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Abstract
Metabolomic reprogramming in tumor and stroma cells is a hallmark of cancer but understanding its effects on the metabolite 
composition and function of tumor-derived extracellular vesicles (EVs) is still in its infancy. EVs are membrane-bound sacs 
with a complex molecular composition secreted by all living cells. They are key mediators of intercellular communication 
both in normal and pathological conditions and play a crucial role in tumor development. Although lipids are major com-
ponents of EVs, most of the EV cargo studies have targeted proteins and nucleic acids. The potential of the EV metabolome 
as a source for biomarker discovery has gained recognition recently, but knowledge on the biological activity of tumor EV 
metabolites still remains limited. Therefore, we aimed (i) to compile the list of metabolites identified in tumor EVs isolated 
from either clinical specimens or in vitro samples and (ii) describe their role in tumor progression through literature search 
and pathway analysis.
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Abbreviations
AA  Amino acid
Aa  Arachidonic acid
ATP  Adenosine triphosphate
C1P  Ceramide-1-phosphate
CAF  Cancer-associated fibroblast
CD81sEV  CD81-expressing small extracellular vesicle
CDE  CAF exosome
CEA  Carcinoembryonic antigen
Cer  Ceramide
CTCL  Cutaneous T-cell lymphoma
D-2-HG  D-2-hydroxyglutarate
DAG  Diacylglycerol
EC  Endothelial cell
ELV  Exosome-like vesicle

EV  Extracellular vesicle
FA  Fatty acid
FFA  Free fatty acid
HIF-1α  Hypoxia-inducible factor-α
HNC  Head and neck cancer
HNSCC  HNC squamous cell carcinoma
ISEV  International Society for Extracellular 

Vesicles
lEV  Large extracellular vesicle
LPE  Lysophosphatidylethanolamine
MISEV  Minimal Information for Studies of Extracel-

lular Vesicles
MPE  Malignancy pleural effusion
MVB  Multivesicular body
PC  Phosphatidylcholine
PCa  Prostate cancer
PE  Phosphatidylethanolamine
PG  Phosphoglycerol
PI  Phosphatidylinositol
PS  Phosphatidylserine
sEV  Small extracellular vesicle
SM  Sphingomyelin
TCA   Tricarboxylic acid cycle
TG  Triacylglycerol
TME  Tumor microenvironment
TPE  Tuberculosis pleural effusion
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1 Introduction

Under normal and pathological conditions, most cells 
secrete a range of membrane-bound extracellular vesicles 
(EVs). Although their physical characteristics overlap, 
EVs are highly heterogeneous, and several subpopulations 
have been described. Microvesicles and exosomes are pri-
mary subtypes of EVs differentiated by their biogenesis, 
release pathway, size, content, and function [1, 2].

Initially, EV secretion was thought to be a cellular 
waste disposal mechanism. Since then, it has been clearly 
demonstrated that EVs play a key role in intercellular com-
munication by mediating horizontal transfer of diverse 
molecular content between adjacent and distal cells [3–5]. 
These delivery vehicles are excellently equipped to pro-
tect their cargo inside the lipid bilayer from extracellular 
enzymes, and they are able to cross different biological 
barriers, such as the blood–brain barrier [6, 7]. There is 
also accumulating evidence that they fulfill the two main 
criteria of the EV-mediated communication: (i) selective 
packaging of signaling content into the newly formed vesi-
cles, and (ii) selective delivery of EVs to target cells [2].

Recently, it has been recognized that metabolite con-
tent of EVs may have a prominent role in EV-mediated 
communication in tumor diseases. Despite the technical 
challenges of EV metabolite analysis, investigation of the 

EV metabolite cargo, its role in tumor progression, and 
potential in clinical diagnosis deserve further attention.

In this review, we provide insight into EV biology and the 
technical aspects of EV studies. We also describe the cur-
rent knowledge on the functional role of the EV-transferred 
metabolites in tumor progression.

2  Tumor EV biology and research

2.1  Biogenesis of EVs

Based on their biogenesis pathways, EVs are divided into 
two major classes—ectosomes (or microvesicles) and 
exosomes [5, 8, 9] (Fig. 1). The membrane budding step, a 
common feature in this pathway, is similar in both classes. In 
addition, both EV types bud away from the cytoplasm result-
ing in the same membrane orientation, which is identical to 
the orientation of the plasma membrane [12]. In the case of 
ectosomes, this budding step occurs outward at the plasma 
membrane and results in a direct release of EVs ranging 
from ~ 50 nm to 1 μm in diameter. In contrast, exosomes 
are formed as intraluminal vesicles (ILVs) through inward 
budding of endosomes, which develop into multivesicular 
bodies (MVBs). These MVBs may fuse with lysosomes for 
degradation or fuse with the plasma membrane resulting in 
the extracellular release of ILVs as exosomes (40–160 nm 
in diameter) [8]. The precise molecular mechanisms of EV 

Fig. 1  Biogenesis and isolation methods of EVs. The left side of the 
figure shows a schematic overview of the main EV biogenesis path-
ways. The bottom left of the figure shows how EVs are classified 
by biogenesis (exosomes and microvesicles) and by size (small and 
medium/large EVs), indicating the overlap in the size range of the dif-
ferent EV types. The right side of the figure shows the main isolation 

methods and the comparison of their most important indicators such 
as yield, and co-isolated contaminants [10, 11]. Abbreviations: ILV, 
intraluminal vesicle; MVB, multivesicular body; EVs, extracellular 
vesicles; SN, supernatant; UC, ultracentrifugation; DG-UC, density 
gradient-ultracentrifugation; SEC, size-exclusion chromatography. 
This figure was created at BioRender.com
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biogenesis have only recently started to be understood. The 
main driver of exosomal biogenesis is the endosomal sorting 
complex required for transport (ESCRT), but the existence 
of ESCRT-independent routes has also been proven [4, 13]. 
Despite their different biogenesis routes, intracellular mech-
anisms and sorting machineries of ectosomes and exosomes 
partially overlap. Shared features of different EVs make it 
difficult to distinguish between vesicle subpopulations [14].

2.2  Composition of EVs

EVs convey numerous proteins (e.g., tetraspanins, chaper-
ones, biogenesis factors, signaling molecules), nucleic acids 
(e.g., miRNA and other non-coding RNAs, mRNA, DNA), 
small metabolites (e.g., sugars, amino acids, vitamins), and 
lipids (e.g., phosphatidylserine, cholesterol, ceramide), 
which are all selectively packed into vesicles in a cell type-
dependent manner [14]. As EVs are distinct entities of the 
complex intercellular communication, their molecular fin-
gerprint depends on the quality and state of the donor cell, 
and it is often influenced by microenvironmental stimuli [5, 
15, 16].

2.3  EV signaling and uptake mechanisms

The mechanisms EVs used to interact with the cell sur-
face and transfer their cargo into the target (recipient) cells 
are not fully understood. Literature data suggest that these 
mechanisms depend on the origin and type of EV as well as 
the target cell [14, 17].

EVs may induce a phenotypic response in the recipient 
cell without internalization; receptor–ligand interactions 
may be sufficient to elicit signal transduction. Alterna-
tively, EVs may transfer their cargo by direct fusion with 
the plasma membrane, and they may also be internalized 
via an active endocytic process, i.e., clathrin-, caveolin-, 
and lipid raft-mediated endocytosis, macropinocytosis, or 
phagocytosis [18]. Once in the cell, intraluminal EVs may 
fuse with the endosomal limiting membrane to release their 
content into the cytoplasm and elicit phenotypic responses 
in the recipient cell [14, 18, 19].

2.4  EV terminology

Since the origin and the physical and functional character-
istics of EVs are diverse, several terms have been used for 
EVs in the literature. The prefixes micro- and nano- refer 
to their size (microvesicles, microparticles, nanovesicles, 
nanoparticles); ecto- and exo- refer to their presence out-
side the cells (ectosomes, exosomes, exovesicles). Other 
terms, such as oncosomes and tolerosomes, indicate their 
origin or function, respectively [13]. Although the nomen-
clature is continuously evolving, the International Society 

for Extracellular Vesicles (ISEV) recommends the use of 
“extracellular vesicle” as the “generic term for particles 
naturally released from the cell that is delimited by a lipid 
bilayer and cannot replicate.” They also suggest the use 
of operational terms for EV subtypes that refer to their (i) 
physical characteristics (small or medium/large EVs), (ii) 
biochemical composition  (CD81+ EVs), or (iii) conditions of 
release (hypoxic EVs) [1, 20]. Here, we use the terms found 
in the referenced articles.

2.5  Role of EVs in cancer

Exosomes and other classes of EVs are important media-
tors of cell–cell communication and play an essential role in 
cancer biology. It has long been well known that cancer cells 
secrete higher amounts of EVs than healthy cells. EVs in 
higher numbers have been detected in the plasma of cancer 
patients as well as in tumor cell cultures [21, 22].

Exosomes contribute substantially to tumor progression, 
invasion, and metastasis by horizontally transmitting a vari-
ety of surface and signaling molecules, oncogenic proteins, 
and nucleic acids to target cells, thereby altering their behav-
ior [23, 24]. For instance, locally, in the tumor microenvi-
ronment (TME), tumor-derived EVs may convey resistance 
to neighboring tumor cells. These EVs can also re-educate 
fibroblasts and mesenchymal stem cells or activate endothe-
lial cells, thereby inducing angiogenesis. Systemically, EVs 
have a crucial role in immune modulation and pre-metastatic 
niche formation [7, 25–28] (Fig. 2). However, communica-
tion is not unidirectional in tumors. On the contrary, a com-
plex, systemic communication network develops in parallel 
with the tumor evolution [29].

As mentioned above, the characteristic molecular finger-
print of small EVs (sEV), i.e., exosomes, is not independent 
of the parent/donor cell status. The metabolic status of can-
cer cells influences exosome secretion and content. Hypoxia, 
starvation, and acidosis are among the typical metabolic 
conditions that cancer cells undergo in the TME. Notably, 
all of these conditions have been shown to influence not 
only the rate of exosome secretion, but also the molecular 
composition of exosomes [30].

2.6  EV isolation and characterization methods

Before launching any investigation, one must consider the 
complexities of working with EVs. For instance, prepa-
rations obtained using isolation procedures that target 
exosomes may contain other EVs as contaminants due to the 
overlapping physical and biomolecular features of exosomes 
and microvesicles. Research guidelines for EVs are provided 
in the Minimal Information for Studies of Extracellular Vesi-
cles (MISEV) to support the transparency and reproducibil-
ity of EV studies [1].
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A standardized method for the isolation of EVs from cell 
culture supernatants or body fluids (blood, urine, saliva, etc.) 
has not yet been established. There are several alternative 
approaches to isolate and purify EVs. Important factors to 
consider when choosing a method include the type and vol-
ume of the EV source, the target EV subtype, the target EV 
yield and purity of isolates, and the downstream metabolite 
analysis technique. Depending on the isolation method and 
the EV source, abundant serum proteins (albumin, globu-
lins) and various lipoproteins (chylomicrons, HDL, LDL, 
and VLDL) as well as nucleic acids on the surface of EVs 
may contaminate the EV isolates due to their similar physi-
cal properties. These co-isolated contaminants may interfere 
with the particle number and size distribution measurements 
and mislead biomarker analyses or functional assays [10].

Previous research has shown that EV subgroups have a 
unique biochemistry and function [31, 32]. This is consistent 
with the results of Luo et al. who found that different types 
of vesicles from pleural effusions showed unique metabolic 
enrichments [33]. Isolation methods themselves may also 
modify EV composition. In prostate cancer cell line models, 
the metabolic signature varies according to the conditions 
of cell culture [34]. Due to the broad range of physical and 
chemical characteristics of distinct metabolites, it is hardly 
possible to quantify all metabolites using a single approach. 
Therefore, it is necessary to select an appropriate method for 
metabolite analysis. Gas chromatography-mass spectrom-
etry (GC–MS), liquid chromatography-mass spectrometry 
(LC–MS), and capillary electrophoresis-mass spectrometry 

(CE-MS) are the most common mass spectrometric meth-
ods used for metabolomic analyses. Additionally, in recent 
years, improved analytical techniques have emerged, such 
as ion chromatography-mass spectrometry (IC-MS) to ana-
lyze highly hydrophilic compounds [35, 36] or the capillary 
IC-MS as a selective and specific method to analyze ani-
onic metabolites [37], e.g., nucleotides, sugar phosphates, 
and organic acids. Williams and colleagues have collected 
and highlighted several practical pitfalls in the field of EV 
metabolomics research [38].

2.7  EV metabolomics

Although lipids are dominant components of EVs, the vast 
majority of the EV cargo studies have investigated the pro-
tein and nucleic acid content of EVs; only a few researches 
have analyzed the lipid or small metabolite composition 
[38]. In line with this observation, EV databases, such as 
Vesiclepedia, ExoCarta, EVpedia, or miREV, mainly con-
tain protein, mRNA, and miRNA entries with less lipid and 
metabolite data [39–42].

The composition of EVs is comparable to that of the 
source donor cells, but they are also enriched in certain 
lipids such as cholesterol, phosphatidylserine (PS), phos-
phatidylcholine (PC), and phosphatidylinositol (PI), sug-
gesting that EV may operate as cell-to-cell lipid mediators 
[43]. From a practical and clinical standpoint, studying 
the metabolomics of EVs isolated from human biofluids is 
the most suited approach, since the metabolome of these 

Fig. 2  Tumor-derived EVs have 
both local and systemic effects. 
These EVs can alter the TME, 
modulate immune responses 
and prepare distant tissue sites 
for metastasis. This figure 
shows some examples of the 
tumor EV effects. Abbreviation: 
ECM, extracellular matrix; the 
figure was created based on [28] 
at BioRender.com
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vesicles contains a goldmine of disease biomarkers. The 
EV metabolome’s potential as a source for biomarkers was 
first demonstrated by comparative metabolomics of plasma-
derived EVs from endometrial cancer patients and healthy 
controls, which revealed valuable differences in these two 
groups [44].

3  Functional role of EV‑transferred 
metabolites in cancer

Numerous studies have shown that the tumor- and tumor 
stroma-derived EVs alter the metabolism of the recipient 
cells. Several studies highlight the differences in the metabo-
lite profile of EVs between diseased and normal states as 
well as between various stages of tumors and/or suggest 

biomarkers for diagnosis, prognosis, or treatment schedule 
choice [45, 46]. At the same time, the knowledge on the 
biological activity of tumor EV metabolites remains limited. 
The primary aim of this review is to collect this knowledge 
focusing on the role of EV metabolites in tumor progression. 
We collected a list of metabolites identified in tumor EVs 
isolated from either clinical specimens or in vitro samples 
(Fig. 3) and describe their functional effects according to 
main metabolite types.

3.1  Amino acids, amines, and their derivatives

3.1.1  Amino acids

Amino acids (AA) present in the metabolome of EVs have 
been investigated in both in vitro and ex vivo experiments. 

Fig. 3  Summary Venn diagram 
of EV metabolites. The figure 
summarizes the metabolites 
identified in the literature 
according to their  source and 
expression. The top of the 
figure shows the sources of the 
EVs investigated in the differ-
ent studies, and the identified 
metabolites are shown at the 
bottom. The different colors and 
font styles indicate the expres-
sion state of metabolites. The 
figure was created using GIMP
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In these studies, both cell culture supernatants and patient-
derived biofluids such as urine, serum, or plasma have been 
used as sources of EVs.

Recent findings indicate that the AA content of EVs 
secreted by the cells may be a source of nutrients for the 
recipient cells by entering into different metabolic pathways 
or by acting on cell motility and proliferation through other 
pathways. The results of Onozato et al. revealed that certain 
AAs—histidine, arginine, glutamine, cysteine, lysine, and 
tyrosine—are significantly enriched in the exosome-eluted 
fraction from healthy human serum, but no functional analy-
ses were performed [47].

Numerous studies have reported the increased expression 
of AAs or their derivatives in tumors, but so far, no clear 
consensus on a shared set of AAs across various malignan-
cies has been achieved. Palviainen and colleagues observed 
that proline was upregulated in all EVs derived from pros-
tate cancer (PCa), cutaneous T-cell lymphoma (CTCL), 
and colon cancer (CC) cell lines (PC3, Mac-2A, RKO) 
when compared to their respective controls [48]. Proline is 
a unique AA that plays a key function not only in protein 
biosynthesis but also in cancer metabolism as a regulatory 
AA. Altered proline biosynthesis in tumor tissue leads to 
increased proliferation and biomass production [49, 50]. 
During the degradation of proline, the p53 gene-induced 
proline dehydrogenase/proline oxidase pathway produces 
adenosine triphosphate (ATP) for autophagy and reac-
tive oxygen species (ROS) for apoptosis [51]. Surazynski 
et al. have shown that proline can inhibit the degradation 
of hypoxia-inducible factor-α (HIF-1α) via the von Hippel-
Lindau protein-dependent proteasomal pathway [52]. HIF-
mediated pathways have a significant impact on metabolic 
response, erythropoiesis, angiogenesis and vascular tone, 
cell proliferation and differentiation, survival, and apoptosis; 
thus, they are crucial factors in cancer [53].

Luo and colleagues compared the metabolic profile of 
large EVs (lEVs) and sEVs in malignancy pleural effusion 
(MPE) and tuberculosis pleural effusion (TPE) samples [33]. 
In the lEV samples, more AAs were decreased in MPE, such 
as phenylalanine, tryptophan, leucine, valine, ornithine, 
and betaine; in contrast, threonate and glutaric acid were 
elevated in the MPE lEV samples. Luo and colleagues have 
identified a relationship between these metabolite variations 
in lEVs and biological and clinical parameters. The levels 
of carcinoembryonic antigen (CEA) and pleural adenosine 
deaminase show significant correlations with different AA 
levels in lEVs, but this correlation was moderate in sEVs 
[33]. Aspartate, a metabolite that plays an important role in 
protein synthesis and is a precursor of cell signaling mol-
ecules, has been found in MPE EVs [33].

Altadill et al. have identified significant amounts of AAs 
and AA derivatives in sEVs isolated from the supernatants 
of the PANC1 human pancreatic carcinoma cell line [44]. 

Although they did not perform functional assays, the mol-
ecules identified have previously been shown to be involved 
in tumor development and metabolic pathways. Aminoadipic 
acid is a well-known intermediate in the synthesis of acetyl-
CoA; therefore, it is closely linked to the tricarboxylic acid 
(TCA) cycle and cellular energy balance [54]. Aminoadipic 
acid plays a role in the synthesis of lysine, various modi-
fications of which may contribute to tumor development 
through several metabolic pathways [55]. Aminoadipic acid 
is also known to have direct effects on various cells, such as 
enhancing glial cell migration and glioblastoma aggressive-
ness [56, 57].

Other studies have also pointed to the involvement of the 
TCA cycle. Palviainen et al. investigated the effect of the 
biochemical composition of lEVs and sEVs isolated from 
supernatants of two prostate cancer cell lines (PCa, VCaP) 
in silico and found that AAs present in vesicles mainly affect 
the TCA cycle, thereby providing energy to fuel the inten-
sive metabolism of the rapidly dividing recipient tumor cells 
for [34]. Zhao et al. have shown that cancer-associated fibro-
blasts (CAFs) secrete exosomes to regulate the metabolism 
of recipient cancer cells [58]. They detected particularly high 
levels of glutamine, arginine, glutamate, proline, alanine, 
threonine, serine, asparagine, valine, and leucine in prostate 
CAF-derived exosomes (CDEs). Additionally, in pancreatic 
CDEs, they found high levels of glutamine, threonine, phe-
nylalanine, valine, isoleucine, glycine, arginine, and serine 
[58]. Zhao et al. provided a compelling proof-of-concept that 
AAs in CDEs can supply TCA cycle metabolites to cancer 
cells under both complete and nutrient-deprived conditions. 
Using isotope tracing, they demonstrated that these metabo-
lites are used as precursor metabolites by the recipient can-
cer cells for proliferation and also to restore the levels of the 
TCA cycle metabolites [58].

Puhka et al. isolated lEVs and sEVs from serum and urine 
samples of healthy volunteers and PCa patients and detected 
a high concentration of ornithine in PCa urine and plasma 
EVs in contrast to healthy EVs [59]. Their results emphasize 
the importance of the non-proteinogenic AA ornithine in 
addition to the proteinogenic AAs discussed above. Ornith-
ine has previously been described as an important precursor 
of polyamines, which show elevated levels during carcino-
genesis [59]. Gökmen et al. found that ornithine levels can 
be useful to distinguish patients with malignant skin tumors 
from healthy subjects [60].

Vallabhaneni et al. have directly investigated the effect 
of sEVs secreted by patient-derived mesenchymal stem 
cells on MCF-7 breast tumor mouse xenograft models [61]. 
Their findings showed that sEV treatment accelerated tumor 
growth compared to the control group. They hypothesized 
that—among other factors—the high concentrations of glu-
tamic acid determined in sEVs may enhance cell prolifera-
tion, as glutamine can not only contribute to the TCA cycle 
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but can also serve as a carbon and nitrogen source for all 
major macromolecules [61].

3.1.2  Amines

In addition to ornithine, Puhka et al. found elevated levels of 
an aliphatic polyamine called spermidine in PCa EVs. The 
high amount of spermidine may be caused by the high activ-
ity of the enzyme ornithine decarboxylase, the rate-limiting 
enzyme in the polyamine synthase pathway [59]. Various 
studies have shown that polyamine biosynthesis is upregu-
lated in actively growing cells, including cancer cells. The 
elevated level of polyamines in the TME has a role in cancer 
cell transmigration into the circulation leading to metastasis 
formation and helps cancer cells escape recognition by the 
immune system [62]. N,N-Dimethylaniline, a member of the 
amines group, has been detected in serum-derived exosomes 
from head and neck cancer (HNC) patients [45].

3.1.3  Derivatives

Clos-Garcia et al. found increased levels of acylcarnitines 
(the acetylated forms of L-carnitine) in the urinary EVs from 
PCa patients [63]. Puhka and coworkers previously sug-
gested that variable carnitine levels in PCa EVs correlated 
with a metabolic shift towards β-oxidation of fatty acids 
(FA) [59]. Altadill et al. have shown the presence of N-ara-
chidonyl L-serine in plasma exosome-like vesicles (ELVs) 
obtained from patients with endometrioid adenocarcinoma 
[44]. N-arachidonyl L-serine has been found to promote cell 
migration, proliferation, and angiogenesis [64].

3.2  Lipids

Lipids are a main class of biological compounds with a wide 
variety of structural and signaling roles. Apart from sterols, 
most lipids have hydrophobic side chains and polar head 
groups, and the rich lipid diversity is the result of different 
combinations of side chains and head groups. Despite their 
comparable molecular complexity, there is a better under-
standing of the function of proteins than that of lipids, which 
are called as the “Cinderellas” of cell biology by Muro et al. 
[65].

Exosomes predominantly contain lipids, including diglyc-
erides, sphingolipids, phospholipids, and phosphoglycerolip-
ids, and they are enriched in specific lipids, such as choles-
terol, PS, PC, and PI, which may function as cell-to-cell lipid 
mediators [43]. Exosomes may also carry specific bioactive 
lipids, including leukotrienes and prostaglandins [66].

There is accumulating evidence that the lipid content of 
EVs and parental cells differ; for instance, elevated levels 
of diacylglycerols (DAG), ceramides (Cer), sphingomyelin 
(SM), PC, phosphatidylethanolamines (PE) and FA were 

detected in EVs [31, 67, 68]. In line with this, Luo et al. 
identified phosphoglycerolipids, sphingolipids, and glyc-
erolipids as major differential lipid species in lEVs and sEVs 
when comparing TPE with MPE enrichment of specific lipid 
metabolites in EVs may affect the cellular function of target 
cells and reflect the metabolic state of parent cells [33].

Lipids have a key role in the production and biological 
functions of EVs [33]. Sphingolipids, such as Cer, are criti-
cal not only in the formation and release of EVs [69], but in 
the regulation of cell survival and inflammation as well [70]. 
SM, PS, PC, PI, and cholesterol may occur in four times 
higher amounts in EVs than in parental cells, which contrib-
utes to the increased membrane rigidity of exosomes, and 
their role in the recognition and internalization of exosomes 
[43].

3.2.1  Fatty acids

Paolino et al. showed that FA and protein compositions of 
plasma-derived sEVs from stage 0–I, II, and III–IV mela-
noma patients could reflect disease stages. FA analysis of 
CD81-expressing sEVs (CD81sEVs) revealed that several 
FA species are more abundant in EVs obtained from can-
cer patients than those from healthy donors. They also dis-
cussed the role of these FAs in disease progression [46]. 
For instance, higher levels of lauric (C12:0) and myristic 
(C14:0) acids in stage II and III–IV CD81sEVs may result 
from the accelerated metabolism of advanced cancer [71]; 
also, higher oleic acid (C18:1) levels in stage II and III–IV 
may increase membrane fluidity supporting the adhesion 
and migration, since the correlation between C18:1 and the 
metastatic potential has already been established [72].

Elevated levels of saturated FAs (FA 18:0) were observed 
in MPE EVs compared to EVs in TPE [33], and FAs can also 
be used to provide energy through β-oxidation and accelerate 
lung tumorigenesis [73].

Wojakowska and colleagues detected heptanoic acid in 
serum exosomes, but not in whole serum from HNC cancer 
patients. However, there were no significant differences in 
heptanoic acid levels of the vesicles between the healthy 
controls and pre-treated and post-treated cancer samples 
[45].

According to Schlaepfer et al., EVs may support growth 
following reoxygenation in a survival response of prostate 
cancer cells to hypoxic stress. Palmitic and oleic FAs trans-
ferred by hypoxic EVs may serve a dual purpose; they can 
be used for membrane synthesis and ATP generation as they 
are built into phospholipids or utilized as fuel in the mito-
chondria in the oxygenated recipient cells in the periphery 
of the tumors. This way, hypoxic PCa EVs may contribute 
to the overall aggressiveness of the tumor [74].

Other FAs in EVs, e.g., arachidonic acid (Aa), can also 
be delivered to intracellular membrane-localized enzymes, 
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which enable bioactive lipid generation and stimulate growth 
and motility of the target cells [74]. Indeed, Aa is the pre-
cursor of important proliferative and inflammatory modu-
lators, e.g., eicosanoids and prostaglandins [63]. However, 
Clos-Garcia et al. found reduced levels of Aa in PCa urine 
EVs [75]. They hypothesized that the increased metabolism 
resulted decreased vesicular Aa levels, as elevated concen-
trations of its metabolic products (prostaglandin E2,  PGE2; 
12-hydroxyeicosatetraenoic acid, 12-HETE) were detected 
in malignant prostatic tissue [76, 77]. These studies high-
light the significant role of EVs in Aa metabolism and PCa 
development.

In general, the potential of FAs, such as Aa to support 
cancer progression, has been reported in several previous 
papers [78–82]. For instance, Liu et al. have found increased 
serum levels of free fatty acids (FFA), Aa, linoleic acid 
(LA), and 15-HETE in lung adenocarcinoma patients. The 
group concluded that there is considerable basic evidence 
supporting the contribution of FFAs in tumor development 
and progression in lung cancer [83]. In PANC1 human 
pancreatic carcinoma cell-derived ELVs, the presence of 
15-HETrE was shown and Pham et al. highlighted that this 
polyunsaturated FA participates in tumorigenesis and modu-
lates Aa metabolism [84].

3.2.2  Sphingolipids, glycerophospholipids, 
and triacylglycerols

Several studies have investigated the lipid composition 
of cancer EVs. Altadill et al. have shown that ELVs iso-
lated from the plasma of healthy controls or patients with 
endometrioid adenocarcinoma have significant amounts 
of glycerophospholipids (probably due to the exosomal 
membrane) and sphingolipids (29% of the total metabolite 
cargo of ELVs). They listed PI (16:0/22:4), PE (22:2/16:1), 
galactosylceramide (GalCer) (d18:2/16:0), glycerophos-
phocholine (GPCho) (18:0/14:0), or triacylglycerol (TG) 
(12:0/12:0/20:5) as the abundant lipids. In addition, the pres-
ence of phosphoglycerol (PG) (16:0/16:0), a precursor of 
cardiolipin, was validated and highlighted in plasma ELVs 
[44]. Cardiolipin is located in the inner membrane of mito-
chondria, and its concentration and distribution changes in 
mitochondria were observed in several diseases, including 
cancer [85].

In the study of Altadill et al., the metabolome of PANC1 
pancreatic cell line-derived ELVs was also dominated by 
glycerophospholipids and sphingolipids with a proportion 
of 56% [44].

Lipids are sensitive biomarkers of pathophysiological 
changes. Significantly increased levels of several lysophos-
phatidylethanolamines (LPE), Cer, and PC were observed in 
MPE EVs compared to TPE vesicles [33]. Previous studies 
revealed that these lipids play a critical role in the immune 

response, cellular signaling, and proliferation. For instance, 
Kachler et al. found that Cers are related to metastasis and 
immune evasion in lung cancer [86]. Similarly, Luo et al. 
revealed an association between the levels of most PCs, PIs, 
and SMs and the clinical parameters of CEA and others [33]. 
CEA is an important tumor marker for colorectal and other 
carcinomas and plays a role in cell adhesion, signal trans-
duction, and innate immunity [87]. The close relationships 
described by Luo et al. also suggest that the metabolites 
investigated are suitable for phenotypic characterization of 
MPE and TPE [33].

In the same study, more TGs were found in MPE EVs 
compared to EVs of TPE samples [33]. TGs are considered 
to be the main energy storage molecules, and elevated levels 
of TGs have also been observed in lung cancer tissues [88]. 
Additionally, 12 metabolites including PEs, DAGs, hexa-
Cer, malic acid, and palmitic acid were elevated in MPE-
lEVs. In general, more sphingolipids and glycerophospholip-
ids were enriched in lEVs, while more FAs and glycolipids 
were enriched in sEVs. In addition, unique metabolic enrich-
ment signatures were found both in TPE and MPE EVs pro-
viding the opportunity to track the unique biogenesis and 
function of the two EV subgroups in TPE and MPE [33].

DAGs are important messenger molecules in intercellular 
communication [89]. Nishida-Aoki et al. have shown that 
unsaturated DAGs are enriched in EVs from highly meta-
static breast cancer. They also proved that the biological 
activity of the EVs to induce protein kinase D (PKD)/PKCµ 
phosphorylation in endothelial cells leads to neoangiogen-
esis. As DAG-mediated PKC activation occurs in many 
other cancer-related functions, such as cell proliferation and 
immune reactions, they concluded that DAG in cancer EVs 
may contribute to the EV-mediated education of the recipi-
ent cells to support tumor progression [90].

Clos-Garcia et al. found a selective decrease of Cers in 
urine EVs that correlates with PCa aggressiveness suggest-
ing that Cers may have both cell-autonomous and non-cell-
autonomous functions to limit cancer progression [63]. Kuc 
et al. showed that ceramide-1-phosphate (C1P) is a modu-
lator of pancreatic cancer stem cell (PCSC) migration and 
fibronectin-specific based adhesion. They also identified 
pancreatic ductal adenocarcinoma (PDAC) cells as a source 
of C1P and concluded that C1P-containing EVs might 
recruit PCSCs to sustain tumor growth and C1P release 
could be a mechanism that facilitates tumor progression 
[91].

Kelleher et al. reported that PS-expressing EVs derived 
from ascites fluids and solid tumors of ovarian cancer 
patients induce a rapid and reversible arrest of the T cell 
receptor signaling in the CD4 + and CD8 + T cells through 
a DAG kinase-mediated inactivation of DAG. This finding 
offers therapeutic strategies, such as targeting PS-expressing 
EVs or the application of anti-PS antibodies or DAG kinase 
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inhibitors (DGKi), which may enhance the patients’ T-cell 
responses to their tumor [92].

The lipid content of EVs has a crucial role in the adap-
tive response of tumors as well. Jung et al. found that phos-
pholipid signatures of tumor EVs are related to gefitinib-
resistance in non-small-cell lung cancer cells [93]. As a 
survival response to hypoxic stress, human PCa cells and 
EVs accumulate triglycerides, which support growth fol-
lowing reoxygenation [74].

3.2.3  Cholesterol and steroids

Cholesterol levels in EVs have been extensively studied 
using a wide range of experimental methods, and findings 
indicate that cholesterol is essential for the biogenesis, secre-
tion, membrane stability and uptake of the vesicles as well 
[94]. As cholesterol is involved in the entire journey of EVs, 
it has a fundamental role in the EV-mediated signaling as 
well.

The human SOJ-6 pancreatic tumor cell-derived 
exosomes were shown to induce (glyco)protein ligand-
independent apoptosis and inhibit the Notch-1 pathway in 
differentiated carcinoma cells, which indirectly favors the 
growth of undifferentiated tumor cells [95]. Beloribi et al. 
hypothesized that SOJ-6 exosomes interacted with tumor 
cells through cholesterol-rich membrane microdomains and 
exosomal lipids were the key elements to induce apoptosis. 
Through designing Synthetic Exosome-Like Nanoparticles 
(SELN) based on the lipid composition of SOJ-6 exosomes 
enriched in cholesterol and SM and depleted in phospho-
lipids, they proved the role of lipids (i) in the interaction of 
SELNs and tumor cells and (ii) in induced cell death with 
inhibition of the Notch-1 pathway [96].

Clos-Garcia et al. detected an elevated level of dehydroe-
piandrosterone sulfate (DHEAS), an intermediary metabolite 
of androgen synthesis, in PCa urinary EVs, which suggests a 
potential role for EVs in androgen signaling in neighboring 
or distal cells [63].

3.3  Carbohydrates, carbonic acids

3.3.1  Carbohydrates

Tumor cells possess an extraordinary capacity to regulate 
their energy metabolism as part of their tumor survival strat-
egies [97]. One of the primary metabolic features of tumor 
cells is the Warburg effect, also known as aerobic glycoly-
sis, which is characterized by an elevated rate of glycolysis 
even in the presence of oxygen. A large amount of glycolytic 
intermediates might be used to satisfy the metabolic require-
ments of proliferating cells [98].

Puhka et al. studied the metabolic profile of platelet- and 
urinary-derived EVs from PCa patients, and in both EV 

samples they observed a high concentration of D-ribose 
5-phosphate, which is a major product of the cytosolic 
pentose-phosphate pathway and a key precursor for  NAD+ 
and nucleotide biosynthesis [59]. Additionally, not only the 
D-ribose 5-phosphate concentration was increased in EVs, 
but also enzymes related to the pentose-phosphate pathway, 
such as glucose-6-phosphate dehydrogenase, transketolase, 
and transaldolase [99]. Numerous studies have demonstrated 
that the pentose-phosphate pathway serves an essential role 
for a cancer cell growth regulation and that the enzymes and 
metabolites delivered by EVs may contribute to the intense 
proliferation and cancer progression [100].

Furthermore, Wojakowska and colleagues studied the 
metabolic profiles of serum and serum-derived exosomes 
in HNC patients. Forty-six metabolites were identified in 
serum-derived exosome samples, including levoglucosan 
and 2,3-diphosphoglyceric acid. Metabolites that were 
detected in cancer but not in control samples were associ-
ated with energy metabolism [45].

3.3.2  Carbonic acids

Vallabhaneni et al. [61] found lactic acid in EVs secreted by 
mesenchymal stem/stromal cells from patients. The pres-
ence of lactic acid in the TME was shown to be linked to 
the improved capacity of tumor cells to withdraw hypoxic 
and nutrient-deprived core environments. Moreover, low pH 
caused by lactic acid is a known strategy of cancer cells to 
evade immune surveillance [101]. It is also worth mention-
ing that low pH, which is one of the hallmarks of cancer, 
enhanced exosome release and uptake in a melanoma cell 
line model [102].

Oncometabolites are common cellular metabolites that 
show abnormal accumulation in malignancies in comparison 
to non-proliferating cells and possess pro-oncogenic proper-
ties. These compounds are the products of cancer cell gene 
mutations or hypoxia-driven enzyme promiscuity. Accu-
mulation of these oncometabolites in cancer cells results in 
metabolic and epigenetic changes, post-translational modi-
fications, and other tumor-promoting effects [103]. Succi-
nate, D-2-hydroxyglutarate (D-2-HG), L-2-hydroxyglutarate 
(L-2-HG), and fumarate are the four oncometabolites iden-
tified so far. All four oncometabolites are produced in the 
mitochondria (during TCA cycle) and can induce compara-
ble changes in cancer cells, such as hypermethylation and 
pseudohypoxia, which results in metabolic and epigenetic 
changes, post-translational modifications and other tumori-
genic characteristics [48].

Succinate, together with the three other oncometabolites, 
is a small molecule that accumulates in cancer cells as a 
result of gain-of-function or loss-of-function mutations in 
genes encoding energy metabolism enzymes. Elevated levels 
of succinate were measured in EVs from prostate, CTCL, 
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and CC cell lines (PC-3, Mac-2A, RKO) compared to their 
respective control EVs (PNT2, PBMC, CCD841) [48]. In 
addition, succinate promotes tumorigenesis through a num-
ber of ways, such as generating epigenetic modifications and 
increasing cancer cell angiogenesis, invasion, and migration 
[104, 105]. Elevated levels of succinate levels have been 
found in cancer tissues, and biofluids of patients with vari-
ous malignancies, including prostate and colorectal cancer 
[106], and hepatocarcinoma.

TCA cycle intermediates such as succinate, fumarate, 
and L-2-HG can alter the response of both the innate and 
adaptive immune systems. Through inhibition of histone 
and DNA demethylases, 2-HG and fumarate can also alter 
the epigenetic landscape of cells [107]. Endogenous fuma-
rate was reported to suppress GAPDH via succination in 
macrophages [108]. Succinate, fumarate, and L-2-HG can 
inhibit prolyl-hydroxylases (PHDs) in normoxic environ-
ments leading to a pseudohypoxic state [109]. Inhibition of 
PHD enzymes results in stabilization of HIFs [110]. The HIF 
system plays a critical role in the regulation of a broad range 
of cellular and systemic responses to hypoxia. Thus, HIF-
mediated pathways affect metabolic adaptation by increasing 
glucose uptake, lactate production, while decreasing respi-
ration. HIF1α is a key regulator of EV production under 
hypoxia [111, 112].

Zhao et al. reported elevated lactate and acetate levels in 
both prostate and pancreatic CDEs [58]. Moreover, inves-
tigation of intra-exosomal metabolites revealed high citrate 
and pyruvate concentrations, as well as the significant pres-
ence of α-ketoglutarate, fumarate, and malate. These metab-
olites together with others – such as AAs – can replenish 
TCA cycle metabolites, and act as a source for lipid biosyn-
thesis. Pyruvate is converted to acetyl-CoA by mitochondrial 
pyruvate dehydrogenase (PDH), while acetate is transferred 
into cells and transformed to acetyl-CoA through acetyl-
CoA synthase [113–116]. Acetyl-CoA is the first step in 
lipid biosynthesis, which helps proliferating cells meet their 
biosynthetic needs. Recent findings implicate that exosomes 
of the TME can participate in the induced metabolic rewir-
ing in cancer cells [117–119].

3.4  Adenosine and other purine metabolites

Extracellular adenosine can be produced by cells, or it can 
be generated from extracellular ATP. Adenosine has an 
extremely short half-life (10 s) in the extracellular envi-
ronment due to its quick uptake by cells and irreversible 
conversion to inosine [120, 121]. Considerable research has 
been conducted in the last few years on the diverse roles 
and associated mechanisms of extracellular adenosine sign-
aling. Extracellular adenosine has a wide variety of effects 
on cell cycle control, immunoregulation, and cytokine 
regulation via both direct and indirect processes, eventually 

contributing to the development of malignant diseases [122]. 
Adenosine has been detected in urinary EVs from prostate 
cancer patients [59]. Sayner et al. have demonstrated that 
EVs encapsulate cAMP to offer a second messenger com-
partment [123]. Ludwig et al. have recently reported that 
exosomes from HNC squamous cell carcinoma (HNSCC) 
cell lines contain cAMP and adenosine as well as adeno-
sine metabolites, i.e. inosine, hypoxanthine and xanthine. 
This exosomal repository of adenosine and inosine pro-
vides a unique and key pathway for the distal transport of 
these purines. By shielding them from the quick uptake and 
metabolism, exosomes can shuttle adenosine and inosine 
across cells, tissues, and organ systems. Ludwig and col-
leagues demonstrated that exosomes from HNSCC culture 
supernatant contain a variety of purine metabolites, the 
most abundant of which are adenosine and inosine. Purine 
metabolites, including adenosine, were much more abundant 
in exosomes isolated from the plasma of HNSCC patients 
than in exosomes obtained from normal donors. Exosomes 
from patients with early-stage illness and no lymph node 
metastases had considerably higher levels of adenosine 
and 5'-GMP. At the same time, exosomal levels of purine 
metabolites were reduced in patients with advanced cancer 
and nodal involvement. Decreased purine concentration in 
circulating exosomes may be the result of purine metabolites 
being primarily used for cellular maintenance and prolifera-
tion in metastatic tumor cells instead of being packaged into 
exosomes and exported outside of the cell. This suggests 
that the molecular composition of tumor-derived exosomes 
and circulating exosomes is quantitatively and, possibly, 
qualitatively different in advanced stages compared to early 
malignancies [124].

Clayton and colleagues demonstrated that exosomes pro-
duced by several cancer cell types have a high capacity for 
ATP and 5’-AMP phosphohydrolysis, which is partly attrib-
uted to the exosomal expression of CD39 and CD73 [125]. 
Exosomes can carry out both hydrolytic steps sequentially to 
convert extracellular ATP to adenosine. Exosome-produced 
adenosine can induce a cAMP response in adenosine  A2A 
receptor-positive but not  A2A receptor-negative cells.

A recently discovered pathway, the adenosine  A2B recep-
tor-mediated signaling for exosome-induced angiogenesis 
contributes to the reprogramming of endothelial cells (ECs) 
to an angiogenic phenotype by direct interaction, and also 
to the reprogramming of other cell types found in the TME, 
such as macrophages [126]. As previously described,  A2B 
receptor stimulates the growth of ECs, induces angiogen-
esis, leads to VEGF production and upregulation of eNOS in 
ECs, and stimulates macrophages to release pro-angiogenic 
factors [127].

Tadokoro et al. showed another mechanism leading to an 
increase in extracellular adenosine levels, in which perforin 
secreted by CD8 + cytotoxic T cells disrupts the membrane 
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of breast adenocarcinoma-derived EVs, and adenosine pas-
sively diffuses out. Adenosine from EVs acts as an immuno-
suppressive metabolite by binding to the adenosine receptor 
and inhibits perforin secretion by cytotoxic T lymphocytes 
[128].

Hypoxanthine, a purine derivative, is a potential interme-
diate in the metabolism of adenosine and also in the synthe-
sis of nucleic acids. Glyceraldehyde 3-phosphate (G-3-P) is 
an intermediate in glycolysis. Luo and colleagues detected 
elevated levels of hypoxanthine and G-3-P in the lEVs in 
the MPE in comparison to lEVs of TPE [33], which may 
indicate accelerated glycolysis and nucleic acid formation.

However, Ronquist et  al. reported that human semi-
nal prostasomes contain glycolytic enzymes [129]. They 
detected the full set of glycolytic enzymes in PCa cell-
derived exosomes and observed that both types of vesi-
cles were capable of producing ATP when substrates were 
available [130]. Moreover, they reported a marked distinc-
tion between the high ATPase activity of prostasomes and 
the low ATPase activity of a malignant cell (PC3)-derived 
exosomes, which leads to a larger net gain of ATP in these 
latter exosomes. In contrast to prostasomes, the net ATP gain 
of metastatic PCa cell line exosomes was considerable due to 
their downregulated ATPase activity. This group also found 
that normal and prostate cancer cells uptake EVs (prostas-
omes and PC3 exosomes) in an energy-dependent manner. 
This uptake mechanism required a continuous glycolytic flux 
and extracellular ATP production by EVs and/or intracellu-
larly by recipient cells in conjunction with the presence of a 
functioning vacuolar-type H( +)-ATPase (V-ATPase) [130].

3.5  Other metabolites

Few additional compounds in HNC serum-derived EVs were 
found to be markedly downregulated compared to healthy 
controls. These include citric acid, 4-hydroxybenzoic acid, 
and propylene glycol, while 1-hexadecanol was markedly 
upregulated. A few other metabolites, 1,1-dimethoxyhep-
tane, oxoadipic acid, paramethadione could only be detected 
in EVs, but not in whole serum samples [45].

Folate (B9 vitamin) as a cancer-associated metabolite 
was identified in greater amounts in CTCL and in PCa cell 
line-derived EVs compared to control EVs [48]. Along with 
folate, overexpression of pantothenic acid (B5), niacin (B3), 
thiamine (B1), and pyridoxine (B6) may boost one-carbon 
metabolism directly or indirectly through their roles as coen-
zymes, hence promoting cancer development [131]. One-
carbon units are required for nucleotide synthesis, methyla-
tion, and reductive metabolism, all of which contribute to the 
rapid proliferation of cancer cells. Also in cell line-derived 
EVs from PCa and CTLC, Palviainen et al. have detected 
elevated levels of creatinine [48].

3.6  Pathway analysis of EV metabolites

In order to explore the relationship between metabolites 
found in the literature and the pathways potentially involved, 
we performed pathway analyses (Fig. 4). This involved a 
total of 62 metabolites obtained from the processed litera-
ture, and 28 of these metabolites were strongly associated 
with 15 different pathways. These pathways are mainly those 
related to AAs, but significant associations were also found 
for glutathione, glyoxylate, dicarboxylate metabolism, TCA 
cycle, pantothenate and CoA biosynthesis.

In many cases, metabolites in the same column are subse-
quent steps in a metabolic pathway based on MetaboAnalyst. 
For example, in arginine biosynthesis glutamate is converted 
into ornithine in four steps, which in turn is converted into 
arginine in two steps (with the addition of aspartate). Dur-
ing the reaction, fumarate is released as a side product. The 
metabolism of glutathione serves as another example, in 
which glutathione is synthesized using cysteine, glutamate 
and glycine in subsequent steps, and then reacts with orni-
thine and spermidine to form trypanothione. With regard to 
carbohydrate metabolism, succinate, fumarate and citrate are 
associated with the TCA cycle, in which these molecules act 
as both substrates and products.

These results show a predominance of pathways associ-
ated with AA metabolism, but this analysis has serious limi-
tations. For example, the metabolites from different sources 
were examined using different methods. The outcome of the 
pathway analysis is strongly influenced by the fact that most 
functional metabolomics studies have explicitly focused on 
AAs, resulting in a high number of AAs and their associ-
ated pathways. Nevertheless, the results suggest that non-
AA metabolites transported by EVs may also play a role in 
amino metabolism. In addition, the results reveal that certain 
metabolites, such as glutamine/glutamate, may exert a wide 
range of effects on the metabolism of recipient cells entering 
a number of pathways.

4  Conclusion and future directions

The stroma is a dynamic environment that is constantly 
evolving. Tumor-stroma interactions alter the microenviron-
ment, making it more permissive towards cancer cells [132, 
133]. Throughout the course of carcinogenesis, tumor cell 
hierarchies and various cellular components in the microen-
vironment co-evolve [134].

Understanding how cancer cells interact with the TME is 
critical for designing medicines that can halt tumor devel-
opment and spread. Several studies have demonstrated that 
sEVs can facilitate communication between cancer cells and 
stromal cells inside the TME [135, 136]. EVs have emerged 
as a crucial mode of communication between different cell 
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types in the TME. EVs transfer information across cells and 
reprogram the recipients [23, 24, 137]. In other words, cur-
rent research indicates that EVs have the capacity to influ-
ence recipient cell proliferation, survival, and immune effec-
tor status [25–28].

It is also important to note that cancer changes cell 
metabolism. Typical metabolic conditions in the TME 
include hypoxia, starvation, and acidosis [133, 138]. The 

metabolic rewiring alters the secretion rate and metabo-
lite content of cancer-derived EVs as well, but this cargo 
remains poorly characterized. Most of the current studies 
focus on the analysis of RNA [139, 140], or protein pro-
files [31] of EVs and related effects, and little is known 
about their metabolite cargo and function in recipient cells, 
which makes this field a fresh area of vesicle research.

Fig. 4  A matrix representa-
tion of metabolites and their 
associated pathways. Shades of 
red indicate the P values, which 
refers to the significance level 
of the association with different 
pathways. The significance 
increases from left to right of 
the graph. From top to bot-
tom, the number of pathways 
associated with a metabolite 
decreases. The figure was cre-
ated using RAWGraphs and 
GIMP
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Metabolites of EVs from human body fluids represent a 
goldmine of tumor biomarkers. However, the lack of a con-
sensual approach for the separation of EVs is one a major 
obstacle to the advancement of EV research. In addition, 
the metabolite profile of EVs are potentially influenced by 
pre-analytical factors including external (storage, handling, 
analysis method) and internal (enzyme activity, sample 
contamination) factors. This may also account for the het-
erogeneity of experimental outcomes in EV research, since 
single or multiple EV subtypes with varying compositions 
and purities reveal method-dependent EV content and func-
tion. Given the wide range of constantly evolving EV isola-
tion techniques, analysis methods, and applications avail-
able, MISEV2018 was unable to provide standard protocol 
recommendations yet. In our conclusion, there is not a gold 
standard method, which is optimal for all sample types and 
volumes, EV subtypes, and budgets. The use of EV-TRACK 
[141] may help choose the most advantageous method for 
EVs isolation and characterization.

There are several gaps in the knowledge on the effects 
of metabolites from cancer EVs. This review aimed to col-
lect the current results on the biological activity of tumor 
EV metabolites (Fig. 3, Fig. 4). Innovative metabolomics 
technology, methods and their applications in clinical phar-
macology have made significant progress during the last few 
years. The study of EV metabolites has shown remarkable 
potential and provides a new perspective in understanding 
cancer progression. Once methodologies are standardized, 
this knowledge will serve as a novel tool to identify new 
diagnostic biomarkers of cancer, to explain pathological 
mechanisms, to find possible therapeutic targets, to predict 
the biochemical and physiological effects of therapies, and 
to aid following up treatments of cancer.

It is important to note that investigating one or a few mol-
ecules in a subgroup of EVs allows only a partial insight into 
the functional role of the studied EV population. In contrast, 
analysis of the whole EV molecular pattern of the whole EV 
set would provide more relevant results. This approach has 
recently been applied in clinical studies for tumor diagnostic 
purposes [142–144].

5  Methodology

This review is based on 95 articles related to the metabo-
lomic research of EVs. The publications on the metabo-
lomics of tumor EVs were selected based on the follow-
ing criteria: (a) any type of EVs were investigated, (b) EVs 
were isolated by any method, (c) source of EVs were either 
ex vivo or in vitro samples, (d) ex vivo samples were tumor 
tisssues, CAFs, stromal cells or different body fluids of can-
cer patients (e) in vitro samples were tumor cell lines, (f) 
methods and equipment used in metabolomics studies were 

not necessarily identical across the studies. In some studies, 
metabolomic analyses were not accompanied by functional 
assays. In these cases, information on the potential tumor/
metabolome-related effects of the molecule in question was 
gathered from other, non-EV-related research.

Based on the literature, pathway analyses were performed 
using MetaboAnalyst 5.0 software with the Kyoto Encyclo-
pedia of Genes and Genomes database. Pathway enrichment 
and pathway topology were determined by hypergeometric 
test and relative-betweenness centrality method. Figures 
were created using RawGraphs 2.0 and CytoScape 3.9.
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