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Abstract
Inverse quantitative structure-activity relationship (QSAR) modeling
encompasses the generation of compound structures from values of
descriptors corresponding to high activity predicted with a given QSAR model.
Structure generation proceeds from descriptor coordinates optimized for
activity prediction. Herein, we concentrate on the first phase of the inverse
QSAR process and introduce a new methodology for coordinate optimization,
termed differential evolution (DE), that originated from computer science and
engineering. Using simulation and compound activity data, we demonstrate
that DE in combination with support vector regression (SVR) yields effective
and robust predictions of optimized coordinates satisfying model constraints
and requirements. For different compound activity classes, optimized
coordinates are obtained that exclusively map to regions of high activity in
feature space, represent novel positions for structure generation, and are
chemically meaningful.
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Introduction
Inverse quantitative structure-activity relationship (QSAR) analy-
sis aims to identify values of descriptors used to generate a QSAR 
model that corresponds to high activity, and build structures of 
active compounds from these values1–4. The inverse QSAR process 
is challenging since numerical signatures of activity, if they can be 
determined, must be re-translated into viable chemical structures 
and active compounds, a task falling into the area of de novo com-
pound design5–7. A predominant approach to inverse QSAR is the 
use of multiple linear regression (MLR) models to construct chemi-
cal graphs that correspond to an MLR equation1–4. Given this equa-
tion, a desired y (activity) value constrains relationships between 
descriptor settings. These constraints make it possible to derive 
vertex degree or edge sequences, from which chemical graphs  
might be constructed. For instance, specialized descriptors 
have been introduced for inverse QSAR on the basis of MLR  
equations and algorithms for constructing chemical graphs from 
these descriptors8–11. So far only few inverse QSAR studies have 
employed methods other than MLR. For example, it was attempted 
to construct chemical graphs from the centroid of activity of a set 
of compounds in Hilbert space defined by a kernel function12. In 
this case, a pre-image approximation algorithm was used to obtain 
coordinates in descriptor space and construct chemical graphs from 
these descriptor coordinates. Alternatively, inverse QSAR was 
divided into a two-stage process by separating the derivation of  
preferred descriptor values for a desired activity from the chemi-
cal graph construction phase13–15. Descriptor information corre-
sponding to a given y value was represented via probability density  
functions, and regression analysis was performed using Gaus-
sian mixture models in combination with cluster-wise MLR14.  
Subsequently, chemical graphs satisfying a set of descriptor val-
ues, or ranges of descriptor values, were generated by assembling  
ring systems and atom fragments with monotonically changing 
descriptors14. Following this approach, descriptor values must 
increase when adding an atom, ring system, or other structural 
fragment to a growing chemical graph. Applying Gaussian mix-
ture models and cluster-wise MLR makes it possible to focus on  
the applicability domain14,15 of the underlying models.

The two-stage inverse QSAR process is conceptually based on an 
important premise adopted from conventional (forward) QSAR, 
i.e., the higher a predicted activity value is, the more desirable a 
chemical structure becomes. In two-stage inverse QSAR, this con-
jecture challenges the descriptor value generation phase because 
value combinations are ultimately desired that correspond to higher 
predicted activity than exhibited by any currently available train-
ing or test compound. In other words, descriptor settings should be 
optimized for predicted activity. For this purpose, the use of Gaus-
sian mixture models and cluster-wise MLR left considerable room 
for improvement, due to its multi-parametric nature and tendency 
of overfitting if training data were organized into large number of 
clusters14. Recently, autoencoder modeling was proposed as an 
approach for two-stage inverse QSAR16. Continuous latent space, 
corresponding to a descriptor space, is constructed on the basis of 
encoding a line notation of a molecule by recurrent neural networks 
(RNNs). Following this methodology, optimized coordinates in 
latent space can be directly translated into another line notation by 
the decoder consisting of RNNs. As such, the approach does not 
depend on chosen descriptors and has the potential to automatically 
address two-stage inverse QSAR in a single step. However, the  
generation of new valid line notations (SMILES strings) for  
chemical structures corresponding to optimized coordinates was 
difficult in a case study designing organic light-emitting diodes16.

In this work, the descriptor optimization challenge of two-stage 
inverse QSAR has been specifically addressed. We emphasize 
that the chemical graph construction phase of inverse QSAR is 
not subject of this work and beyond its scope. Rather, our focal 
point has been the development of a new methodology for optimiz-
ing descriptor settings with respect to higher than observed com-
pound activity, as a prerequisite for candidate structure generation.  
Therefore, an evolutionary approach is introduced to iden-
tify descriptor coordinates that correspond to the highest pre-
dicted activity within the applicability domain of a given QSAR  
model. The methodology and results of proof-of-concept studies 
are presented in the following.

Methods
Methodological concept
Inverse QSAR depends on the derivation of descriptor coordi-
nates for a given model and data set. The goal of the methodology 
presented herein is finding desirable coordinates in a pre-defined 
descriptor space (x space) on the basis of a regression function f(x) 
representing a QSAR model. Confining the search to the applicabil-
ity domain (AD) of the model translates this task into a constrained 
optimization problem (COP). The concept of the optimization is 
illustrated in Figure 1. Newly derived coordinates should be more 
desirable with respect to pre-defined evaluation criteria than any 
other data point used to construct the regression model. Accord-
ingly, COP is formulated as follows:

Minimize f(x) 

s.t.       gj(x) ≤ 0, j = 1, …, q

            hj(x) = 0, j = q+1, …, m

            x = (x1, …, xd), li
 ≤ xi ≤ ui, i = 1, …, d

            Amendments from Version 1

In response to the reviewers, we have addressed all issues raised 
by Hans Matter, incorporated the autoencoder study suggested by 
Brian Goldman and discussed how families of structures might be 
evolved. In addition, as suggested by Pat Walters, we make the 
data sets and descriptors available as an open access deposition 
(a reference implementation is in the works). Furthermore, we 
have added an example for deriving the applicability domain and 
specified the RMSE in Table 2. Finally, we note that structures in 
Figure 7 were partly compromised due to a reproduction error 
from a PDF file (the drawings have been corrected) and that 
standard distance- and potency-based compound rankings were 
provided as virtual screening reference calculations. In addition, 
an MMP-based search for potent analogs of compounds proximal 
to optimized coordinates has also been carried out. 

See referee reports

REVISED
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Figure 1. Optimization concept. A regression function f(x) fits training data to determine new coordinates in descriptor space. Optimized 
coordinates based on f(x) fall inside the training data range but yield a higher y value than any other data point.

where x ∈ Rd, f: Rd → R is the function to be optimized, g
j
: Rd → 

R is the j-th inequality function, and h
j
: Rd → R is the j-th equality 

function. The i-th component of x: x
i
 falls into the range [l

i
, u

i
].

For the purpose of our analysis, the following assignments are 
made:

x: descriptors;

–f(x): QSAR model;

–g
1
(x): AD model;

g
k
(x) (k = 2, …, j), h(x): constraints for descriptors;

l
i
, u

i
: lower and upper bounds of i-th descriptor.

Constraints are applied to descriptors to ensure meaningful value 
ranges. For example, if the ‘number of heavy atoms’ (x

p
) and 

‘number of hydrogen bond acceptors’ (x
q
) are selected descriptors, 

a value of five for the former and six for the latter would be impossi-
ble for any given data point (compound). Therefore, in order to pre-
vent such settings, an inequality constraint is required and applied: 
x

q
 – x

p
 ≤ 0.

ε Differential evolution
For addressing COP, the differential evolution (DE) algorithm orig-
inally introduced by Stone and Price17 is investigated herein, which 
has so far not been considered in inverse QSAR. However, given the 
conceptual simplicity and computational efficiency of DE, the algo-
rithm has been successfully applied to solve optimization problems 
in other areas of science and engineering, for example, in schedul-
ing of flow shops18. In addition, for deriving a COP solution effi-
ciently, ε differential evolution (εDE) was introduced by Takahama 
et al. as an extension of DE19, illustrated in Figure 2. A candidate 
vector v for next generation (also called mutant vector) is derived 
on the basis of three randomly selected vectors: 

v = xr1 + F(xr2 − xr3),

where x
r1
, x

r2
, x

r3
 are different vectors from the current generation 

and F represents a scale parameter for the difference vector. If a 

variable adopts only discrete values, its value in v can be rounded 
to an integer. If the i-th component of v: v

i
 falls outside the range [l

i
, 

u
i
], v is updated as follows:4

min {u ,l (l v )}, if v l
v .

max {l ,u (v u )}, if u v
i i i i i i

i
i i i i i i

 + − <
=

− − <

An exponential crossover operation with probability-based crosso-
ver points is applied to v (the probability is called CR). Either x

i
 or 

v is selected as x
i+1

, the individual for the next generation, following 
ε level comparison of the corresponding vectors.

ε Level comparison
For prioritizing candidates, given constraints and the optimized 
function are taken into account. The constraint violation Φ(x) is 
defined as follows:

 1 1
( ) max{0, ( )} ( ) ,

pq m
p

j jj j q
g h

= = +
Φ = +∑ ∑x x x

where Φ(x) represents the degree of violation, with p set to one. 
The ε level comparison determines the order between two sets of 
pair (f(x), Φ(x)):

1 2 1 2

1 1 2 2 1 2 1 2

1 2

, if , ( )

( , ) ( , ) , if ,

,

f f t
f f f f

otherwise
ε

Φ Φ

Φ Φ Φ Φ

φ φ

 < ≤

< ⇔ < =


<

ε

where t represents a generation in DE. As a decreasing function 
of t, ε determines the tolerance of constraint violation and ε(t) is 
determined as follows:17

( ) 0

( ) ( )(1 ) 0 ,

0

cp
c

c

c

t

t
t t T

T

T t

Φ

Φ

 =


= − < <

 ≤

ε

x

x

θ

θ

where xθ is the top θ-th individual, T
c
 determines the generation in 

which ε(t) becomes zero, and cp the convergence speed. During the 
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Figure 2. Evolutionary algorithm. The steps involved in evolutionary optimization are outlined. First, a candidate v is obtained from three 
randomly selected individuals by a differential operation. Second, a crossover operation is applied to an individual xi and the candidate. 
Third, the evaluation step involves ε level comparison of v and xi and results in the next individual.

optimization, Φ(x) gradually outweighs f(x). In the initial stages of 
the optimization ε(t) settings enable the selection of diverse can-
didates but convergence of the algorithm is determined by Φ(x) 
becoming zero. Accordingly, T

c
 was set to one herein.

Regression and applicability domain models
For εDE optimization, any regression function can be employed. 
In this study, support vector regression (SVR)20 with ν parameter 
was applied and the AD was defined by one-class support vector 
machine (OCSVM)21 classification with ν parameter. This param-
eter ranges from zero to one and defines the upper bound of the 
fraction of margin error and lower bound of the fraction of sup-
port vectors. AD consists of regions where the output of OCSVM 
is greater than or equal to zero. For both SVR and OCSVM, the 
radial basis function (RBF) kernel: k(x

i
, x

j
) = exp (−γ||x

i
 − x

j
||2) was 

used. A hyper parameter set {C, ν, γ} for ν-SVR was determined 
by cross validation of training data on the basis of Q2. For OCSVM 
model construction, γ was set to maximize the variance of the Gram 
matrix consisting of the kernel function of the training data22 and ν 
was set to 0.01.

Simulation data
Data points on a (x

1
, x

2
) plane were randomly generated for x

1
: [-2 

3], x
2
: [-1, 4] to yield 50 training and 20 test instances. The cor-

responding y values were calculated using Mishra’s bird function 
(https://mpra.ub.uni-muenchen.de/2718/) adding a Gaussian error 
with a mean of zero and variance of one, defined as:

2 2 2
1 2 1 2 2 1 1 2f (x ,x ) sin(x )exp{(1 cos(x )) } cos(x )exp{(1 sin(x )) } (x x ) .= − + − + −

Three independent trials were carried out with different random 
number generators. Training and test data sets were plotted on the 
output domain of the bird function with color-coded true y values 
(Figure 3).

Compound data sets
From ChEMBL23 (version 22), compound data sets were selected 
using the following criteria: Maximal assay confidence score of ‘9’, 

interaction relationship type ‘D’(direct), activity standard unit ‘nM’, 
activity standard type ‘K

i
’, and activity standard relation ‘=’. When 

multiple K
i
 values were available for a compound, their geometric 

mean was calculated to yield its final potency value, provided all 
measurements fell into the same order of magnitude (otherwise, the 
compound was discarded). In-house implementation of substruc-
ture filters for pan assay interference compounds (PAINS)24 and 
other reactive molecules were applied to eliminate compounds with 
potential chemical liabilities. Filtering was not critical for mod-
eling, but active compounds with sound chemical structures were 
desired. From qualifying data sets, nine activity classes were ran-
domly selected, as summarized on Table 1.

For each compound, 44 descriptors were initially calculated using 
RDKit (http://www.rdkit.org). These descriptors included consti-
tutional descriptors (e.g., MW, number of rings, number of rotat-
able bonds), topological descriptors (e.g., Chi and Kier indices25) 
and partial charge descriptors based on chemical graph’s topol-
ogy (i.e., maximum of Gasteiger/Marsali partial charges26). The 
set of 44 descriptors and the nine compound data sets used herein 
are made available in an open access deposition on the ZENODO  
platform27. From correlated pairs of descriptors exceeding a 
correlation coefficient of 0.9, only one was chosen. For each  
activity class, the final number of descriptors (variables) is reported 
in Table 1. Compounds from each class were randomly divided  
into equally sized training and test data sets.

Virtual screening
To test the ability of virtual screening (VS) to identify  
new active compounds from optimized coordinates, ChEMBL 
(version 22) was used as a screening source. From 1,414,176 
unique compounds passing the substructure filters, training mol-
ecules used for modeling of each activity class were removed. 
All remaining ChEMBL compounds provided a large screen-
ing source for VS. For screening compounds, descriptors were  
calculated as described above and the compounds falling inside 
the AD of each class-specific model were preselected. Active  
compounds from each activity class not used for training  
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Figure 3. Simulation data sets. In three independent trials, simulation data sets were generated. For each trial, training (black dots) and test 
(blue squares) data are shown with true y values produced by the bird function f(x1, x2).

Table 1. Compound data sets. Nine compound activity classes were taken 
from ChEMBL (version 22). For each activity class, the target ID (TID), number 
of compounds (CPDs) for which descriptor values were obtained, and number 
of descriptors following variable selection are reported.

TID Activity class # CPDs # Descriptors

11 Thrombin inhibitors 1022 26

15 Carbonic anhydrase II inhibitors 2387 26

51 Serotonin 1a (5-HT1a) receptor ligands 1939 26

100 Norepinephrine transporter ligands 1179 26

107 Serotonin 2a (5-HT2a) receptor ligands 1570 26

194 Coagulation factor X inhibitors 1586 25

10193 Carbonic anhydrase I inhibitors 2380 26

12209 Carbonic anhydrase XII inhibitors 1750 26

12968 Orexin receptor 2 ligands 1041 29
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represented true-positive test instances, regardless of their  
potency values. The calculation of descriptors for more than  
1.4 million screening compounds was computationally demanding 
and exceeded the requirements for coordinate optimization.

For ChEMBL screening compounds including test instances, 
two VS ranking were generated. First, Euclidean distances to  
optimized coordinates were calculated. In this case, compound 
potency was not considered for ranking. Second, pK

i
 values were 

predicted for all screening compounds using the class-specific  
SVR models. The latter calculations were carried out to deter-
mine if true positives were highly ranked on the basis of activity  
predictions. The area under the receiver operating characteristic 
curves (AUC) was calculated as an evaluation criterion.

Analysis protocol
Two proof-of-concept studies were carried out, one using sim-
ulation data, the other compounds and their activities. For  
simulation data, AD and regression models were constructed 
with the training data from each trial. Training data range scaling 
within the interval [-1,1] was applied prior to model building. For  
the SVR models, preferred parameter settings were determined 
using 10-fold cross validation. Coordinate optimization was  
carried using individual training data points. Optimized coordi-
nates were evaluated on the basis of true y and maximal training  
data y values.

The same protocol for coordinate optimization was applied to each 
compound activity class. Furthermore, for hyper-parameter optimi-
zation of SVR, five-fold cross validation was carried out. For εDE, 
predicted pK

i
 values falling into the AD of each model were used 

to ensure that optimized coordinates were proximal to compound 
coordinates, as assessed by distance calculations. Furthermore, 
optimized coordinates were projected on principal component 
analysis (PCA) maps of the x space formed by the first and second 
PC. A matched molecular pair (MMP)-based28 analog search for 
compounds proximal to the optimized coordinates was also carried 
out to investigate if analogs exhibited lower (higher) potency when 
they were distant from (close to) the optimized coordinates. Based 
on the distance to the optimized coordinates, the top 30 compounds 
from both training and test data sets were selected. MMPs qualified 
for this analysis if participating compounds displayed a potency 
dif-ference of at least one order of magnitude.

The following εD E parameter settings were applied: Number of 
iter-ations, 1,000 and 10,000 for simulation and compounds data 
sets, respectively; F, 0.5; T

c
,1; p, 1; CR, 0.9 for all data sets. An 

initial population was obtained using 50 vectors of training 
instances for simulation data and 511 to 1,193 vectors for training 
compounds, depending on the size of the compound data sets.

Finally, the ability of distance- and SVR-based VS to 
predict new active compounds was analyzed. Although de novo 
structure  generation was beyond the scope of our investigation, 
VS might be considered as an alternative way to identify 
novel active  compounds, which was thus examined in the 
context of our study.

Implementation
All SVR models and ADs were constructed with Scikit-learn29 
0.18.1 using Python. εDE was implemented in C++. Descriptors 
were calculated using RDKit interfaced with Python.

All selected compound entries were standardized by removal of 
ions and solvent molecules and structure regularization, according 
to the OEChem toolkit (v1.7.7; OpenEye Scientific Software, Inc. 
Santa Fe, NM, USA).

Results and Discussion
Differential evolution for inverse QSAR
Optimization of descriptor coordinates for preferred values of 
a given model is a central aspect of the two-stage inverse QSAR 
process, for which currently only approximate solutions exist. 
Therefore, a more accurate methodology for coordinate optimiza-
tion is highly desirable, as investigated herein. The evaluation of 
εDE as an optimization method for this critical task was inspired by 
previous results obtained for other types of optimization problems 
where this approach displayed better performance than alternative 
evolutionary methods, such as genetic algorithms or particle swarm 
optimization30–32. Moreover, ε-based lexicological comparison of 
individual feature vectors makes this algorithm straightforward to 
apply to problems where several constraints must be balanced, as 
is the case in inverse QSAR. Studies on simulation and compound 
data sets were designed to evaluate whether εDE was capable of 
effectively optimizing coordinates on the basis of a regression  
function.

Investigating simulation data
For initial proof-of-concept, εDE-based search for optimized coor-
dinates was carried out using simulation data generated as described 
above.

For the three simulation data sets, SVR models were built yield-
ing optimized parameters {γ, ν, C} of {4, 0.25, 2}, {2, 0.25, 1}, 
{1, 0.125, 16}, respectively. For all OCSVM models, γ was 1.  
As reported in Table 2, these SVR models accounted for the output 
of the bird function in a statistically meaningful way.

Standard deviations in the test data sets for trials 1, 2, and 3  
were 14.55, 23.21, and 30.42, respectively. Figure 4 shows the  

Table 2. Derivation of the support 
vector regression model for 
simulation data sets. For each trial, 
model performance was assessed on 
the basis of R2 and root mean square 
error (RMSE) values for training and 
test data sets.

Trial Training Test

R2  RMSE R2  RMSE

1 1.00 1.10 0.87 5.17

2 0.96 3.22 0.70 12.73

3 0.97 3.17 0.84 11.99
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Figure 4. Optimized coordinates. For each of three independent trials, optimized coordinates (red squares) and training data (black dots) 
were mapped on the SVR prediction surface.

different prediction surfaces of the SVR models for the three trial 
sets. The surfaces of set one and two were overall similar, whereas 
the surface of set three differed from the others. In each case, how-
ever, individual vectors converged at a single point (Table 3) and 
optimized coordinates were located in regions of highest predicted 
y values (Figure 4). In set one, for which the SVR model overall 
best accounted for the bird function, a training data point was found 
adjacent to the optimized coordinates, which slightly exceeded the 
largest predicted y value (Table 3).

For set two, no training data were mapped to local maxima of the 
bird function, which resulted in a difficult regression scenario. The 
maximal measured y value in the training data was 29.46 and for 
optimized coordinates (1.51, 3.16), the predicted y value was 31.14, 
also slightly exceeding the largest measured y value. However, the 

predicted value was much smaller than the corresponding true y 
value of 48.09 (Table 3), due to the inherent regression limitation.

For set three, the maximal true y value within the domain was 
56.18 at (-1.59, 0.06). In this case, several training data points were 
mapped to regions of y values into which optimized coordinates fell 
(Figure 4), leading to an extrapolative over-prediction of the corre-
sponding y value of 71.94. However, this over-prediction was cor-
rectly balanced when the AD of the model was considered instead, 
leading to a value of 59.40 and a predicted y value for the optimized 
coordinates of 59.41 (Table 3).

Despite typical regression limitations highlighted by findings  
for set two and three, the results obtained for simulation data  
indicated the potential of εDE for predicting optimized coordinates. 
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Table 3. Prediction of y values. For each simulation data trial, y values predicted by 
the SVR model are reported. For training data, the largest measured y value is given 
in parentheses. “Domain” is defined by x1 and x2 with a resolution of 0.005. AD refers 
to the applicability domain of the OCSVM model. For optimized coordinates, the 
result of the bird function is given in parentheses as the true y value. (i.e., the y value 
without error).

Trial Training (measured y) Domain AD Optimized coordinates (true y)

1 48.92 (50.02) 50.19 50.19 50.19 (49.54)

2 26.22 (29.46) 31.14 31.14 31.14 (48.09)

3 58.87 (55.18) 71.94 59.40 59.41 (55.15)

Importantly, all solutions converged to single vectors representing 
novel points in simulation data space with large predicted y values 
falling inside the AD. Taken together, these results indicated the 
principal potential of εDE for coordinate optimization on the basis 
of SVR modeling.

Coordinate optimization for compound data sets
Next εDE optimization was applied to different compound activity 
classes. In each case, SVR models were derived, optimized coordi-
nates determined, and activity values predicted.

For each compound class, optimized coordinates yielded  
larger predicted pK

i
 values than any training or test set compound 

(Table 4), consistent with the methodological strategy. Optimized 
coordinates fell inside the AD of each model and were proximal 
to several active compounds. When setting the ν parameter value 
to 0.1, hence restricting compound numbers within the AD, opti-
mized coordinates remained unchanged compared to the ν param-
eter setting of 0.01. Nearest neighbors of optimized coordinates 
were mostly predicted to be highly active (Table 4), indicating the 

presence of smooth prediction surfaces in the vicinity of optimized 
coordinates.

Prediction surfaces were further characterized graphically by sys-
tematically comparing predicted pK

i
 values of compounds and 

calculated distances to optimized coordinates. Figure 5 shows the 
results for two exemplary activity classes, and Figure S1 shows 
the results for all classes. For set 51 (5-HT1a receptor ligands) in  
Figure 5, many highly active compounds were located proximal to 
the optimized coordinates, indicating that these coordinates fell into 
a well-populated region of activity-relevant chemical space. For 
set 194 (factor X inhibitors), training and test compounds tended 
to exhibit higher predicted pK

i
 with decreasing distance to the  

optimized coordinates, hence delineating regions of activity pro-
gression, which are relevant for compound optimization and exploi-
tation of optimized coordinates.

Data set compounds and optimized coordinates were also projected 
onto PCA plots of descriptor space (Figure 6, Figure S2). These 
projections revealed that optimized coordinates were central to 

Table 4. Optimized coordinates and nearest neighbors. For optimized 
coordinates, the predicted pKi value and the output of the OCSVM model for 
the applicability domain (AD) are reported. For training and test instances, 
the predicted pKi value and scaled distance from optimized coordinates are 
given for the nearest neighbor (NN).

TID Optimized 
coordinates

NN in training data NN in test data

Predicted 
pKi

AD Distance Predicted 
pKi

Distance Predicted 
pKi

11 11.49 0.26 0.61 9.50 0.52 10.02

15 12.20 0.06 0.46 10.21 0.45 10.32

51 10.25 0.62 0.39 9.24 0.40 9.09

100 9.50 0.22 0.32 8.63 0.46 7.97

107 11.43 0.32 0.71 9.78 0.71 9.84

194 13.03 0.17 0.82 10.92 0.67 11.90

10193 9.92 0.23 0.33 8.86 0.47 7.56

12209 10.48 0.35 0.72 8.99 0.78 8.69

12968 10.12 0.21 1.06 9.40 1.07 9.39
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Figure 5. Activity prediction. For two exemplary activity classes, predicted pKi values are related to the scaled distance of the corresponding 
compounds to the optimized coordinates. Training data (cyan squares), test data (magenta squares), and optimized coordinates (green 
circle) are shown.

Figure 6. Projection of optimized coordinates. For the two activity classes from Figure 5, training data (cyan squares), test data (magenta 
squares), and optimized coordinates (green circle) were projected on a principal component (PC) plot derived from training data. For PC1 
and PC2, contributions to data set variance are reported in %.
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activity class regions in feature space. Furthermore, Figure 7 shows 
structures of the three nearest neighbors of the optimized coordi-
nates for sets 51 and 194. In both cases, these compounds were 
structural analogs. Hence, similarity in feature space corresponded 
to close structural relationships. Consequently, this would also 
apply to structure generation from optimized coordinates, which 
would result in additional analog(s), consistent with the principles 
of QSAR and inverse QSAR.

A search was carried out for analogs of the top 30 compounds 
based on the distance to the optimized coordinates and the consist-
ency ratio was calculated for each target (Table 5). The number of  
qualifying MMPs ranged from 14 to 464. The consistency ratios 

were greater than 0.5 for eight of nine activity classes, implying  
that structures approaching optimized coordinates may have 
increasing potency.

The εDE protocol can also be modified to generate a family  
of solutions. One possibility is splitting a data set into subsets of 
structurally related compounds, followed by the εDE optimiza-
tion for finding the optimized coordinates on a per subset basis.  
Furthermore, since εDE is a methodology for solving a COP, it is 
also possible to incorporate multiple constraints as solubility and 
toxicity during the optimization process as long as these constraints 
are formulated as inequality equations using the same descriptors  
as for the objective function.

Figure 7. Nearest neighbors of optimized coordinates. For the two activity classes in Figure 5 and Figure 6, structures of the three nearest 
neighbors of optimized coordinates are shown and their ChEMBL IDs, scaled distances to the optimized coordinates and predicted pKi 

values, are reported.
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Table 6. Virtual screening details. Compound (CPD) statistics and VS results for distance-
based compound rankings relative to optimized coordinates and potency-based rankings are 
reported.

TID # ChEMBL compounds AUC True positive ratio 
(top 30 compounds)

Screening 
CPDs

CPDs in 
AD

True 
positive

Distance-
based

Potency-
based

Distance-
based

Potency-
based

11 1,413,665 1,004,761 497 0.76 0.51 0.30 0.13

15 1,412,983 1,020,546 1145 0.48 0.77 0.10 0.07

51 1,413,207 822,453 935 0.66 0.69 0.43 0.27

100 1,413,587 835,967 561 0.64 0.75 0.10 0.17

107 1,413,391 865,660 736 0.56 0.61 0.10 0.10

194 1,413,383 535,306 727 0.51 0.64 0.17 0.13

10193 1,412,986 1,172,027 1152 0.62 0.68 0.07 0.07

12209 1,413,301 942,956 838 0.55 0.73 0.00 0.00

12968 1,413,656 217,995 502 0.60 0.50 0.03 0.03

Table 5. MMP-based analog search of 
the top 30 compounds. The consistency 
ratio and number of MMPs for the top 30 
compounds based on the distance to the 
optimized coordinates are reported.

TID Consistency ratio # MMPs

11 0.62 253

15 0.71 68

51 0.88 108

100 0.64 14

107 0.33 93

194 0.86 464

10193 0.68 130

12209 0.75 60

12968 0.84 86

Virtual screening
ChEMBL compounds were screened relative to optimized coordi-
nates from the nine activity classes and Euclidian distances were 
determined. Furthermore, pK

i
 values were predicted for screening 

compounds falling into the AD of each class-specific SVR model. 
The AD was simply defined as the region where the OCSVM out-
put was greater than or equal to zero. Since the nu value of the  
OCSVM models was set to 0.01, most of the training and test com-
pounds were classified inside the AD. For example, for data set 
51, 97% of the training and 96% of the test compounds fell inside 
the AD. The VS calculations ultimately led to alternative distance- 
and potency-based compound rankings. Table 6 reports screen-
ing compound statistics and VS results. For each activity class,  

screening compounds contained large numbers (497–1152) of true 
positive test instances. Distance-based VS yielded AUC values of 
at least 0.6 for five of nine activity classes, with a maximum of 
0.76. For the four remaining classes, essentially random predic-
tions were observed. Potency-based VS produced AUC values of 
greater than 0.6 for seven of nine classes, including values above 
0.7 for three classes and a maximum of 0.77. Thus, potency-based  
predictions led to slightly better compound rankings than  
distance-based VS relative to optimized coordinates, but predic-
tion accuracy was overall moderate at best. Moreover, the true  
positive ratio among the 30 top-ranked compounds was generally 
very low for both distance- and potency-based VS. Figure 8 shows 
exemplary potency prediction landscapes including optimized 

Page 12 of 20

F1000Research 2017, 6(Chem Inf Sci):1285 Last updated: 06 SEP 2017



Figure 8. Activity prediction for ChEMBL compounds. For the two activity classes from Figure 5, predicted pKi values are plotted against 
the scaled distance of corresponding compounds to the optimized coordinates. ChEMBL compounds (gray squares) and test compounds 
according to Figure 5 (magenta squares) falling inside the applicability domain are shown. Optimized coordinates are displayed as a green 
circle.

coordinates as a reference. Figure S3 shows these representations 
for all activity classes. Highly potent compounds proximal to 
optimized coordinates were predicted for several activity classes.  
However, most true positives were not separated from the bulk 
of ChEMBL screening compounds on the basis of potency  
predictions. Overall the ability of VS calculations to identify 
novel active compounds and separate them from false positives 
was only limited. Thus, although de novo structure generation 
from optimized coordinates is challenging, it would be difficult to  
replace the structure generation step in two-stage inverse QSAR 
with standard VS calculations. However, despite limited predic-
tion accuracy, the VS calculations provided support for the chemi-
cal relevance of optimized coordinates because for each activity  
class, at least few true positives were among top-scoring screening 
compounds and proximal to optimized coordinates.

Conclusions
The optimization of coordinates in feature space for high activity 
values predicted with a regression model is a central task in two-
stage inverse QSAR. For this multi-constraint optimization prob-
lem, no generally applicable approach is currently available. The 
evaluation of differential evolution for coordinate optimization, 
as reported herein, was motivated by the successful application of 
this algorithm in areas of science other than chemistry. The study 
has provided proof-of-concept evidence that εDE is suitable for 
generating optimized coordinates in given feature spaces. For dif-
ferent compound classes, consistent predictions were obtained for  
εDE in combination with SVR, displaying robust convergence 
behavior and yielding optimized coordinates that not only met 
statistical and data set requirements, but were also chemically  
relevant, as indicated by compound mapping and distance- or 
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potency-based VS calculations. However, due to limited pre-
diction accuracy, distance-based VS relative to optimized coor-
dinates would not be suitable to replace the de novo structure  
generation step in inverse QSAR, at least not on the basis of our 
reference calculations. Regardless, encouraging results were  
obtained for coordinate optimization. Taken together, the findings 
reported herein indicate that εDE optimization has the potential  
to further advance inverse QSAR analysis.
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This paper describes a new method for approaching one aspect of the inverse QSAR problem.  As the
authors point out, the inverse QSAR problem can be divided into two steps.  

The generation of a set of coordinates, in some multidimensional space, that corresponds to one or
more optimal compounds.  
The generation of molecular graphs that would produce chemical structures with descriptor values
corresponding to these coordinates.  

This paper focuses on the first problem and does not address the second. 

The paper is well written and the topic will be of interest to computational chemists working in both
industry and academia.  The methodology is described well and an individual with some QSAR expertise
should be able to reproduce this work.  However, in the interest of making it easier to reproduce the work
described here, and making the method more widely available, it would be useful for the authors to make
a reference implementation available.  On a similar note, the authors mention that the ChEMBL datasets
are available from the original source.  As a service to those readers who would like to reproduce the
work, it would be useful if the authors provided the specific datasets used in this paper as a download.  As
part of this download, the authors could also include a list of specific descriptors used and annotate which
compounds were rejected due to PAINS filters.  

The definition of the applicability domain used in this paper could be expanded.  It would be useful for the
authors to provide a specific worked example demonstrating how the applicability domain is defined for
one of the ChEMBL examples described in the paper.  This example could be expanded to demonstrate
how a set of optimal coordinates is defined. 

One other beneficial addition to this paper would be a comparison with established methods.  The authors
provide the results of virtual screening based on their method but do not provide a comparison with
commonly used techniques.  One way to do this would be to provide a simple comparison with an SVM
model for activity calculated based on the same descriptions.  A comparison with activity calculated
based on nearest neighbors in a simple principal component space could also be provided.  

A few specific comments:

It is unclear what the RMSE value is in Table 2.  This is on an arbitrary dataset, how should RMSE be
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 Brian Goldman
Modeling & Informatics, Vertex Pharmaceuticals, Boston, MA, USA

This is an extremely well written submission by Bajorath   detailing an important aspect of the inverseet. al
QSAR problem, namely the generation of a feature vector optimizing the output of a QSAR equation.  An
interesting and novel component of the work is that constrained optimization is utilized ensuring
generated solutions lie within the domain of applicability of the QSAR model.  This paper is primarily of
theoretical interest in that due to inherent limitations with inverse-QSAR the technique is rarely adopted as
a means of drug discovery.  The primary reason for the lack of adoption revolving around the de-novo
design of compounds matching optimized descriptor values.
 
The introduction to the paper covers the relevant literature but could be made stronger by discussing the
recent work of Gómez-Bombarelli  who use generative models to approach the inverse-QSARet. al.  
problem.  Their work concerns building and optimizing QSAR equations in the latent space of an

autoencoder and subsequently decoding optimized points into molecular structures.  Although the work
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autoencoder and subsequently decoding optimized points into molecular structures.  Although the work
by Gómez-Bombarelli is preliminary, it addresses both QSAR optimization and structure generation and
would most likely be interesting to readers of the current paper.
 
An aspect of the current technique that could be discussed in the paper is the generation of a family of
solutions.  Currently, the presented technique produces one optimized feature vector.  It would strengthen
the paper if the authors discussed how a family of diverse feature vectors (structures) could be evolved
using the presented methodology. 
 
Overall, the paper in its current form is more than acceptable. The methodology is clearly delineated and
sufficiently supported by the included results.
 
Minor points:

Figure 3: it would be informative to highlight the optimal point with a particular glyph (perhaps a red
star?)
 
Figure 7: Chemical structures look suspect and should be checked
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 Hans Matter
R&D IDD / Structure, Design & Informatics, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany

This interesting contribution by Bajorath  addresses an important part of the inverse QSAR problemet al. 
towards automated generation of structures with high activity from QSAR models. Inverse-QSAR, while
intellectually appealing, does not find significant applications in modelling in the pharmaceutical industry.
Main limitations are linked to de-novo structure generation due to issues with synthetic accessibility.
Another hurdle is the challenge to identify the optimal descriptor setting for a model. The authors focus on
this latter point, namely a novel and accurate approach for coordinate optimization. They demonstrate
how to generate optimal descriptor coordinates under certain constraints like model applicability domain
and meaningful descriptor values. A convincing validation study using virtual screening in ChEMBL 22 is
also presented.

The report title and abstract cover the content well. The chemoinformatics approach is well conducted
and clearly described. The results are presented in a clear and interesting way and capture the interest of
F1000 readers. The authors might also want to mention, whether software tools and subroutines from
their study are available. Therefore this contribution is an essential view on interpretation of QSAR models
and should be indexed in its present form.

Some points could be addressed to highlight further aspects of their work. 
How does such an optimization approach handle typical types of variables from real-life models,
e.g. two-level variables, variables with small or no SD?
 
Often model analysis should not result in a single solution, but multiple related structures. Could
the optimization approach find multiple descriptor regions to offer options for monitoring secondary
properties (e.g. solubility)?
 
It might be illustrative for one ChEMBL target to systematically generate analogs for potent leads
close to the descriptor optimum by applying simple MedChem transformations and check, whether
some analogs come closer to the optimum in descriptor space. Chemical changes are minimal
here and one could access their impact to the descriptor optimum.
 
The moderate VS success using QSAR models might suggest a non-optimal approach to define
the applicability domain. Some details on the AD definition and the descriptor space might be
useful. Do the authors expect that a more strict AD definition might produce reliable results? What
does this mean for de-novo structure generation as second step?
 
Is it possible to apply such a concept for multi-parameter optimization, e.g. multiple QSAR models
combined for predicting compound profiles / selectivity / druglikeness?
 
Minor point: Drawings of chemical structures in figure 7 need to be checked.
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