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Abstract. It has been previously demonstrated that 1,25(OH)2D3 

prevents the progression of epithelial to mesenchymal transition 
(EMT). However, it remains unclear whether 1,25(OH)2D3 has a 
role in peritoneal EMT stimulated by high glucose (HG) peri-
toneal dialysis fluid (PDF). The present study was performed to 
investigate the role of 1,25(OH)2D3 in the progression of EMT 
in the peritoneal mesothelium. A total of 35 male Kunming 
mice were randomly assigned into seven groups. In the control 
group, no diasylate or saline was infused. In the saline group, 
the mice were intraperitoneally injected with saline every day 
for 4 weeks. In the vitamin D group, the mice were subjected to 
intraperitoneal injections of 1 or 5 µg/kg of 1,25(OH)2D3 once 
weekly (every Monday) for 4 weeks. The peritoneal dialysis 
(PD) group were intraperitoneally injected with a conventional 
4.25% PDF daily for 4 weeks. The vitamin D+PD group were 
intraperitoneally injected with 4.25% PDF daily and co‑treated 
with 1 µg/kg or 5 µg/kg 1,25(OH)2D3 once weekly, for 4 weeks. 
The peritoneal morphology and thickness were assessed by 
hematoxylin and eosin and Masson's trichrome staining. The 
peritoneal protein level of EMT markers (α-smooth muscle actin, 
fibronectin and E‑cadherin), vitamin D receptor (VDR), B cell 
lymphoma‑2 (Bcl‑2), Bcl‑2‑associated X protein, transforming 
growth factor (TGF)‑β and Smad3 were evaluated by western 
blot analysis or immunohistochemical staining. Furthermore, 
apoptosis was assessed using a Caspase-3 activity assay. The 
results demonstrated that after 4 weeks of intraperitoneal 

injections in mice, HG‑PDF decreased the expression of VDR, 
promoted EMT and apoptosis, and increased the thickness of 
the peritoneal membrane. However, 1,25(OH)2D3 treatment 
attenuated HG-induced EMT and apoptosis, and decreased 
peritoneal thickness, which may partially occur through inhibi-
tion of transforming growth factor TGF‑β/Smad pathways via 
1,25(OH)2D3 binding to VDR. The present study demonstrated 
that 1,25(OH)2D3 attenuated HG-induced EMT and apoptosis 
in the peritoneal mesothelium through TGF‑β/Smad pathways. 
1,25(OH)2D3 treatment in conjunction with HG dialysate may 
provide an improved solution to the peritoneal injury in the 
process of PD.

Introduction

Peritoneal dialysis (PD) has become one of the most important 
renal replacement therapies for patients with end-stage renal 
disease (ESRD) (1-4). Long-term PD is limited due to recurrent 
peritonitis, inadequate dialysis and peritoneal fibrosis (5-8). 
High concentrations of glucose in dialysate, which damages 
the structure and function of the peritoneal membrane, is 
considered to be one of the most important factors leading 
to peritoneal fibrosis and ultrafiltration failure (9). Epithelial 
to mesenchymal transition (EMT) has an important role 
in peritoneal membrane fibrosis and dysfunction. EMT is 
characterized by the loss of normal epithelial cell features, 
including cell polarity and adhesion due to reduced expression 
of epithelial makers such as E-cadherin, and gaining features 
of mesenchymal cells, including invasion and migration, 
which are associated with increases in mesenchymal markers 
such as α-smooth muscle actin (α‑SMA) and fibronectin (FN). 
High glucose (HG) was previously reported to accelerate EMT 
mediated by inflammation in peritoneal mesothelial cells and 
the kidney (10,11). Preventing EMT may mitigate peritoneal 
fibrosis and preserve mesothelial cells during PD. It was also 
demonstrated that HG induces apoptosis in peritoneal meso-
thelial cells (12). The apoptosis of peritoneal mesothelial cells 
may also induce the progression and development of perito-
neal fibrosis during long‑term PD, which eventually leads to 
ultrafiltration failure (13,14).

An increasing amount of evidence indicates a role for 
1,25(OH)2D3 and its analogues in the regulation of cell 
immunomodulation, proliferation and differentiation (15-17). 
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Several studies have also demonstrated the protective effect 
of vitamin D on peritoneal fibrosis (18-22). In addition, the 
effects of vitamin Don EMT have been previously inves-
tigated. For example, vitamin D was reported to ameliorate 
cancer cell EMT (23) and inhibit migration, invasion and 
EMT induced by TGF‑β in human airway epithelial cells (24). 
1,25(OH)2D3 regulates calcium, phosphate and bone metabo-
lism by binding to the vitamin D receptor (VDR). The VDR 
forms a heterodimer with the retinoid X receptor, which subse-
quently regulates the expression of genes in the nucleus. Our 
previous research demonstrated that 1,25(OH)2D3 exhibited a 
modulatory effect on apoptosis (25). However, the effect of 
1,25(OH)2D3 on HG-induced EMT and apoptosis in the peri-
toneal mesothelium and the underlying molecular mechanism 
remain to be established.

The present study aimed to investigate whether 1,25(OH)2D3 

protects the peritoneal mesothelium from HG-induced EMT 
and apoptosis, and to identify the molecular mechanism.

Materials and methods

Animals and experimental treatments. All the animals and 
experimental procedures were approved by the Experimental 
Animals Ethics Committee of China Medical University 
(Shenyang, China). Kunming male mice (n=35; age, 8-12 
weeks; weight, 28-30 g) were obtained from the Department of 
Laboratory Animals, China Medical University, and housed in a 
room with controlled temperature (22˚C) and humidity (60‑65%) 
on a 12-h light/dark cycle. Food and water were provided ad 
libitum throughout the experiment and mice were given one 
week to acclimate to their new environment, The mice were 
randomly assigned into the following seven groups (n=5 per 
group): Control group, no dialysate or saline was infused; saline 
group, mice received 50 ml/kg saline intraperitoneal injection 
everyday for 4 weeks; low dose vitamin D group, the mice were 
subjected to intraperitoneal injections of 1 µg/kg 1,25(OH)2D3 

(Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) once 
weekly (every Monday) for 4 weeks; high dose vitamin D 
group, the mice were subjected to intraperitoneal injections of 
5 µg/kg 1,25(OH)2D3 once weekly (every Monday) for 4 weeks; 
PD group were intraperitoneally injected with 50 ml/kg conven-
tional 4.25% peritoneal dialysis fluid (PDF; Baxter Healthcare 
Co., Ltd., Guangzhou, China) daily for 4 weeks; PD +low dose 
vitamin D group, mice were intraperitoneally injected with 
50 ml/kg conventional 4. 25% PDF daily, and intraperitoneal 
injections of 1 µg/kg 1,25(OH)2D3 once weekly (every Monday) 
for 4 weeks; and PD + high dose vitamin D group, mice were 
intraperitoneally injected with 50 ml/kg conventional 4. 25% 
PDF daily, and subjected to intraperitoneal injections of 5 µg/kg 
1,25(OH)2D3 once weekly (every Monday) for 4 weeks. At the 
end of the experimental period (4 weeks), the mice were starved 
for 12‑13 h and sacrificed, parietal peritoneum was used for 
morphometric and histological analyses, and the visceral peri-
toneum was used for western blot analysis.

Histology and immunohistochemical (IHC) analyses of the 
peritoneum. The parietal peritoneum was fixed overnight with 
PBS (pH 7. 2) containing 4% paraformaldehyde at 4˚C, impreg-
nated and embedded in paraffin wax. Samples were cut into 
4-µm sections. Tissue sections were stained with hematoxylin 

(room temperature for 20 min) and eosin (room temperature for 
3 sec) (H&E staining) to examine the peritoneal morphology. 
The collagen thickness in the parietal peritoneum was measured 
in tissue sections by using Masson's trichrome stain (room 
temperature for 10 min). The collagen thickness of the parietal 
peritoneum, including the mesothelium and submesothelial 
tissue, was measured. Each tissue section was measured at ten 
random locations by two blinded observers.

Following deparaffinization, tissues were hydrated with graded 
alcohol and blocked with non‑immune goat serum, (Fuzhou 
Maixin Biotech Co., Ltd., Fuzhou, China) at 37˚C for 15 min. 
Antigen retrieval was performed using 0. 01 M citrate buffer 
(pH 6. 0) at 100˚C for 2 min, followed by washing in PBS. 
Tissues were incubated with an α-SMA primary antibody 
(1:200; ab32575; Abcam, Cambridge, UK) at 37˚C for 2 h. 
An Elivision™ Super horseradish peroxidase (HRP) IHC kit 
(KIT‑9922; Fuzhou Maixin Biotech Co., Ltd) was used as a 
ready-to-use secondary antibody; sections were incubated 
at 37˚C for 1 h. Positive binding was detected using diami-
nobenzidine staining. Counterstaining with hematoxylin 
was performed at room temperature for 10 min. Antigens 
were visualized using a fluorescence microscope (Nikon 
Corporation, Tokyo, Japan) at a magnification of x400.

Western blot analysis. Mouse visceral peritoneum was lysed 
in radioimmunoprecipitation assay lysis buffer (Beyotime 
Institute of Biotechnology, Haimen, China), sonicated three 
times for 10 sec each time, and protein was quantified with 
the BCA Protein assay kit (Pierce; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). Protein (50 µg) from visceral peri-
toneum lysates was loaded and separated by 10% SDS-PAGE, 
and was then transferred onto nitrocellulose membranes (EMD 
Millipore, Billerica, MA, USA). Blots were incubated with 
bovine serum albumin solution (10%; Sigma-Aldrich; Merck 
KGaA) at 37˚C for 1 h to limit non‑specific antibody binding. 
The blots were incubated overnight at 4˚C with primary 
antibodies against E-cadherin (1:1,000; sc-7870; Santa Cruz 
Biotechnology, Inc.), α-SMA (1:1,000; ab32575; Abcam), 
FN (1:1,000; sc‑9068; Santa Cruz Biotechnology, Inc.), VDR 
(1:1,000; ab109234; Abcam), Bcl‑2 (1:1,000; cat. no. 3498; Cell 
Signaling Technology, Inc., Danvers, MA, USA), Bax (1:1,000; 
cat. no. 2772; Cell Signaling Technology, Inc), TGF‑β (1:1,000; 
sc‑146; Santa Cruz Biotechnology, Inc.), Smad family member 3 
(Smad3; 1:1,000; cat. no. 9523; Cell Signaling Technology, Inc.), 
phosphorylated-Smad3 (1:1,000; cat. no. 9520; Cell Signaling 
Technology, Inc.) or β-actin (1:1,000; sc-130656; Santa Cruz 
Biotechnology, Inc.). This was followed by incubation at room 
temperature for 2 h with the HRP-conjugated secondary 
antibody (1:10,000; sc‑2004; Santa Cruz Biotechnology, Inc.). 
The blots were developed using an ECL Western Blotting 
Substrate kit (32109; Pierce; Thermo Fisher Scientific, Inc.) 
and the images were captured with a G:BOX EF Chemi HR16 
system (Syngene, Frederick, MD USA). ImageJ software 1.6.0 
(National Institutes of Health, Bethesda, Maryland, USA) was 
used to measure the band densities and the densitometric inten-
sity of each band was normalized against β-actin expression.

Caspase‑3 activity assay. A Caspase-3 Activity assay kit was 
used to detect the activity of caspase‑3 (Beyotime Institute of 
Biotechnology). Protein concentrations of tissue lysates were 
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measured by the Bradford assay kit (Beyotime Institute of 
Biotechnology). Protein‑normalized supernatants (10 µl) were 
mixed with 10 µl Ac‑DEVD‑pNA (2 mM) in assay buffer. 
Caspase-3 activity was determined by spectrophotometry 
(NanoDrop Technologies; Thermo Fisher Scientific, Inc.).

Statistical analysis. Data were analyzed using SPSS 18 
(SPSS, Inc., Chicago, IL, USA). Results are presented as 
the mean ± standard error of the mean. One way analysis of 
varia nce was used for comparisons among groups. P<0.05 was 
considered to indicate a statistically significant difference.

Figure 1. Effects of 1,25(OH)2D3 on high glucose PDF‑induced morphological changes and collagen thickness in the peritoneal mesothelium. Representative 
images of (A) hematoxylin and eosin and (B) Masson's trichrome‑stained parietal peritoneum mesothelium tissue sections. Magnification, x400. (C) Collagen 
thickness was measured in tissue sections following Masson's trichrome staining. **P<0. 01 vs. control; ##P<0. 01 vs. PDF. PDF, peritoneal dialysis fluid; DL, 
vitamin D low dose [1 µg/kg 1,25(OH2D3]; DH, vitamin D high dose [5 µg/kg 1,25(OH)2D3].
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Results

Effects of 1,25(OH)2D3 on HG PDF‑induced morphological 
changes in the peritoneal mesothelium. H&E staining demon-
strated that the normal peritoneal mesothelium was covered 
by a single layer of flat peritoneal mesothelial cells. When 
exposed to HG PDF, H&E and Masson's trichrome staining 
demonstrated that the mesothelial cells became round, cylin-
drical and cells shed, fibers were exposed and inflammatory 
cells infiltrated the interstitium. However, 5 µg/kg 1,25(OH)2D3 

co-treatment once weekly observably reduced the changes in 

cell morphology induced by HGPDF (Fig. 1A and B). Masson's 
trichrome stain also demonstrated that, after 4 weeks of PDF 
treatment in mice, the thickness of the peritoneal membrane in 
the PDF group was significantly increased compared with the 
control group (Fig. 1C). 1,25(OH)2D3 co-treatment (5 µg/kg) 
significantly decreased peritoneal thickness compared with 
the PDF group (Fig. 1C).

Treatment with 1, 25 (OH) 2D3 decreases HG‑induced 
EMT in the peritoneal mesothelium. Exposure of the peri-
toneal mesothelium to HGPDF for 4 weeks significantly 

Figure 2. Effects of 1,25(OH)2D3 on the protein expression of epithelial to mesenchymal transition biomarkers and VDR in high glucose PDF‑treated peritoneal 
mesothelium. (A) Representative western blot bands for each group. Relative protein expression of (B) α‑SMA, (C) FN, (D) E‑cadherin and (E) VDR was 
calculated and normalized to the loading control. Corresponding protein levels were assessed using densitometry and are presented as relative intensities. 
Each value represents the mean + standard error of the mean, n=5. **P<0. 01 vs. control; #P<0. 05 and ##P<0. 01 vs. PDF. VDR, vitamin D receptor; PDF, 
peritoneal dialysis fluid; α-SMA, α‑smooth muscle actin; FN, fibronectin; DL, vitamin D low dose [1 µg/kg 1,25(OH)2D3]; DH, vitamin D high dose [5 µg/kg 
1,25(OH)2D3].
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decreased the protein expression of the epithelial cell marker 
E‑cadherin, and significantly increased the expression levels 
of the mesenchymal markers α‑SMA and FN (Fig. 2A-D), 
compared with the control group. 1,25(OH)2D3 treatment 

(1 and 5 µg/kg) significantly increased the protein expres-
sion of the epithelial cell marker and decreased expression of 
mesenchymal markers, compared with the mice treated with 
PDF alone (Fig. 2A-D).

Figure 3. Immunohistochemical staining for α‑SMA in the peritoneum of seven groups of mice. The intensity of a‑SMA staining was higher in PDF mice 
compared with the control group, and 1,25(OH)2D3 reversed these changes. Magnification, x400. α-SMA, α‑smooth muscle actin; PDF, peritoneal dialysis 
fluid; DL, vitamin D low dose [1 µg/kg 1,25(OH)2D3]; DH, vitamin D high dose [5 µg/kg 1,25(OH)2D3].

Figure 4. Effects of 1,25(OH)2D3 on high glucose PDF‑induced apoptosis in the peritoneal mesothelium. (A) Representative western blot bands for each 
group. The protein expression of (B) Bcl‑2 and (C) Bax was assessed using densitometry and are presented as relative intensities. Relative expression of Bax 
and Bcl‑2 was calculated and normalized to the loading control. (D) Caspase‑3 activity was measured using caspase‑3 activity kit and a spectrophotometer. 
Each value represents the mean + standard error of the mean, n=5. **P<0. 01 vs. control; #P<0. 05 and ##P<0. 01 vs. PDF. PDF, peritoneal dialysis fluid; Bax, 
Bcl‑2‑associated X; DL, vitamin D low dose [1 µg/kg 1,25(OH)2D3]; DH, vitamin D high dose [5 µg/kg 1,25(OH)2D3].
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The results also demonstrated that the expression of VDR 
protein was significantly lower in mice treated with 4.25% PDF 
compared with the control group (P<0.01), and these changes 
were partially attenuated by 1 and 5 µg/kg 1,25(OH)2D3 treat-
ment (P<0.05; Fig. 2E).

Furthermore, immunohistochemical staining of the parie tal 
peritoneum also revealed that the expression of the EMT marker 
α‑SMA was visibly higher in mice treated with 4. 25% PDF 
compared with the control group, and 1,25(OH)2D3 treatment 
attenuatedα‑SMA expression in PDF mice (Fig. 3).

Treatment with 1,25(OH)2D3 decreases HG‑induced apoptosis 
in the peritoneal mesothelium. Exposure of the peritoneal 
mesothelium to HGPDF for 4 weeks increased the protein 
expression of Bcl‑2‑associated X (Bax) and decreased the 
protein expression of Bcl‑2 significantly compared with the 
control group (Fig. 4A-C), and the activity of caspase-3 was 
significantly increased compared with the control group 
(Fig. 4D), which indicates that HGPDF may induce peritoneal 
mesothelium apoptosis. However, 1,25(OH)2D3 treatment 
(1 and 5 µg/kg) increased the expression of Bcl‑2, and decreased 
the expression of Bax and the activity of caspase‑3 compared 
with the mice treated with PDF alone.

Effects of 1,25(OH)2D3 on the TGF‑β/Smad signaling pathway. 
Western blot analysis demonstrated that exposure to HGPDF 
for 4 weeks significantly increased the protein expression of 
TGF‑β and the phosphorylation of Smad3 compared with the 
control group (Fig. 5). 1,25(OH)2D3 treatment (1 and 5 µg/kg) 
significantly decreased the expression of TGF‑β and the phos-
phorylation of Smad3 compared with the PDF group.

Discussion

An earlier study identified that PD accounted for >10% of all 
forms of renal replacement therapy worldwide in ESRD (26), 
however, this has reached 23% in Asia (27). During PD, the 
peritoneal mesothelium is usually exposed to hyperglycemic, 
hyperosmotic and acidic dialysis solutions, which may induce 
peritoneal fibrosis and eventual lead to PD failure. In addi-
tion, HG itself may induce a proinflammatory and profibrotic 
reaction (28). EMT has a central role in the alterations of the 
peritoneal mesothelium that lead to fibrosis and peritoneal 
failure associated with PD (29).

Accumulating evidence indicates that 1,25(OH)2D3 may 
affect organ EMT and fibrosis (30-32). A previous study 
indicated that active vitamin D effectively increased VDR 
expression and inhibited EMT in a mouse unilateral ureteral 
obstruction model (33). In addition, 1,25(OH)2D3 was reported 
to prevent the progression of pancreatic and lung cancer by 
inhibiting EMT (34,35). Furthermore, EMT was demon-
strated to occur in human peritoneal mesothelial cells due to 
the recurrent use of HG PDF, and has been associated with 
peritoneal function decline and peritoneal fibrosis (36,37). 
Therefore, we hypothesized that 1,25(OH)2D3 may have an 
effect on peritoneal fibrosis via inhibition of EMT. The present 
study employed HG PDF to reproduce the injury of perito-
neal EMT in vivo, and subsequently investigated the effect 
of 1,25(OH)2D3 on peritoneal EMT. The results demonstrated 
that PDF increased peritoneal thickness, decreased VDR 

expression, altered peritoneal morphology and the expression 
of certain EMT markers, exhibiting reduced E-cadherin levels 
and increases in α‑SMA and FN expression. The results of the 
present study indicated that 1,25(OH)2D3 has an important role 
in protecting against EMT and attenuating peritoneal thick-
ness in PD mice by binding to the VDR.

Apoptosis is important in the maintenance of normal 
homeostasis, however, changes in the physiological rate of 
apoptosis may result lead to disease (38). It was previously 
demonstrated that HG induced apoptosis in peritoneal meso-
thelial cells (12). This effect on the peritoneal homeostasis 
may lead to failure of PD (13,14). The current study demon-
strated that PDF induced apoptosis, with western blot analysis 
demonstrated a decrease in theBcl‑2/Bax ratio and an increase 
incapase-3 activity. 1,25(OH)2D3 was also observed to have an 
important role in protecting against apoptosis in PD mice.

Figure 5. Effects of 1,25(OH)2D3 on the TGF‑β/Smad pathway in high glucose 
PDF‑treated peritoneal mesothelium. (A) Representative western blot bands 
for each group. The protein expression of (B) TGF‑β and (C) p-Smad3 
were quantified using densitometry and are presented as relative intensi-
ties. Each value represents the mean ± standard error of the mean, n=5. 
**P<0. 01 vs. control; ##P<0. 01 vs. PDF. TGF, transforming growth factor; 
PDF, peritoneal dialysis fluid; Smad3, Smad family member 3; p‑Smad3, 
phosphorylated-Smad3; DL, vitamin D low dose [1 µg/kg 1,25(OH)2D3]; DH, 
vitamin D high dose [5 µg/kg 1,25(OH)2D3].
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TGF‑β is a key cytokine that is involved in EMT in 
peritoneal mesothelial cells (39). TGF‑β exerts its functions 
primarily through activation of Smad-dependent signaling 
pathways (40). The involvement of the TGF‑β/Smad pathway 
in EMT and apoptosis has been investigated extensively. A 
previous study demonstrated that vitamin D attenuated renal 
tubular cell injury by suppressing EMT and inflammation 
process via inhibition of the TGF‑β/Smad, β-catenin and 
nuclear factor-κB signaling pathways (41). The present study 
demonstrated that 1,25(OH)2D3 decreased peritoneal thick-
ness, and attenuated EMT and apoptosis in vivo, and this may 
occur via the TGF‑β/Smad signaling pathway.

In conclusion, the current study demonstrated that 
1,25(OH)2D3 may attenuate HGPDF‑induced EMT and apop-
tosis via the TGF‑β/Smad signaling pathway in the peritoneal 
mesothelium of mice. 1,25(OH)2D3 treatment in conjunction 
with HG dialysate may provide an improved solution to the 
EMT‑mediated fibrosis and peritoneal injury in the develop-
ment of PD.
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