla 2059 cells and IL-22 production (Figures 6A, B, for
gating strategy please see Supplementary Figure 1B).
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Furthermore, we found that 1,25(OH)2D3 inhibited the
frequency of IL-22+ Myla 2059 cells (Figures 6A and S1B).
Likewise, 1,25(OH)2D3 inhibited the production of IL-22 from
Myla 2059 cells both in the absence and presence of Th22
promoting factors (Figure 6B). Taken together, these data
showed that Th22 promoting factors increased IL-22
production in Myla 2059 cells and that 1,25(OH)2D3 inhibited
IL-22 production in Myla 2059 cells as seen in Th22 cells.

1,25(OH)2D3 Inhibits IL-22 Production via a
Repressive VDRE in the il22 Promoter
The observations described above suggested that the 1,25(OH)2
D3-induced repression of IL-22 transcription was not indirectly
mediated by inhibition of transcription factors but was a direct
effect of 1,25(OH)2D3 on the il22 gene. Consequently, we
searched for potential VDRE in the il22 promoter using the
JASPAR database of transcription factor binding profiles (48).
We found a potential VDRE sequence in the il22 promoter
located 2159-2173 base pairs upstream from the start codon of
the il22 gene (Figure 7A). To determine whether this sequence
actually represented a repressive VDRE, we constructed two
reporter vectors where luciferase expression was dependent on
the il22 promoter. One of the vectors contained the wild-type il22
promoter sequence including the putative VDRE (IL22-TLuc
VDRE-WT) and the other vector contained the il22 promoter
sequence where the putative VDRE was deleted (IL22-TLuc
VDRE-KO) (Figure 7B). We transfected Myla 2059 cells with
A B

DC

FIGURE 5 | IL-21 does not rescue IL-22 production in 1,25(OH)2D3-treated Th22 cells. (A) Relative IL-21 mRNA expression in naïve CD4+ T cells co-cultured with
allogeneic DC for 96 h in Th22 medium and the indicated concentrations of 1,25(OH)2D3. Data are normalized to the values obtained from to DC-T cell co-cultures
incubated in Th22 medium in the absence of 1,25(OH)2D3. (B) IL-22 in the supernatant of naïve CD4+ T cells activated with allogeneic DC for 96 h in Th22 medium
in the absence or presence of IL-21 (10 ng/ml). Data are normalized to the values obtained from to DC-T cell co-cultures incubated in Th22 medium in the absence
of IL-21. (C) Relative IL-22 mRNA expression and (D) IL-22 production in naïve CD4+ T cells activated with allogeneic DC for 96 h in Th22 medium in the absence or
presence of 1,25(OH)2D3 (10 nM) and the indicated concentrations of IL-21. The data in (C) are normalized to the values obtained from to DC-T cell co-cultures
incubated in Th22 medium in the absence of 1,25(OH)2D3 and IL-21. (A–D) Mean + SEM from one experiment with 4 donors. n.s., not significant.
August 2021 | Volume 12 | Article 715059

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lopez et al. Th22 Cells and Vitamin D
the vectors and compared luciferase light emission in untreated
cells and in cells treated with 1,25(OH)2D3. We found that 1,25
(OH)2D3 inhibited luciferase light emission in Myla 2059 cells
transfected with the IL22-TLuc VDRE-WT vector but not in
Frontiers in Immunology | www.frontiersin.org 9
Myla 2059 cells transfected with the IL22-TLuc VDRE-KO
vector (Figure 7B). These data indicated that the il22
promoter contains a repressive VDRE located 2159-2173 base
pairs upstream from the start codon of the il22 gene.
A B

FIGURE 6 | 1,25(OH)2D3 inhibits IL-22 production in the CTCL cell line Myla 2059. (A) Frequency of IL-22+ Myla 2059 cell and (B) IL-22 in the supernatant of Myla
2059 cells incubation for 48 h in the absence (black columns) or presence of Th22 medium (white columns) and in the presence of the indicated concentrations of
1,25(OH)2D3 (mean + SEM, two independent experiments with 4 donors).
A

B

FIGURE 7 | 1,25(OH)2D3 inhibits IL-22 production via a repressive VDRE in the il22 promoter (A) Schematic representation of the transcription factor VDR : RXR
and the DNA binding consensus motif as position frequency matrices for VDR : RXR in homo sapiens found in the open-access database JASPAR (48, 49). (B) (Left)
Schematic representation of the plasmid construct IL-22-Tluc with the VDRE (IL-22-TLuc VDRE-WT) located at 2159-2173 base pairs upstream the start site of the
il22 gene and the plasmid construct IL-22-Tluc with the VDRE deletion (IL-22-TLuc VDRE-KO). (Right) Luciferase light emission in counts per second (CPS) in Myla
2059 cells nucleofected either with IL-22-TLuc VDRE-WT (black) or IL-22-TLuc VDRE-KO (white) plasmids and cultured for 48 h in the presence of 1,25(OH)2D3 at
the indicated concentrations in nM (mean + SEM, three independent experiments).
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DISCUSSION

In this study, we show that 1,25(OH)2D3 inhibits IL-22 expression
and production in human Th22 cells through a repressive VDRE in
the il22 promoter. 1,25(OH)2D3 is well-known by its
immunomodulatory properties and it can influence the
differentiation of T helper cells by regulating the production of
their signature cytokine (35–41). Some studies have investigated the
effect of 1,25(OH)2D3 on IL-22 in human and mice CD4+ T cells (4,
42, 43). However, conflicting results were obtained. One study
found that 1,25(OH)2D3 inhibited IL-22 production in human
Th17 cells (43), whereas others found that 1,25(OH)2D3

promoted Th22 cell differentiation and IL-22 production (4, 42).
Thus, the effect of 1,25(OH)2D3 on IL-22 in human Th22 cells
remained to be fully elucidated. In the present study we demonstrate
that 1,25(OH)2D3 strongly inhibited IL-22 production in Th22 cells.
This was not caused by 1,25(OH)2D3-mediated inhibition of the
expression of the transcription factors AhR, RORgt and STAT-3 or
by the inhibition of IL-21 production. Although we did not formally
rule out that 1,25(OH)2D3 might affect the binding of those
transcription factors to target genes, we show that 1,25(OH)2D3

directly inhibits IL-22 production through a repressive VDRE
located in the il22 promoter. This is in line with previous studies
that identified repressive VDRE in the ifng (50) and il12B
(51) promoters.

In the present study, we describe a novel way to differentiate
human Th22 cells in vitro. In our system, where we activate naïve
CD4+ T cells with allogeneic dendritic cells, the sole presence of
IL-6 and TNFa did not increase IL-22 production. However, we
found that IL-6, TNFa, IL-1b and IL-23 lead to an increase in
both IL-22 and IL-17 production. This is in accordance to
previous studies that found that these factors increase IL-17
production in CD4+ T cells (52–54). As the AhR agonist FICZ
has been found to induce IL-22 and inhibit IL-17, we included
FICZ in the Th22 panel. We observed that FICZ lead to increased
IL-22 production while down-regulating IL-17. However, IL-17
was still produced to some extent in the presence of FICZ. A key
cytokine in the differentiation of Th17 cells is TGFb (55–57).
Thus, we included an inhibitor of TGFbR signalling
(galunisertib) in an attempt to repress the generation of IL-17-
producing CD4+ T cells in the presence of factors that induce IL-
22 production. Interestingly, we found that galunisertib
augmented the production of IL-22 while inhibiting IL-17
production. Taken together, we found that the combination of
IL-6, TNFa, IL-1b, IL-23, FICZ and galunisertib constituted
optimal conditions for in vitro generation of human Th22 cells.

We found that AhR and RORgt are important transcription
factors that regulate IL-22 in human Th22 cells. In accordance,
AhR and RORgt regulate IL-22 expression and production in
ILC3 that represent a major IL-22 source in the gut (58, 59). In
contrast to a recent study that identified IL-21 as an inducer of
IL-22 production in mouse CD4+ T cells (29), we found that IL-
21 do not affect IL-22 production in human Th22 cells. Thus, our
data suggest that regulation of IL-22 may differ between mice and
human CD4+ T cells.

Interestingly, ectopic IL-22 expression is a characteristic
feature of lesional skin in CTCL, and IL-22 is believed to play
Frontiers in Immunology | www.frontiersin.org 10
a role in the establishment of the pro-tumorigenic
microenvironment and the deficient antimicrobial defence in
these patients (47, 60). Of notice, CTCL lesions are often
localized to body areas, which are not exposed to sunlight i.e.
the “bathing suit area” and in general, CTCL patients display
deficient vitamin D serum levels (49). Given the present findings
that vitamin D inhibit IL-22 expression in malignant T cells, we
hypothesize that vitamin D supplementation could have a
beneficial effect as adjuvant therapy inhibiting ectopic IL-22
expression and skin inflammation in CTCL.

In conclusion, we have identified a novel way of
differentiating naïve CD4+ T cells towards the Th22 lineage
and demonstrated that 1,25(OH)2D3 directly inhibits IL-22
through VDR targeting a repressive VDRE located in the il22
gene. We showed that AhR and RORgt regulate IL-22 in human
Th22 cells, whereas IL-21 does not affect IL-22 production in
human Th22 cells. This study add to the understanding on IL-22
regulation in human Th22 cells and suggests that vitamin D may
be considered a potential therapeutics to regulate IL-22-
mediated diseases.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Regional Ethical Committee of the Capital Region
of Denmark. The patients/participants provided their written
informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

CG, MK-W and DL conceived the study and designed the
experiments. DL, FA-J, ND, UP and ST performed the laboratory
experiments. CB, BW, AW and NØ assisted with the experimental
design and data interpretation. CG, MK-W andDL analysed the data
and wrote the manuscript with input from all authors. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by the LEO Foundation (LF17058).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
715059/full#supplementary-material
August 2021 | Volume 12 | Article 715059

https://www.frontiersin.org/articles/10.3389/fimmu.2021.715059/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.715059/full#supplementary-material
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lopez et al. Th22 Cells and Vitamin D
REFERENCES

1. Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell
Populations. Annu Rev Immunol (2010) 28:445–89. doi: 10.1146/annurev-
immunol-030409-101212

2. Zhu J. T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring
Harb Perspect Biol (2018) 10:a030338. doi: 10.1101/cshperspect.a030338

3. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22
Cells Represent a Distinct Human T Cell Subset Involved in Epidermal
Immunity and Remodeling. J Clin Invest (2009) 119:3573–85. doi: 10.1172/
JCI40202

4. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of
Interleukin 22 But Not Interleukin 17 by a Subset of Human Skin-Homing
Memory T Cells. Nat Immunol (2009) 10:857–63. doi: 10.1038/ni.1767

5. Wolk K, Witte E, Witte K, Warszawska K, Sabat R. Biology of Interleukin-22.
Semin Immunopathol (2010) 32:17–31. doi: 10.1007/s00281-009-0188-x

6. Wolk K, Sabat R. Interleukin-22: A Novel T- and NK-Cell Derived Cytokine
That Regulates the Biology of Tissue Cells. Cytokine Growth Factor Rev (2006)
17:367–80. doi: 10.1016/j.cytogfr.2006.09.001

7. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 Increases
the Innate Immunity of Tissues. Immunity (2004) 21:241–54. doi: 10.1016/
j.immuni.2004.07.007

8. Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, et al. IL-22
Regulates the Expression of Genes Responsible for Antimicrobial Defense,
Celular Differentiation and Mobility in Keratinocytes: A Potential Role in
Psoriasis. Eur J Immunol (2006) 36:1309. doi: 10.1002/eji.200535503

9. Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP, et al.
Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization
Resistance to an Opportunistic Pathogen. Cell Host Microbe (2014) 16:504–
16. doi: 10.1016/j.chom.2014.08.017

10. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins
M, et al. Interleukin (IL)-22 and IL-17 Are Coexpressed by Th17 Cells and
Cooperatively Enhance Expression of Antimicrobial Peptides. J Exp Med
(2006) 203:2271–9. doi: 10.1084/jem.20061308

11. Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA,
Jenq RR, et al. Interleukin-22 Promotes Intestinal Stem Cell-Mediated
Epithelial Re-Generation. Nature (2016) 528:560–4. doi: 10.1038/nature16460

12. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22
Inhibits Epidermal Differentiation and Induces Proinflammatory Gene
Expression and Migration of Human Keratinocytes. J Immunol (2005)
174:3695–702. doi: 10.4049/jimmunol.174.6.3695

13. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suárez-Fariñas
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