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Abstract

Background: Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves
screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment
errors create “false positive” variants, which are often retained in the variant screening process. Methods to remove
false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize
variants based on a false positive variant likelihood prediction.

Methods: VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type
genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled,
likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and
Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina
HiSeq, exome and whole genome samples (proband’s family or unrelated samples). At variant sites without
apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically
cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases
as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values.
Depending on the separation of a proband’s variant PLRD value from the cluster of wild type/non-variant PLRD
values for background samples at the same variant change and position, the VarBin method’s classification is
assigned to each proband variant (Bin 1 to Bin 4).

Results: To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and
background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4.

Conclusions: These data indicate that VarBin correctly classifies the majority of true variants as Bin 1 and Bin 3/4
contained only false positive variants. The “uncertain” Bin 2 contained both true and false positive variants. Future
work will further differentiate the variants in Bin 2.

Background
Next Generation Sequencing (NGS) of whole genomes
or exomes has been a transformational tool for discover-
ing causal variants in human diseases and uncovering
new relationships between genes and disease mechan-
isms. Sequencing the exome or genome yields thousands
to millions of variant changes from a human reference
sequence, ranging from a single nucleotide variant to

more complex variants (such as insertions and dele-
tions). Analysis and identification of causal variants in
these large data sets can be difficult due to the presence
of many false positive variants that are commonly due
to sequencing chemistry errors [1,2] and/or alignment
errors. Differentiating between true variants and false
positive variants is an outstanding challenge in causal
variant discovery efforts and a robust method for priori-
tization of true variants over false positive variants
would decrease analysis time and increase confidence in
the results of variant discovery projects. This requires a
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balance between removal of false positive variants (spe-
cificity) while retaining true variants (sensitivity) [3].
Sequencing accuracy of Illumina’s NGS instruments

have improved over time with the majority of sequencing
chemistry errors being base substitution errors [1].
Although base substitution error rates are on average rela-
tively low (less than 1%), sequence-specific errors occur at
higher rates [4-7]. These sequence-specific error sources
include homopolymer tracks that are often followed by an
error matching the homopolymer base. Homopolymers as
short as two nucleotides may cause increased sequencing
error at the next nucleotide. Particularly GGT and GGA
sequence motifs commonly lead to a miscall of the last
base as a G [6]. However, these known problematic
sequences do not always coincide with increased sequen-
cing error rates, and cannot be relied on alone to confirm
or disprove an error. Alignment errors, typically associated
with repetitive or homologous sequence regions, are also a
source for false positive variant calls and can lead to single
to several base substitutions, insertion, and deletion errors
[8,9]. Since both sequencing errors and alignment errors
can be associated with certain sequence motifs, these
errors can be consistent between samples sequenced on
the same instrument using the same sequencing chemistry
and alignment methods, as demonstrated in several studies
[4,10-13].
Basic alignment and variant calling parameters within

the Genome Analysis Tool Kit (GATK) and other variant
calling software have been developed to help identify and
reduce false positive variants [14,15]. These include the
probabilistic base quality and alignment mapping quality
score, the aligned read coverage for possible alleles, and,
more recently, the base alignment quality score [16].
These parameters can be used to apply variant hard filters
but are more often used in a statistical model to generate
a probabilistic, Phred-scaled, variant quality score
(QUAL). This score is an estimated probability of a false
positive variant but can be incorrect at sites prone to
sequencing and/or alignment errors. To identify and
address inherent error in the QUAL score, additional
alignment parameters have been derived including several
bias values that compare reference matching reads versus
variant containing reads for systematic differences in base
quality, mapping quality, mapping position, and mapping
direction. The simplest use of these parameters is to
screen variants using a set of filter values chosen for each
bias parameter. A more sophisticated implementation is
employed in the GATK software as variant quality score
recalibration (VQSR) in which a multidimensional Gaus-
sian mixture model is trained and then used to infer
variant truth likelihood based on each variant’s parameter
combination [14]. VQSR evaluates variants from many
different sites across the entire sequence area simulta-
neously but because the characteristics of error from site

to site can differ and are difficult to characterize, site spe-
cific issues are not fully captured by the current set of
parameters used in the VQSR method. Other methods
incorporate additional information to more accurately
identify error prone positions. These include methods for
detection of false positive variants around repetitive or
homologous sequence [17,18], or methods that utilize
cross-sample error information by requiring multiple
background samples [10,13,19]. These cross-sample meth-
ods evaluate characteristics of reads from multiple samples
that likely contain similar errors at the variant site of
interest.
This report presents VarBin, a novel analytical method

for classifying variants as true or false positive in Illumina
NGS data. VarBin is a variant likelihood binning method
for heterozygous variants of types including single nucleo-
tide variants (SNVs), insertion, and deletion variants, as
well as variants in homopolymer and repeat regions. The
VarBin method evaluates each variant site individually to
focus on site-specific alignment information for false posi-
tive variant determination. Also, this method uses multiple
background samples to take advantage of the cross-sample
error characteristics that show similar trends between
samples sequenced on the same platform with the same
chemistry and alignment method. VarBin uses Genotype
likelihood scores (PL) to generate PLRD (the variant likeli-
hood ratio over coverage depth), a value affected by align-
ment and sequencing error. VarBin compares the PLRD
calculated for the proband variant to those calculated for
multiple background samples for each variant change and
position.. This report describes the VarBin method and its
performance characteristics.

Methods
Whole genome or exome next-generation sequencing
One family that was Illumina whole genome sequenced
was chosen as the test case for analysis and consists of a
male proband and his unaffected mother, father, and
brother. An additional 38 samples were either whole gen-
ome (8 samples) or exome sequenced (30 samples) and
used as the background NGS data for analysis. This set of
samples consists of 8 family groups (3 to 5 individuals per
family) as well as 4 unrelated individuals. Each family was
unrelated to each other (or the test family) Sequencing
data used for this study were generated in studies approved
by the University of Utah Institutional Review Board.
For each family member, 2.5 ug of genomic DNA was

fragmented to a 300 - 400 bp size distribution, using the
Covaris™ instrument (Covaris, Inc., Woburn, MA, USA).
Illumina specific libraries were generated using the auto-
mated SPRI-TE instrument (SPRI-TETM Nucleic acid
extractor, Beckman Coulter Genomics, Danvers, MA,
USA), then amplified using Illumina PCR primers 1.0 and
2.0. For the exome libraries only, the in solution capture
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was performed according to the Roche Nimblegen SeqCap
EZ Human Exome Library v2.0 or v3.0 (Madison, Wiscon-
sin) instructions with the following exceptions. The adap-
ter ligated libraries were PCR amplified prior to probe
hybridization by splitting the library volume across eight
individual PCR tubes each with a 50 μl total volume.
Following PCR, the reactions were pooled and purified
according to the manufacturer’s instructions and subse-
quently used for probe hybridization. Genome or exome
libraries were then gel purified in the range of 475 +/- 50
bp and the library concentrations were determined using
qPCR (KAPA Library Quant Kit, Kapa Biosystems, Inc.,
Woburn, MA, USA). The Illumina cBot instrument was
used for cluster generation, followed by sequencing on the
HiSeqTM 2000 instrument with 100 base length paired-
end reads.

NGS alignments and variant calling
FastQ file sequencing reads for each sample were aligned
using the BWA aligner (version 0.6.1, default settings for
paired ends). This initial alignment was followed by local
realignment around indels (GATK version 1.5) [14,20].
The preliminary variant calls and dbSNP 132 were used to
identify potential sites for local realignment. Duplicate
read removal was performed using Samtools (rmdup
option, default settings). Base quality recalibration was
performed with GATK using known variant sites iden-
tified by dbSNP 132 and the variant calls from the initial
alignment. Base quality covariates used were base quality
score, cycle number, and the proceeding dinucleotide.
The final alignment files (bam format) were used to make
initial variant calls in the vcf file format (GATK Unified-
Genotyper tool) with only the following non-default set-
tings. Maximum coverage was set to 1000, stand_call_conf
was 30, std_emit_conf was 10 and base alignment quality
option (-baq) was set to CALCULATE_AS_NECESSARY.
Variant quality score recalibration (VQSR) in GATK was
used to update the vcf files with estimated false positive
likelihood odds ratios (VQSLOD). Optional variant hard
filter values, defined in the GATK best practices, were
applied (VariantFiltration tool in GATK) for SNVs as QD
< 2.0, MQ < 40.0, FS > 60.0, HaplotypeScore > 13.0,
MQRankSum < -12.5, or ReadPosRankSum < -8.0 and
flagged in the filter fields as failing. Similarly, Indel hard
filter limits were QD < 2.0, ReadPosRankSum < -20.0, or
FS > 200.0. Only the preliminary called variants that
passed these hard filters were considered a variant in the
vcf file, while those that did not pass these variant calling
filters are termed non-variants. These optional hard filters
were used to remove many of the lowest quality variants.

VarBin: variant heterozygous likelihood binning method
The phred-scaled, genotype likelihood values for the possi-
ble genotypes, PL(AA) (homozygous wild type), PL(BB)

(homozygous variant), and PL(AB) (heterozygous variant)
are found in the GATK UnifiedGentyper vcf file, are
derived from mapping, alignment, and base qualities, allele
read percentage, and read coverage at a given putative var-
iant site. These PL values tend to show erroneously
increased variant likelihoods at positions prone to sequen-
cing and alignment errors. VarBin takes advantage of this
systematic error in the PL values as an indicator of false
positive variant calls, by first calculating a phred-scaled,
genotype likelihood ratio (PLR),

PLR = −10 · log10

(
PL(AA)linear

PL(AB)linear + PL(BB)linear

)
(1)

where PL(AA)linear, PL(AB)linear, and PL(BB)linear are
PL, converted from a Phred to a linear scale. To focus on
the effects of alignment and sequencing error in PLR, its
strong linear correlation to read coverage depth is mini-
mized through conversion to a more coverage-independent
parameter, PLR by depth (PLRD)

PLRD =
PLR
DP

(2)

where DP is the raw, read coverage depth (from the vcf
file). The PLRD value for each proband variant of interest
was then compared to PLRD values for the same variant
change and position from each background sample align-
ment (bam file).
To generate the needed data for these PLRD calculations

and comparisons, the GATK UnifiedGenotyper was
employed. Nonstandard UnifiedGenotyper settings were
needed to force vcf file values to be created at “non-var-
iant” sites (either wild type at that position or a variant call
that did not pass filters). The genotype_likelihoods_model
was set to BOTH. The stand_call_conf was set to 0.0.
The stand_emit_conf option was set to 0.0. The max_
deletion_fraction was set to 1.0. The min_base_quality_
score option was set to 17. The genotyping_mode option
was set to GENOTYPE_GIVEN_ALLELES and the asso-
ciated alleles option was set using a variant file (vcf
format) containing the variants of interest that had
previously been identified in the proband sample. The
output_mode option was set to EMIT_ALL_SITES.
The resulting single proband and multiple background

vcf files each contained entries for the same set of variant
changes and positions of interest. Variant filters defined in
the GATK recommended best practices and listed above
were then applied to the background samplevariants. Note
that this filtration process provided an imperfect but useful
estimated separation of wilt type/non-variants from true
variants. Variants not passing these filters were marked as
wild type/non-variant in the vcf file filter field. Vcftools
(version 0.1.8, http://vcftools.sourceforge.net) was then
used to extract pertinent data from the proband vcf file
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and all background sample vcf files (filter field data, DP,
and PL values).
Each variant of interest was analyzed independently of

all others. First, the distribution of PLRD values from all
background samples for the same variant change and
position, that were called wild type/non-variants, as sta-
ted in the vcf file, was analyzed. This included calcula-
tion of the medians and inter-quartile distances (IQD).
A 1.38*IQD was used as a proxy for one standard devia-
tion in a Gaussian distribution.
This study focused on the heterozygous variants, which

are more likely to contain false positives variants than
homozygous calls (due to the overall number of variant
containing reads). Homozygous variants were excluded
from further analysis, but were given a PLRD value of zero
for plotting purposes only. A variant was considered
homozygous if PL(BB) was larger than PL(AA) or PL(AB).
For VarBin analysis of each variant of interest, the pro-

band PLRD value was compared to the background sam-
ple PLRD distribution values and classified or “binned”
based on a heuristic that was an automation of the original
manual visual interpretation of alignment data as an indi-
cator of sequencing or alignment error. Bin 1 includes
proband variants that have a PLRD value greater than 10
and greater than the distribution median plus 6 proxy
standard deviations (8.28*IQD). Bin 2 includes proband
variants with a PLRD value greater than 10 or greater than
the distribution median plus 6 proxy standard deviations
but not both. Bin 3 contains variants with a PLRD value
less than the distribution median plus 8.28*IQD but
greater than the distribution median plus 3 proxy standard
deviations (4.14*IQD). Bin 4 contains variants with a
PLRD value less than the distribution median plus 3 proxy
standard deviations. The likelihood of a true variant is
highest in Bin 1 and lowest in Bin 4.

Cross-sample annotation methods
In addition to VarBin’s primary binning procedure, other
valuable information about proband variant accuracy is
gained from the cross-sample comparison with multiple
background samples. Multiple parameters for each variant
change and position were tracked in the proband, family
members, as well as in the background files. These
included lists of which background files had the corre-
sponding variant call and zygosity, low read coverage
depth (may indicate a no-call versus a wild type call for a
family member), high strand bias, high base quality bias,
mapping quality bias, and base position bias. These para-
meters helped track inheritance patterns within the family
as well as trends that track with false positive variants.

Generation of variant test sets
The test family was analyzed for rare and de novo variants
within the proband. Proband variants were found by this

screening method: >3 total read coverage depth, <3%
minor allele frequency (MAF) in the 1000 Genomes, <2%
MAF in the ESP5400 exomes, and not present in the unaf-
fected family members (mother, father, and brother). In
addition, since the 1000 Genomes and ESP5400 data set
did not have insertions or deletions at the time of the
study, variants that were found to be very common within
several NGS datasets (present in greater than 3 unrelated
families with different disorders) were eliminated as being
too common of a variant for a rare disorder.
Additional proband variant test sets were generated to

evaluate the VarBin method. One variant set was enriched
for true variants (20,000 variants), by selection of only the
proband’s variants present between 10 and 20% MAF in
the 1000 Genomes data within Chromosome 1. The other
variant set was enriched for false positive variants (14,500
variants), by selection of only the novel and de novo pro-
band variants (not present in the 1000 Genomes data and
not found in family members) within chromosomes
1 through 22.

Sanger sequencing
Big-Dye terminator Sanger sequencing was performed for
NGS detected variant verification on a total of 98 variants
to test the VarBin method’s accuracy. One dataset was
randomly selected from the proband’s de novo variants
found in or near coding regions within chromosome
1 through 6 (66 variant sites, 4 could not be Sanger
sequenced). Another variant set was selected based on the
proband’s de novo variants. An additional 5 more Bin 1
proband variants in other chromosomes were sequenced.
Eight Sanger sequenced proband variants were found in
Bin 1 or 2 in a parent but was called wild type/non-variant
in the parent’s vcf file (potential false negatives) and were
also Sanger sequenced. To expand the study to other
families, 19 variants were sequenced in unrelated families
that were in Bin 1 and 2 that were previously thought to
be true variants by manual visual verification of the read
data in iGV (Broad Institute).

Results
VarBin method
Whole genome sequencing data from the test family
included in this study was comprised a male proband and
his unaffected father, mother, and brother. In addition, 38
unrelated background samples sequenced with the same
instrument, sequencing chemistry, and alignment methods
were used for analysis. Illumina errors tend to be consis-
tent between samples using the same chemistry and
instrument [10,13,19], and the background data were used
to help identify these errors. By a visual and manual cross
comparison of NGS read data in the Integrative Genomics
Viewer (iGV) [21], it was possible to make predictions of
likely true variants or false positive variants. This method
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was time consuming and difficult to analyze multiple
background samples at once. To address this, the VarBin
method was developed to provide a more automated and
discriminating procedure for classifying true variants ver-
sus false positive variants. VarBin uses the likelihoods for
the different possible genotypes (PL) that are generated as
part of the statistical framework of variant detection in
GATK and Samtools (see Methods). The PL values for
wild type, heterozygous and homozygous genotypes at a
variant position are combined into a variant Phred-scaled
likelihood ratio (PLR) that is strongly affected by read cov-
erage depth (Figure 1A and 1B). To demonstrate the cor-
relation of PLR with depth, a set of proband variant calls
enriched for true variants was created (20,000 variants,
Figure 1A) and a data set enriched for false positive var-
iants was created (14,500 variants, Figure 1B). These two
data sets were used to plot PLR versus depth for the pro-
band variant calls as well as all PLR values within back-
ground data sets corresponding to the same variant
change and position as for the proband. Variants are
plotted to the left and right of zero on the PLR × axis
depending on their relative likelihood to be a false positive
variant or a true variant, respectively. A linear distribution
of PLR versus coverage depth was observed for data points
in Figure 1A and 1B. PLR was divided by corresponding
coverage depth (DP) to derive a more coverage indepen-
dent parameter: PLR by depth (PLRD). Minimal effect of
coverage on PLRD is demonstrated (Figure 1C and 1D).
An important feature of the VarBin method is that

each variant is evaluated separately, since different posi-
tions can have different error rates/propensity due to
sequence specific effects [4-6]. The proband’s variant
PLRD value can be plotted as a histogram with all the
background samples’ PLRD values for the same variant
change and position. The PLRD value spans from likely
wild-type/non-variant (approximately -3) to likely true
variant (approximately 10 PLRD or greater). As the
PLRD distribution broadens for the wild type/non-var-
iants in the background samples, and as the proband
PLRD value drops, there is less distinction in the align-
ment data between the proband variant and the group
of wild type/non-variants. This concept was quantified
in an empirically derived VarBin method where proband
variants were scored as Bin 1 (highly likely a true var-
iant) through Bin 4 (highly likely a false positive) based
on the proband PLRD and the wild type/non-variant
PLRD distribution median and interquartile distance
(IQD). Figure 2 shows example PLRD histograms asso-
ciated with two Sanger sequence confirmed true variants
from Bins 1 and 2 (Figure 2A) and four Sanger con-
firmed false positive variants from the proband NGS
data (Figure 2B). Samples with the variant passing the
GATK hard filters are shown in blue, which can include
true variants with the potential that some are miscalled,

false positive variants. The samples that did not pass the
hard filters at the tested variant position are in red, these
are termed “wild type/non-variant” and can include sam-
ples that are truly wild type at the tested variant position
with the potential that some were actually miscalled, false
negative variants. Variant PLRD from the proband sample
are shown in gold. Variants that were called as homozy-
gous were not considered to be as prone to be false posi-
tive variants due to their generally higher total number of
variant containing reads and by default were excluded
from analysis but were displayed with a PLRD value of
zero. These single site histograms in Figure 2 show both
typical Bin 1 through 4 examples. In Bin 3 and 4, the
PLRD wild type/non-variant (red) distributions are
broader and/or closer to the proband variant PLRD for
sites and are more likely to be a proband false positive.

Comparison of VarBin to GATK VQSR
The VarBin method’s Bin values were compared to the
GATK’s VQSR score (VQSLOD) using two proband
derived variant sets, one set enriched for true variants and
one set enriched for false positive variants (same data sets
as used in Figure 1). Results for the enriched true variant
set (Figure 3A) show that of the approximately 20,000 var-
iant calls, Bins 1 through 4 had 85% (most likely true var-
iants), 14%, 0.2%, and 0.3% variants, respectively. Results
for the enriched false positive variant set (Figure 3B) show
that of the approximately 14,500 variant calls, Bins 1
through 4 had 17%, 40%, 25%, and 18% variants, respec-
tively. VQSLOD likelihood values for variants in the four
separate Bins for both data sets were spread into overlap-
ping distributions with limited correlation between the
VarBin method’s Bin number and VQSLOD.

Assessment of VarBin predictions
Sanger sequencing was performed on 98 variants in the
proband, the proband family members, and in unrelated
families as described in Methods (Table 1). These variants
included single nucleotide variants, insertions, deletions,
as well as homopolymer and repeat regions. Of the 71
de novo variants detected in the proband that were Sanger
sequenced, 58 were false positive variants, 4 could not be
accurately Sanger sequenced (due to polymerase slipping
or they resided in a homologous gene family), 9 were true
varaints. Interestingly, 8 of the 9 proband’s Sanger con-
firmed variants that appeared de novo were actually pre-
sent by Sanger sequencing in the proband’s family
members but these variants were not called variants in
their vcf files (non-variant), indicating that the proband
wasn’t actually de novo for those variants and that the Var-
Bin method helped detect these false negative variants. An
additional 27 variants (in Bin 1 or 2) in family members or
other unrelated individuals were Sanger sequenced to con-
firm these false negatives and to expand the VarBin study
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to other families. Combining all Sanger sequencing data
for a total of 94 variants (4 were unsuccessful for Sanger),
97%, 30%, 0%, and 0% of the Bin 1, 2, 3, and 4 variant
calls, respectively, were true variants (Table 1). The others
were Sanger confirmed as wild type sequence and are
considered false positive variants. Only one Bin 1 variant
was actually a false positive variant, while 10 of 32 Bin 2
variants were true variants.

Comparison of proband to background files
In addition to the VarBin method, the individual back-
ground files and the proband’s family members were
used to track the variant frequency and other parameters
(such as read coverage, quality information, bias values,
number of reads containing variants, tracking low total
read coverage depth). The total number of background
samples and family members, variant zygosity in the
background samples and family members, and which

samples had the same variant called as the proband were
tracked. This data highlighted how often a variant was
called in the background data set, whether the same var-
iant(s) was in an unaffected family member, whether it was
in families unaffected by the disease of the proband, and
whether other unaffected samples had the same genotype
(divergent from the expected Mendelian inheritance).
Other tabulated data used for variant prioritization
included low variant containing read depth, and low quality
scores. These variant calling metrics were collected for all
background individuals including proband family mem-
bers. Because low coverage depth or low quality positions
may lead to a missed variant (false negative variant) in a
family member which can conceal the true inheritance pat-
terns present at these sites. Using these data in the analysis
of the proband’s de novo variants indicated that approxi-
mately 25% were actually in a family member (confirmed
by Sanger sequencing) but were missed by the variant call-

Figure 1 Read coverage depth effect on likelihood scores. Each data point represents one variant change per one sample from the study family’s
genomes and 38 background data files. Blue data points passed the GATK best practice variant filters and are called variants in the vcf file. Red data
points are “non-variants” which did not pass these same filters. Homozygous variants were given an × axis value of zero to separate them from the
heterozygous variant distributions. Values beyond the plot axis limits are shown at the plot edges. A and B) Scatter plot of the Phred-scaled likelihood
ratio (PLR) versus coverage depth for two variant sets. A) Variant data set enriched for true variants. For this plot, variants in the study family proband
within chromosome 1 were limited to between 10 and 20% allele frequency in 1000 Genomes data (20,000 variants total). B) Variant data set enriched
for false positive variants. For this plot variants in the study family proband at chromosomes 1 - 22, then limited to variants not found in the 1000
Genomes data or either parent (14,500 variants total). C and D) Scatter plot of the Phred-scaled likelihood ratio divided by coverage depth (PLRD)
versus coverage depth for two variant sets. C) Data from panel A divided by coverage depth. D) Data from panel B divided by coverage depth.
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Figure 2 PLRD histograms by variant position and nucleotide change. Six example proband variants are shown with data from the
proband (gold bar with star), as well as the proband’s family and the background samples for the same variant change and position. The PLRD
score is plotted versus the sample count. Blue bars indicate for that sample, that variant passed the GATK best practices variant filters. The
samples with the red bars did not pass these same filters (wildtype/non-variant) and this variant was not called in their vcf file. The vertical black
lines are marking the 3 (dashed line) and 6 (dotted line) standard deviation from the average PLRD score using only the assumed wild type/
non-variant PLRD values (red bars, variant was not called). Bin numbers (as described in Methods) are given for each of the proband’s variants
shown. A) These two variant examples are called as Bin 1 and Bin 2 by the PLRD method and were Sanger verified as true variants. B) Examples
of variants from all Bins that were only detected as wild type sequence by Sanger sequencing (false positive variants).
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ing procedure (false negative varaints). By tracking these
parameters in family members as well as use of the VarBin
method, many false negative variants were identified within
this family.

Discussion
Variant prioritization of the thousands to millions of var-
iants in a typical gene discovery study is critical to pro-
vide focus on the most likely causative variants. As a
common step in the analytical process, variants from the
affected individual are screened against those found in
databases including the 1000 Genomes data and the
NHLBI ESP5400 exomes data. Variants are screened by a
low minor allele frequency or alternatively all known var-
iants are eliminated. The resulting set of rare or novel
variants typically include a much higher fraction of false
positive variants than are found in the initial list, since
sequence specific error rates are known to be chemistry,
instrument and method specific and false positive var-
iants are not commonly expected in the public databases.
The presented VarBin method as well as tracking

family member’s quality and bias data for the proband’s
variant facilitates variant prioritization by analyzing pre-
dictions of true variant versus false positive variants, the
predicted inheritance pattern, and the potential false
negative variants. These methods were tested using
whole genome sequence data from an example family of
four (one affected male proband and the unaffected par-
ents and brother), as well as utilizing a 38 sample back-
ground data set.
A number of parameters within GATK or other analysis

programs have been developed to evaluate Illumina var-
iants to identify false positive variants. These include qual-
ity by depth (QD), raw coverage depth (DP) and a set of
alignment bias parameters, but the most common is the
variant quality (QUAL) that is derived from a statistical
model which incorporates read mapping quality, base
quality, base alignment quality, coverage, and variant read
percentage [15]. The novel parameter in the VarBin
method is the variant-to-non-variant likelihood ratio
(PLR), which is related to the variant quality (QUAL) and
is derived from the same statistical model. The PLR is a
ratio of genotype likelihood (PL) values that are generated

Figure 3 Comparison of VarBin to VQSLOD. Variants were separated
into Bins using the VarBin method for true variant likelihood (Bin1 most
likely true variants, Bin 4 most likely false positive varaints). The Bin
groups are displayed in four separate histograms and the total number
and percentage of variants in each VarBin Bin group are shown. The
corresponding GATK variant quality score recalibration scores (VQSLOD)
for each of these Binned variants is plotted on the X-axis versus variant
count. Note the starred (*) axis numbers, indicate that the scale is
different than the other graphs in the figure. A) A variant set enriched
for true variants (approximately 20,000 variants called in the study family
proband chromosome one that were also found at between 10 and
20% in 1000 Genomes data set). B) A variant set enriched for false
positive variants (approximately 14,500 variants called in the proband’s
chromosome 1 - 22 that were not found in 1000 Genomes data or in
either parent).

Table 1 Sanger sequencing result is compared with the
VarBin variant classification Bin

Bin Sanger result Total* SNV Indel

Bin 1 true 33 23 10

false 1 1 -

Bin 2 true 10 8 2

false 23 21 2

Bin 3 true - - -

false 16 16 -

Bin 4 true - - -

false 11 11 -

*98 variants were sequenced in the proband, the proband’s family, or other
families in the background data sets as stated in the methods. Four of the 98
could not be Sanger sequenced and were excluded from this table (94 total
variants shown). SNV, single nucleotide variant; Indel, and insertion or deletion.
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by variant detection algorithms found in GATK or Sam-
tools. The PL values compare the three possible genotypes,
AA (reference-matching, i.e. wild type sequence), AB (het-
erozygous variant), or BB (homozygous variant) for a
given site and change. Unlike the related variant quality
score, QUAL, the PLR equation transitions smoothly from
negative to positive as the variant in question moves from
inferred false positive variant to inferred true variant. Also,
PLR does not include the variant prior probabilities
included in the calculation of QUAL.
There is a strong effect of read coverage depth on PLR.

As coverage drops, there is less confidence in calling a
putative variant as true or false positive, and thus PLR
approaches zero. Division of PLR by coverage (PLRD)
minimizes the coverage depth dependence. At PLRD
equals zero, there is an inferred 50% chance of a true var-
iant with an increasing probability of a true variant as the
PLRD value increases. (Of note, homozygous changes
were displayed with a PLRD of zero by default, to visually
separate them from the heterozygous variant values
focused on in this study, as heterozygous variants are
more susceptible to the influence of error prone positions
potentially causing a false positive variant).
PLRD values were compared between two subsets of

variants from the test family’s proband sample: a set
enriched for true variants and a set enriched for false posi-
tive variants. The enriched true variant set demonstrated
fairly distinct PLRD value groups for variants that did
(called variant in the vcf file) or did not pass (wild type/
non-variant) the GATK best practices hard filters for var-
iant calling. In contrast, the enriched false positive variant
set demonstrated wild type/non-variants that did not pass
filter overlapping into the pass filter variant range of
PLRD values (generally greater than zero). This indicates
more variability, or noise, in the PLRD for certain variant
sites. This increased noise is the result sequencing and
alignment errors, as well as error related changes in base
and alignment quality scores in the aligned read data used
to calculate PLRD. In addition, this PLRD variability was
more common for the false positive variants as verified by
Sanger sequencing.
Analyzing NGS read data (bam file) using the Broad

Institute iGV viewer allowed visual identification of several
common features of false positive variants including: fewer
variant containing reads compared to wild type reads (low
variant allele percentage), variant containing reads were all
from one direction (strand bias), the variant was in the
same position in all reads (read position bias), the preced-
ing two bases were the same base as the variant change
(sequence context), and many background samples had
some reads with the variant (variant may or may not have
passed GATK filters). In an effort to automate analysis of
the information gained from the iGV viewer comparisons
(between the family data and multiple background files) to

differentiate true variants from the more likely false posi-
tive variants, the VarBin method was developed. VarBin
analyzes heterozygous variant PLRD distributions at each
variant change and position, to compare the proband var-
iant to the family and background data. The chosen PLRD
Bin 1 (more likely a true variant) through Bin 4 (more
likely a false positive variant) heuristic was informed by
visual interpretation of alignment data as an indicator of
sequencing or alignment error and then verified by Sanger
sequencing data. Median and interquarile distances were
used to identify how much the proband’s variant differed
from the group of background samples PLRD values that
were wild type/non-variant.
A typical Sanger confirmed proband variant position

commonly had a tight distribution of PLRD values for all
the wild type/non-variant background samples, which
clustered near -3 PLRD. Commonly, the proband’s false
positive variants (Sanger verified as wild type) had lower
proband PLRD values (usually less than 10 PLRD) as well
as an increasingly broad distributions of background
sample’s wild type/non-variant PLRD values. The higher
the proband PLRD and the more separated from the dis-
tribution of the non-variant background PLRD values,
the more likely the proband variant was anticipated to be
a true variant.
To estimate the percentage of variants in Bins 1

through 4 that were true variants, Sanger sequencing was
performed on 71 of the proband’s de novo heterozygous
variants. Sanger sequencing for four variants was incon-
clusive due to Sanger sequencing or PCR issues, like
polymerase slipping or difficulty amplifying one gene out
of a homologous family of genes, indicating the difficulty
of both calling these variants within NGS data and San-
ger confirming these variants. An additional 27 Bin 1 and
2 variants were sequenced in the proband’s family mem-
bers or from the background samples. These variants
included single nucleotide variants, insertions, deletions,
and insertions or deletions at a homopolymer or repeat
region. All but one of the Bin 1 variants were Sanger con-
firmed. The exception variant’s PLRD value was near the
boundary between Bin 1 and 2 (10 PLRD, 8.28*IQD) and
this was the only Bin 1 variant where multiple PLRD
values exceeded zero for the background files with no
background variants passing filter. This indicates a posi-
tion prone to false positive variants. But since the pro-
band’s variant had a high probability to be true, greater
than 8.28*IQD from the mean and >10 PLRD, it was
included in Bin 1. This example highlights that VarBin
allows for Bin 1 variants even at sites prone to false posi-
tive variants (broad distribution of wild-type/non-variant
background PLRD values) if the variant PLRD value is
adequately separated from the background non-variant
PLRD values. Thus, VarBin is an alternative to other
methods that propose rejection of all variants in false
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positive prone regions or, reject variants at specific site/
nucleotide change combinations [22,23].
All Bin 3 or 4 variants were found to be false positives

variants by Sanger sequencing, indicating that Bin 3 and
4 may be combined into one bin. Sanger sequencing also
indicated that 30% of variants in Bin 2 were true variants.
The majority of the true Bin 2 variants present in other
family members were in Bin 1 for the proband (8/9
“de novo“ proband variants were also in one of the
parents). These true variants were originally called “wild-
type/non-variant”, so they were false negative variants.
The chosen GATK hard filters eliminated these variants,
while the VarBin method had put them in Bin 2, which
would be prioritized for further analysis since ~30% of var-
iants in Bin 2 are true variants. This indicates the VarBin
method’s potential for detection of false negatives within a
family or potentially within one sample. The majority of
false positive Bin 2 variants and the only Bin 1 false variant
had a polymer motif leading up to the change (e.g. GGT to
GGG). This motif is well known to lead to Illumina
sequence specific increased errors [4,6], and may help
further classify certain variants within Bin 2 with these
motifs as potentially false positive variants.
The VarBin method differs significantly from other

commonly used tools for false positive likelihood determi-
nation such as the GATK variant quality score recalibra-
tion (VQSR) [14]. VQSR uses a training set of variants
across the genome in the sample of interest to train a
Gaussian mixture model for true variant detection based
on several variant parameters of quality and bias. Unlike
VQSR, the presented VarBin method does not depend on
a model generalized over a broad range of many variants
and variant contexts. Instead this method evaluates each
variant site separately and uses multiple, locally sequenced
background samples to increase variant likelihood infor-
mation about each specific variant change and position,
even if the proband variant of interest was not called a var-
iant within a background sample (wild type/non-variant).
Results from the VarBin method were compared to
Phred-scaled VQSR likelihood ratios of a true-to-false
variant (VQSLOD) results for a set of proband variants
that were enriched for true variants or enriched for false
positive variants. For the enriched for true variant data,
the variants primarily scored as Bin 1 (85%) with only a
small number scored as Bin 3 or 4 (1%). For the enriched
false positive variant data set the majority of variants fell
in Bin 2 followed by 3 and 4. Each Bin consisted of a rela-
tively wide range of VQSLOD values, indicating limited
correlation of VarBin and VQSR methods for detection of
false positive variants.
Bin 1 variants are likely true variants due to the pro-

band variant PLRD score’s larger separation from the dis-
tribution of background samples’ wild type/non-variant
PLRD scores. In Bin 2, variants were separate enough

from the non-variant background samples to have a
probability of being true variants, but usually had one or
more factor(s) that could indicate a false positive variant,
such as read strand bias, read position bias, low quality,
and low count for variant containing reads. The median
VQSLOD value for the Bin 1 variants (8.2) corresponded
to an expected 87% true variant estimate. The Sanger
sequencing for this data set indicates a 93% true variant
result for Bin 1, but only 30% true variants in Bin 2. All
Bin 3 and 4 proband variants PLRD values were near or
within the range of background samples non-variants’
PLRD values, indicating that these are the most likely
false positive variants. All variants in Bins 3 and 4 were
confirmed to be wild type by Sanger sequence, and there-
fore false positive NGS detected variants. Thus, Bin 3 and
Bin 4 could possibly be merged into a single Bin of false
positive variants. The VQSLOD median value for Bin 4
variants (-7.5) corresponded to an expected 18% true var-
iants. The PLRD-based VarBin method presented in this
study appears to provide useful, improved segregation of
false positive variants (Bin 3 and 4) and true variant (Bin
1) calls, with Bin 2 being uncertain (containing true and
false positive variants). This indicates that only Bin 1 and
a portion of Bin 2 variants would be prioritized for
further analysis in gene discovery studies.

Conclusions
VarBin was created to classify false positive variants from
true variants in Illumina data sets. VarBin was also cre-
ated to automate the manual processes often used to ana-
lyze NGS data for visual indicators of false positive
variants. The VarBin method accurately Binned variants
into different levels of true variant likelihood, as con-
firmed by Sanger sequencing, where Bin 1 is most likely
true, Bin 3 and 4 were false positive variants, and Bin 2
was uncertain (70% false positive). In addition, Bin 2 var-
iants were commonly true if the same variant was seen in
Bin 1 for a family member, highlighting the usefulness of
family based data in false positive variant identification.
Of note, family data is not required for VarBin and Var-
Bin can classify insertions, frame shifts and deletions, as
well as single nucleotide variants. The PLRD and variant
filter parameter information for these “non-variants” is
useful for false negative variant detection in family mem-
ber samples used as background samples.
Future work on the VarBin method will focus on differ-

entiating true variants from false positive variants within
Bin 2, and converting the VarBin result from a discrete
Bin to a continuous parameter. Additional efforts will
focus on using VarBin to identify false negative variants
("non-variants” that did not pass filter but were Sanger
verified as true variants) in Bin 1 or 2. The VarBin method
could also be incorporated into the GATK VQSR method
for a potentially more accurate false positive variant
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detection. PLRD values for background files can also be
pre-calculated to speed analysis. Also, we will explore
using the VarBin method for other NGS platforms and
library preparation methods (such as for different targeted
capture methods). In conclusion, VarBin improves the
accuracy of classifying true variants and false positives var-
iants within Illumina NGS data based on the comparison
of the VarBin method to VQSR and VarBin predictions
being verified by the Sanger sequencing results.
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