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Abstract: N-myristoyltransferase (NMT) is an important eukaryotic monomeric enzyme which has
emerged as an attractive target for developing a drug for cancer, leishmaniasis, ischemia-reperfusion
injury, malaria, inflammation, etc. In the present work, statistically robust machine leaning models
(QSAR (Quantitative Structure–Activity Relationship) approach) for Human NMT (Hs-NMT) in-
hibitory has been performed for a dataset of 309 Nitrogen heterocycles screened for NMT inhibitory
activity. Hundreds of QSAR models were derived. Of these, the model 1 and 2 were chosen as
they not only fulfil the recommended values for a good number of validation parameters (e.g.,
R2 = 0.77–0.79, Q2

LMO = 0.75–0.76, CCCex = 0.86–0.87, Q2-F3 = 0.74–0.76, etc.) but also provide useful
insights into the structural features that sway the Hs-NMT inhibitory activity of Nitrogen heterocycles.
That is, they have an acceptable equipoise of descriptive and predictive qualities as per Organisation
for Economic Co-operation and Development (OECD) guidelines. The developed QSAR models
identified a good number of molecular descriptors like solvent accessible surface area of all atoms
having specific partial charge, absolute surface area of Carbon atoms, etc. as important features to be
considered in future optimizations. In addition, pharmacophore modeling has been performed to get
additional insight into the pharmacophoric features, which provided additional results.

Keywords: human N-Myristoyltransferase; nitrogen heterocycles; QSAR; statistical analysis;
pharmacophore modeling

1. Introduction

N-myristoyltransferase (NMT) or glycylpeptide N-tetradecanoyltransferase is an im-
portant cellular monomeric enzyme with a crucial role in the growth of various organisms
and cellular proliferation [1–5]. It is ubiquitously distributed, which follows a sequentially
ordered bi-bi mechanism to accomplish protein N-myristoylation [2,4,5]. The process
of protein N-myristoylation is a two-step process which involves catalytic irreversible
shifting of the myristoyl group to the N-terminal glycine residue of a number of substrate
proteins [1,2,4,6–8]. It is a co- and post-translational modification resulting in increased
protein lipophilicity, facilitates membrane localization, and optimizes binding with cellular
membranes proteins and several lipophilic proteins [4,5]. It has been established that in
cancerous states, the expression of NMT activity increases significantly in human adenocar-
cinoma, gallbladder cancer, and different types of cancers [1–6]. Similarly, the proliferative
capacity is found to be linked with NMT activity in mammary epithelial cells, thereby mak-
ing it a suitable target for cancer therapy. In humans and other higher eukaryotes, it exists
in two predominant isoforms: NMT-1 (four distinct isoforms ranging from 49kDa to 68 kDa)
and NMT-2 (single 65 kDa protein), with a mutual sequence similarity of ~77% [1–6]. Both
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the NMTs possess two distinct pockets, N and C terminus, for substrate binding. How-
ever, despite a high degree of sequence identity, the two NMTs have different substrate
specificities for the peptide binding pocket present nearer to the C-terminus [5]. These two
NMTs play a crucial role in apoptosis, signal transduction, cellular transformation, and
oncogenesis. Due to their essential roles, NMT-1 and 2 have been recognized as plausible
targets for the treatment of various diseases like leishmaniasis, ischemia-reperfusion injury,
malaria, inflammation, Chagas disease, fungal infections, etc. [1–6].

Recently, Gilbert et al. [6–10] performed high-throughput screening (HTS) against the
enzyme NMT followed by the synthesis and biological screening of a good number of Nitro-
gen heterocycles for NMT inhibitory activity. The Nitrogen heterocycles revealed moderate
to high activity. Even though extensive SAR (Structure–Activity Relationship) analysis has
been reported, simple visual inspection cannot identify concealed pharmacophoric patterns.
In addition, while optimizing the ADMET profile (Absorption, Distribution, Metabolism,
Excretion, and Toxicity), it is essential to retain the high activity. In such a situation, an
in-depth understanding of obviously visible and hidden pharmacophoric features could be
highly beneficial. Therefore, there is a need to carry advanced analysis using modern meth-
ods like Quantitative Structure–Activity Relationship (QSAR), pharmacophore modeling,
etc. to identify additional and hidden features.

QSAR (Quantitative Structure–Activity Relationship) analysis involves an amalgama-
tion of different fields (Chemistry, Statistics, Computer Science, etc.) to identify salient and
concealed pharmacophoric patterns [11,12]. A successful QSAR analysis provides in-depth
understanding of important structural features as well as helps to predict the desired
bio-activity before the actual synthesis and bio-screening of a congeneric molecule [13–16].
Therefore, researchers use machine-learning-based QSAR approach for a dataset of con-
generic molecules to get ideas about prominent features, which are then further used for
optimization of a selected lead/drug candidate. Therefore, a dataset of structurally di-
verse Nitrogen heterocycles has been used in the present work to develop balanced QSAR
models. The newly derived QSAR models comprise interpretable molecular descriptors in
terms of structural features that have good correlation with Human N-myristoyltransferase-
1 (Hs-NMT-1) inhibitory activity of Nitrogen heterocycles. A rational and conceivable
discernment of structural features deciding the Hs-NMT inhibitory activity of Nitrogen
heterocycles would be of prodigious significance to future drug discovery efforts.

Another thriving Computer Aided Drug Designing CADD approach is pharma-
cophore modeling, which is routinely performed to identify important structural features.
In the present work, QSAR and pharmacophore modeling have been concurrently per-
formed to identify the consensus and complementary structural features which govern the
anti-Hs-NMT-1 activity of Nitrogen heterocycles.

2. Experimental Methodology

A QSAR analysis based on appropriate selection of dataset, molecular descriptors, fea-
ture selection algorithm, validation method, and correlation in terms of structural features
(i.e., OECD guidelines) is useful to derive a QSAR model having a good balance of external
predictive ability (Quantitative/Predictive QSAR) and interpretation of model/molecular
descriptors in terms of structural features (Qualitative/Descriptive QSAR) [13–20]. There-
fore, the standard procedure has been followed to derive a balanced QSAR model for
inhibitory activity of Nitrogen heterocycles for Human NMT. More details about the
procedure followed in the present work are available in the literature [11,17,21–25].

2.1. Selection of Dataset

A dataset of structurally diverse 309 Nitrogen heterocycles, which have been tested
for their activity for Human NMT-1, has been selected for QSAR analysis in the present
work [6–10]. The dataset compromises a variety of molecules with varying substituents like
positional and ring isomers, heterocyclic analogues, etc. Thus, covering a broad chemical
space required for deriving a robust QSAR model. The reported IC50 values range from
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0.002 uM to 107,000 uM, which were converted to pIC50 (−log10IC50) before deriving the
QSAR model. The SMILES (Simplified Molecular-Input Line-Entry System) notations, IC50,
and pIC50 for all the Nitrogen heterocycles are present in supplementary material (see
Table S1). Herein, in Table 1, we have presented five most and least active molecules as
examples only. In addition, the common scaffolds have been presented in Figure 1.

Table 1. Five most and least active Nitrogen heterocycles against Human N-myristoyltransferase (Hs-NMT) molecules
(arranged according to IC50 values).

S.N. SMILES IC50
(µM)

pIC50
(M)

20 Cn(n1)c(C)c(c1C)N(C(F)F)S(=O)(=O)c(c(Cl)c2)c(Cl)cc2CCCO[C@H](C3)C[C@@H](N4C)CC[C@H]34 0.002 8.699

73 Cn(n1)c(C)c(c1C)NS(=O)(=O)c(c(Cl)c2)c(Cl)cc2-c3cc(ncc3)N4CCNCC4 0.003 8.523

2 Cn(n1)c(C)c(c1C)NS(=O)(=O)c(cc2)c(Cl)cc2-c3cc(ncc3)N4CCNCC4 0.004 8.398

78 CC(C)Cc1c(c(C)n(n1)C)NS(=O)(=O)c(c(Cl)c2)c(Cl)cc2-c3cc(ncc3)N4CCNCC4 0.004 8.398

95 C1CN(C)CCC1CCCCc2cc(Cl)c(c(Cl)c2)S(=O)(=O)Nc(c3C)c(C)n(n3)C 0.004 8.398

293 CC(C)Cc1ccc2ncccc2c1NS(=O)(=O)c1ccc(CCCO[C@H]2C[C@@H]3CC[C@H](C2)N3C)cc1 27000 1.569

82 Cc1c(C)c(OC)cc(C)c1S(=O)(=O)Nc(c2C)cccn2 70000 1.155

83 Cn1ncc(c1C)NS(=O)(=O)c2c(Cl)cc(Br)cc2Cl 70800 1.15

84 Cn(n1)c(C)c(c1C)NS(=O)(=O)c(c2F)ccc(Br)c2 87000 1.06

111 Cn(n1)c(C)c(c1C)NS(=O)(=O)c(c2C)ccc(Br)c2 107000 0.971

Figure 1. Structural variations in Nitrogen heterocycles used for Quantitative Structure–Activity
Relationship (QSAR) analysis.

The 2D-structures of all the Nitrogen heterocycles were drawn using ACD ChemSketch
Freeware (www.acdlabs.com (accessed on 23 February 2021)). Thereafter, conversion
to 3D-using Avogadro ver. 1.02 (https://avogadro.cc/ (accessed on 23 February 2021))
using MMFF94 force field for geometry optimization and partial charge assignment was
performed. The following parameters were used for geometry optimization: ForceField:
MMFF94, Algorithm: Steepest Descent, number of steps used for optimization: 1000.

www.acdlabs.com
https://avogadro.cc/
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2.2. Calculation and Pruning of Molecular Descriptors

PyDescriptor [26] and PaDEL [27] were used for molecular descriptor calculation using
3D-optimized structures of Nitrogen heterocycles. While calculating solvent-accessible
surface area using PyDescriptor, the dot density was set to 4 in PyMOL to get a higher
accuracy. This resulted in generation of more than 29,000 molecular descriptors for each
molecule. In the next step, objective feature selection (OFS) was performed to reduce the
pool of molecular descriptors. OFS involved the removal of constant, nearly constant
(95% molecules), and highly correlated molecular descriptors (|R| > 0.90) [17,23–25]. OFS
resulted in a reduced cluster of 596 molecular descriptors, which still covers a broad
descriptor space due to the presence of 1D- to 3D-molecular descriptors. This condensed
pool was used for subjective feature selection (SFS).

2.3. Subjective Feature Selection (Model Building)

The process of SFS was accomplished using QSARINS-2.2.4 [28,29] with default
settings, except the number of generations was set to 10,000. The Genetic Algorithm (GA)
module of QSARINS-2.2.4 uses Q2 as a fitting parameter to avoid over fitting and inclusion
of redundant variables during model building [28,29]. A crucial decision in developing
a successful QSAR model is when to stop adding molecular descriptors to the model. In
the present work, a graph was drawn between the number of descriptors involved in the
models and Q2 value to obtain the so-called breaking point. Consequently, the number of
molecular descriptors corresponding to the breaking point was considered optimum for
model building. The graph between the numbers of variables used in the models against
Q2 value is depicted in Figure 2. From the Figure 2, it is clear that the breaking point
corresponds to five variables, that is, optimum number of descriptors to be used is five.
Therefore, QSAR models with more than five descriptors were rejected.

Figure 2. Plot of the number of descriptors against Coefficient of Determination R2 and Leave-One-
Out Coefficient of Determination Q2 to identify the optimum number of descriptors.

A major reason to derive any statistically acceptable genetic algorithm–multiple
linear regression (GA-MLR)-based QSAR model is to gain thorough information about the
structural features that decide the desired activity (Descriptive QSAR) [13,14]. To achieve
this objective, the strategy [11,30] involves splitting of dataset into two equal sets: 50%
training set and 50% prediction set. The training set was used to find the most relevant and
appropriate number of molecular descriptors for QSAR model, whereas the prediction set
was used for external validation, i.e., to check the external prediction ability (Predictive
QSAR). Then, the training and the prediction sets were exchanged for descriptor selection,
model building, and proper validation, thereby ensuring the identification of relevant
molecular descriptors, in turn, the structural features that influence the HsNMT-1 activity
of Nitrogen heterocycles. The strategy has been depicted in Figure 3.
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Figure 3. Procedure adopted in the current work to develop acceptable QSAR models.

2.4. Validation of QSAR Models

After building a QSAR model, it is an essential step to validate its performance, that
is, to judge its external predictive ability and statistical robustness for its further usage
in drug/lead optimizations [12–15,18,20,21,31–35]. Therefore, not only thorough internal
validations (cross-validation approach) and Y-scrambling were performed, but an external
prediction set of 50% molecules was also used to validate the statistical performance of
the model. In addition, Williams plot was used to assess the applicability domain of
the developed QSAR model. To add further, the following rules were used to select and
validate a model [11,17,22–24]: R2tr ≥ 0.6, Q2loo ≥ 0.5, Q2LMO ≥ 0.6, R2 > Q2, R2ex ≥ 0.6,
RMSEtr < RMSEcv, ∆K ≥ 0.05, CCC ≥ 0.80, Q2-Fn ≥ 0.60, r2m ≥ 0.5, (1-r2/ro2) < 0.1,
0.9 ≤ k ≤ 1.1 or (1-r2/r’o2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro2− r’o2| < 0.3 with RMSE and MAE
as low as possible. The Q2LMO value reported herein is mean value of 2000 repetitions
with 30% of the objects randomly excluded from the training set each time. The external
predictive ability of model was assessed using external validation parameters, viz., RMSEex,
MAEex, R2ex, Q2F1, Q2F2, Q2F3, and CCCex. All QSAR models that do not achieve the
recommended lower-limit values for above statistical parameters were directly rejected.

2.5. Pharmacophore Modeling

To get a consensus pharmacophore model, the molecules in the data set were aligned
using the lowest energy conformer of the most active compound. Then, LIQUID 1.0, a free
PyMOL [36] plugin, was used to generate consensus pharmacophore model using default
settings. Whereas, for pharmacophore modeling for x-ray resolved crystal structures of
reported inhibitors, the pdb files (6FZ5 and 3IWE) were downloaded from a publicly avail-
able database (www.rcsb.org (accessed on 23 February 2021)). After that, the crystallized
ligands were extracted without any modification or optimization, that is, the x-ray resolved
crystal structure of extracted ligand was used as such to generate the pharmacophore
model using LIQUID 1.0.

3. Results and Discussions

In the present work, the QSAR analysis was aimed to recognize important structural
features responsible for HsNMT-1 inhibitory activity of Nitrogen heterocycles. The devel-
oped five parametric GA-MLR-based QSAR models have acceptable statistical performance
with the presence of easily understandable molecular descriptors, thereby leading to a
relevant explanation and association with structural features. Even though, in the present
analysis, a straight evaluation of IC50 values of the molecules of the dataset has been
performed to explain the effect of a specific descriptor, it is important to note that the
synergic or inverse effect of unknown factors or other molecular descriptors could have
a substantial influence in deciding the final IC50 value of a molecule. It is essential to
understand that no single molecular descriptor is able to completely explain the observed
distribution of IC50 for such a diverse set of molecules. That is, the performance of the

www.rcsb.org
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developed QSAR model relies on the concomitant use of constituent molecular descriptors.
The derived five-parametric GA-MLR QSAR models are as follows:

Model-1: pIC50 = 0.928 (± 0.703) + 0.028 (± 0.008) * C_AbSA + 0.009 (± 0.001) *
all_HASA2-0.142 (± 0.069) * fNH4B + 0.554 (± 0.311) * fringNH2A -0.241 (± 0.133) *
flipoH3B

R2tr = 0.788, R2adj. = 0.781, R2tr-R2adj. = 0.007, LOF = 0.831, Kxx = 0.296, ∆K = 0.063,
RMSEtr = 0.853, MAEtr = 0.699, RSStr = 112.659, CCCtr = 0.882, s = 0.87, F = 110.953, R2cv
(Q2loo) = 0.77, R2-R2cv = 0.019, RMSEcv = 0.89, MAEcv = 0.729, PRESScv = 122.628, CCCcv
= 0.871, Q2LMO = 0.764, R2Yscr = 0.033, Q2Yscr = -0.047, RMSEex = 0.907, MAEex = 0.743,
PRESSext = 126.77, R2ex = 0.757, Q2-F1 = 0.755, Q2-F2 = 0.755, Q2-F3 = 0.76, CCCex = 0.867,
R2-ExPy = 0.757, R’o2 = 0.714, k’ = 0.973, 1-(R2/ R’o2) = 0.057, r’2m = 0.6, Ro2 = 0.755,
k = 0.998, 1-(R2-ExPy/ Ro2) = 0.003, r2m = 0.723

Model-2: pIC50 = 1.574 (± 0.618) + 0.026 (± 0.008) * C_AbSA + 0.008 (± 0.001) *
all_HASA2 -0.19 (± 0.068) * fNH4B + 0.772 (± 0.336) * fringNH2A -0.287 (± 0.139) *
flipoH3B

R2tr = 0.771, R2adj. = 0.763, R2tr-R2adj. = 0.008, LOF = 0.882, Kxx = 0.258, ∆K = 0.081,
RMSEtr = 0.878, MAEtr = 0.727, RSStr = 118.695, CCCtr = 0.87, s = 0.896, F = 99.365, R2cv
(Q2loo) = 0.75, R2-R2cv = 0.021, RMSEcv = 0.917, MAEcv = 0.758, PRESScv = 129.517,
CCCcv = 0.859, Q2LMO = 0.745, R2Yscr = 0.033, Q2Yscr = -0.048, RMSEex = 0.876, MAEex
= 0.725, PRESSext = 118.967, R2ex = 0.777, Q2-F1 = 0.776, Q2-F2 = 0.776, Q2-F3 = 0.771,
CCCex = 0.871, R2-ExPy = 0.777, R’o2 = 0.705, k’ = 0.974, 1-(R2/ R’o2) = 0.093, r’2m = 0.568,
Ro2 = 0.776, k = 0.999, 1-(R2-ExPy/ Ro2) = 0.001, r2m = 0.758

The molecular descriptor all_HASA2 represents the solvent accessible surface area
(Å2) of all atoms having a partial charge in the range +0.10 to +0.20, which in turn indicates
the importance of hydrophobic atoms. all_HASA2 has a positive coefficient in both the
developed QSAR models, therefore, increasing its value could lead to better activity for
HsNMT-1. This molecular descriptor has been depicted in Figure 4 using molecule 256
(least all_HASA2) and 12 (highest all_HASA2) as examples only.

Figure 4. Representation of all_HASA2 using molecule 256 and 12 as examples only (all_HASA2
shown in magenta color).
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Brand et al. [10] highlighted the importance of reduction of polar surface area (PSA) to
increase Blood-Brain Barrier (BBB) penetration ability of Nitrogen heterocycles. A decrease
in PSA is possible only if the number of negatively charged Nitrogen and/or Oxygen
atoms is minimized, which in turn could lead to an increase in the number of positively
charged atoms. Interestingly, an increase in the number of positively charged atoms could
lead to an increased value of all_HASA2. Therefore, it is rational to say that an increase in
all_HASA2 could also lead to enhanced BBB penetration ability.

As the calculation of all_HASA2 involves solvent-accessible surface area, it is indirectly
related to the size of a molecule. It is observed that molecules with higher activity for
Hs-NMT-1 have a larger size and all_HASA2 compared to less active molecules (see
Supplementary Material).

The molecular descriptor C_AbSA corresponds to absolute surface area due to Carbon
atoms in the molecule, which in turn points out the importance of hydrophobic atoms.
The absolute surface area is the difference between solvent-accessible surface area and
molecular surface area (MSA). C_AbSA has positive coefficients in the developed QSAR
models, which indicates that as the value of C_AbSA increases, the HsNMT inhibition
ability also increases. In our previous work [11], we have reported that C_AbSA has a
positive correlation with the Tb-NMT inhibitory activity of pyrazole Nitrogen heterocycles.
This molecular descriptor also highlights the importance of the number of Carbon atoms
in the molecule. Therefore, increasing the number of Carbon atoms is a good idea to have
better inhibitory activity for NMT.

The two molecular descriptors all_HASA2 and C_AbSA indicate that the presence
of hydrophobic atoms is important for Hs-NMT inhibitory activity. This observation is
also supported by the pharmacophore modeling and crystal structure of Hs-NMT-1 in
complex with various ligands. Recently, Kersten et al. [37] reported that sulphonamide
derivatives bearing Nitrogen heterocycles interact with hydrophobic residue Tyr296 (pdb
code 3IWE and 6FZ5), which vindicates the importance of the presence of hydrophobic
atoms in the ligand.

The molecular descriptor fringNH2A stands for the frequency of occurrence of H
atoms exactly between 1 to 2 angstroms from the ring Nitrogen atoms. If the same Hydro-
gen atom was simultaneously present at zero to one angstrom from any other ring Nitrogen
atom, then it was excluded during the calculation of fringNH2A. It has a positive coeffi-
cient in the developed models, therefore, the number of Hydrogen atoms in the vicinity
of ring Nitrogen atoms is a favorable combination to be used for lead/drug optimization
for HsNMT-1. Since Hydrogen is the smallest element, it implies that there should be
minimum bulk in the vicinity of ring Nitrogen atoms. Therefore, in future modifications,
steric bulk nearer to ring Nitrogen atoms should be avoided to have better activity against
HsNMT-1.

The molecular descriptor flipoH3B indicates the frequency of occurrence of Hydrogen
atoms exactly at three bonds from lipophilic atoms (see Figure 5). If the same hydrogen
atom is simultaneously present at one or two bonds from any other lipophilic atom, then it
was excluded during the calculation of flipoH3B. This molecular descriptor has a negative
coefficient in developed model 1, therefore, its value should be kept as low as possible.
Again, due to the lowest size of Hydrogen, it points out that there should be more bulkiness
at three bonds from lipophilic atoms to achieve better activity against HsNMT.
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Figure 5. Representation of flipoH3B (red-colored Hydrogen atoms and bonds) using molecule 11 and 73 as examples only.

The molecular descriptor fNH4B represents the frequency of occurrence of Hydrogen
atoms exactly at four bonds from Nitrogen atoms. If the same Hydrogen atom is also
present at less than four bonds from any other Nitrogen atom, then it was excluded during
the calculation of fNH4B. The negative coefficient for this molecular descriptor in model 1
and 2 indicates that increasing the number of such Hydrogen atoms could lead to lower
activity against HsNMT-1. Figure 6 contains the pictorial representation of fNH4B using
molecule 255 and 192 as examples.
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Figure 6. Depiction of fNH4B (black-colored Hydrogen atoms) using molecule 149 and 192 as
representative examples only.

A simple comparison of the two models indicates that they contain identical molec-
ular descriptors; therefore, the strategy is highly successful in identifying most relevant
molecular descriptors. This also points out the statistical stability of the models. The devel-
oped QSAR models have successfully satiated values for many fitting, cross-validation,
and external validation parameters. A high value of R2tr, R2cv (Q2loo), Q2LMO, and
CCCcv indicates the statistical robustness of the developed models [16,20,32,34,37–39]. In
addition, Y-scrambling results also confirm this observation. The external predictive ability
of the developed models is confirmed on the basis of high value of Q2-Fn, CCCex, and
R2ex [16,20,32,34,38–40]. For the developed QSAR models, R2adj. and R2 have negligible
difference, which signifies that the models contain a suitable number of molecular de-
scriptors. A high Fischer ratio (F) value for the developed models further pointed out the
statistical significance of the developed models. The formulae to calculate the statistical pa-
rameters are available in supplementary material (see Tables S2 and S3, Figures S1 and S2).
Various graphs associated with the models have been depicted in Figure 7.
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Figure 7. Different graphs associated with the derived QSAR models. (a) Experimental vs. predicted value graph,
(b) Williams plot for model 1 and 2.

From the graphs (see Figure 7), it is clear that the models are statistically acceptable
and useful for the prediction of Hs-NMT inhibitory activity for future developments.

4. Pharmacophore Modeling

Pharmacophore modeling is a well-established thriving branch of CADD that is
performed to identify crucial structural features. The consensus pharmacophore model
reveals that the pharmacophoric pattern (see Figure 8) consists of a larger hydrophobic
region (green colored), two H-bond acceptors (red colored) at a distance of 11.2 Å from each
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other, and two H-bond donor regions at a distance of 4.0 Å and 7.9 Å from the center of the
benzene ring attached to sulfnoamide group (green colored). The pharmacophore modeling
highlighted the importance of the hydrophobic character of the central benzene ring and
its vicinal atoms. The same observation is also supported by the presence of all_HASA2
and C_AbSA in the QSAR model as well as recent crystal structures for sulphonamide
derivatives bearing Nitrogen heterocycles with Hs-NMT-1 (see Figure 9). A comparison of
Figures 8 and 9 indicates that the consensus pharmacophore model and the pharmacophore
model obtained using the x-ray resolved crystal structure of extracted ligands have good
similarity with each other, especially with respect to the presence of the hydrophobic region
(green colored) at the center and two H-bond acceptors (red colored). Thus, QSAR and
pharmacophore modeling led to identification of consensus and complementary structural
features and vindicated by recent crystal structures [37].

Figure 8. Consensus pharmacophore model, (a) aligned ligands, (b) pharmacophore model with
molecules, (c) pharmacophore model with molecules and distances using representative examples,
(d) different regions with distances only.

Figure 9. (a) Pharmacophore model with crystallized ligands-pdb 6FZ5. (b) Pharmacophore model
without crystallized ligands-pdb 6FZ5. (c) Pharmacophore model with crystallized ligands-pdb
3IWE. (d) Pharmacophore model without crystallized ligands-pdb 3IWE.
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5. Conclusions

In the present work, QSAR models having a good balance of external predictive
ability and mechanistic interpretation were derived. The analysis pointed out that some
structural features like solvent accessible surface area of all atoms having specific partial
charge (range +0.1 to +0.2), absolute surface area of carbon atoms, and presence/absence of
hydrogen from ring/non-ring Nitrogen atoms at specific distances as important structural
features. The developed QSAR models have good external predictive ability, which could
be used to identify novel hits, thus broadening their usefulness. In addition, QSAR
and pharmacophore modeling concurrently identified consensus and complementary
structural features.

Supplementary Materials: The following are available online, Table S1: SMILES notations, IC50,
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