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Abstract
1. Ongoing global warming and alterations in rainfall patterns driven by climate 

change are known to have large impacts on biogeochemical cycles, particu-
larly on drylands. In addition, the global increase in atmospheric nitrogen (N) 
deposition can destabilize primary productivity in terrestrial ecosystems, and 
phosphorus (P) may become the most limiting nutrient in many terrestrial eco-
systems. However, the impacts of climate change on soil P pools in drylands re-
main poorly understood. Furthermore, it is unknown whether biocrusts, a major 
biotic component of drylands worldwide, modulate such impacts.

2. Here we used two long- term (8– 10 years) experiments conducted in Central 
(Aranjuez) and SE (Sorbas) Spain to test how a ~2.5°C warming, a ~30% rainfall 
reduction and biocrust cover affected topsoil (0– 1 cm) P pools (non- occluded P, 
organic P, calcium bound P, occluded P and total P).

3. Warming significantly increased most P pools— except occluded P— in Aranjuez, 
whereas only augmented non- occluded P in Sorbas. The rainfall reduction treat-
ment had no effect on the soil P pools at any experimental site. Biocrusts in-
creased most soil P pools and conferred resistance to simulated warming for 
major P pools at both sites, and to rainfall reduction for non- occluded and oc-
cluded P in Aranjuez.

4. Synthesis. Our findings provide novel insights on the responses of soil P pools 
to warming and rainfall reduction, and highlight the importance of biocrusts as 
modulators of these responses in dryland ecosystems. Our results suggest that 
the observed negative impacts of warming on dryland biocrust communities will 
decrease their capacity to buffer changes in topsoil P driven by climate change.
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1  |  INTRODUC TION

Water and nitrogen (N) availability have been traditionally con-
sidered the main limiting resources for life in dryland ecosystems 
(Delgado- Baquerizo et al., 2013b; Robertson and Groffman, 2015; 
Sardans et al., 2008; Schlesinger et al., 1995), which cover 41% of 
terrestrial surface (Cherlet et al., 2018). Thus, it is not surprising to 
find that most research conducted so far on the impacts of ongo-
ing climate change on dryland biogeochemistry have focused on 
the responses of C and N (Delgado- Baquerizo et al., 2013a; Jiao 
et al., 2016; Nielsen and Ball, 2015). In recent years, however, there 
is a growing interest in understanding the role of P in drylands, par-
ticularly after studies suggesting that increases in aridity, a hallmark 
of climate change in drylands worldwide (Huang et al., 2015), im-
balance the proportion of N and P in the soil (Delgado- Baquerizo 
et al., 2013a; Jiao et al., 2016). Despite so, the impacts of climate 
change drivers such as warming and altered rainfall patterns on 
the complex diversity of P forms in dryland soils remain largely un-
explored (García- Velázquez et al., 2020) and have not, to the best 
of our knowledge, been assessed experimentally yet. This lack of 
knowledge limits our ability to incorporate changes in the availability 
of P and its impacts on processes such as productivity into models 
aiming to forecast ecosystem responses to climate change.

The inputs of P into the soils come mainly from parent rock 
weathering (Lajtha and Schlesinger, 1988; Walker and Syers, 1976) 
and, to a lesser extent, from deposition of the P present in atmo-
spheric dust (Okin et al., 2004). The latter is quite insoluble in the 
soil solution (Chen et al., 2006; Shafqat et al., 2016), but it could 
be an essential source of P in ecosystems limited by this macronu-
trient (Chadwick et al., 1999; Okin et al., 2004). Over 95% of soil 
total P is associated with primary or secondary minerals, constituted 
in organic forms or occluded by soil minerals and immediately un-
available for plants (Condron and Newman, 2011; Shen et al., 2011). 
Organic P has a key role in plant nutrition since it is transformed 
to inorganic P fractions through mineralization mediated by the 
release of phosphatase enzymes from microbes and plant roots 
(Condron et al., 2005; Turner and Engelbrecht, 2011). Both biologi-
cal (i.e. mineralization/immobilization) and geochemical (i.e. precip-
itation/dissolution and sorption/desorption) processes contribute 
to P availability (Cross and Schlesinger, 2001; Hou et al., 2018a; 
Vitousek et al., 2010), and are strongly dependent on precipitation 
and temperature (Belnap, 2011; Feng et al., 2016; Hou et al., 2018a). 
Increases in temperature have been shown to favour P sorption on 
secondary minerals and increase the occluded P (Hou et al., 2018a), 
and to reduce P availability due to the loss of soil moisture (Sardans 
et al., 2006; Sardans and Peñuelas, 2004). Moreover, low precipita-
tion blocks microbial activity, ion diffusion and nutrient uptake by 
plants (Belnap, 2011; Sardans and Peñuelas, 2004). Drier conditions 
thus promote a slowdown in P release due to decreased litter de-
composition rate and enzymatic activity, contributing to increases 
in soil humic compounds that keep P in less available forms (Sardans 
and Peñuelas, 2004). Finally, the synergistic effects of temperature 

and precipitation control the rates of solubilization and release of 
labile P bound to carbonates into the soil solution (Belnap, 2011). 
Thus, high temperatures and drier conditions, such as those ex-
pected for drylands under climate change (Greve et al., 2014; Huang 
et al., 2015), would deter both the increases in concentrations of 
soil carbonic acid and the decrease in soil pH, reducing the dissolu-
tion rate of carbonates and the transition of P to soil solution phase 
(Devau et al., 2010). However, we have no experimental evidence 
of temperature and precipitation effects on P availability in dryland 
soils.

The low moisture content of dryland soils favours that P inputs 
(from rock weathering, dry deposition and decomposition of litter and 
organic matter) are not washed to deeper horizons, and thus concen-
trate in the topsoil (Verrecchia et al., 1995; White et al., 2004). This 
makes soil P fractions sensitive to the activity of organisms living on 
the soil surface, such as biocrusts (communities composed by lichens, 
mosses, bacteria, cyanobacteria, fungi, algae and liverworts that are 
a major biotic feature of drylands worldwide; Weber et al., 2016). 
Biocrusts are known to influence soil P availability through secretion 
of organic acids, chelating agents and the excretion of H+ during 
respiration, which solubilize mineral bound P increasing available P 
(Baumann et al., 2017, 2019; Belnap, 2011). Furthermore, the micro-
topography created by biocrust constituents like lichens could facili-
tate the capture of silt and clay particles from dust (Fick et al., 2020), 
increasing soil water and nutrient contents (Delgado- Baquerizo 
et al., 2015; Eldridge et al., 2020), promoting higher rates of micro-
bial activity (Delgado- Baquerizo et al., 2015) and avoiding P losses 
via lixiviation (Belnap, 2011; Belnap et al., 2004). Different experi-
ments have shown how warming and altered rainfall regimes such 
as those forecasted under climate change can dramatically decline 
the cover and abundance of lichen-  and moss- dominated biocrusts 
(Ferrenberg et al., 2015; Ladrón de Guevara et al., 2018; Maestre 
et al., 2015), with cascading effects on the C and N cycles driven by 
this decline (Delgado- Baquerizo et al., 2014; Liu et al., 2016, 2017; 
Maestre et al., 2013; Reed et al., 2012). However, there is no experi-
mental evidence about whether dryland biocrusts can modulate all P 
soil fractions, which will determine its availability for plants at short, 
medium and long terms, in the topsoil under climate change.

Understanding how the interactions between biocrusts and cli-
mate change affect soil P fractions in drylands is essential to better 
comprehend its impacts on these ecosystems and their capacity to 
provide essential ecosystem services in a warmer world. However, 
few studies so far have evaluated how simulated climate change af-
fect soil P fractions in drylands, and these have been focused on 
a few P fractions (e.g. Olsen- P, NaOH- EDTA), have evaluated the 
effects of warming in isolation from other climate change drivers 
and have been conducted on dry- subhumid shrublands and for-
ests (e.g. Sardans et al., 2006, 2008; Sardans and Peñuelas, 2004; 
Zhang et al., 2014). Here we aimed to evaluate how warming (~2.5°C 
increase), rainfall reduction (~30% reduction) and biocrust cover 
(<20% vs. >50%) affect soil P pools (non- occluded P, organic P, cal-
cium bound P, occluded P and total P) on the top 1 cm of the soil and 
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their resistance to climate change in two semi- arid grasslands from 
central and southeastern Spain. We focus on the effects of warming 
and precipitation on soil depths which biocrust have the potential to 
alter. Still, we are aware that deeper depths have also the potential 
to be altered by these climatic variables. We tested the general hy-
pothesis that climate change and biocrusts will directly or indirectly 
affect to all major organic and mineral P pools because they are in-
terconnected by microbial processes (García- Velázquez et al., 2020). 
More specifically, we hypothesized that (a) soils under biocrusts will 
have higher concentration of both labile and stable P pools (Baumann 
et al., 2017, 2019); (b) warming and, to a lesser extent, rainfall re-
duction will positively affect both more labile (i.e. non- occluded P, 
organic P) and stable (i.e. calcium bound P and occluded P) P pools of 
surface soil layer influenced by biocrusts (Hou et al., 2018a; Sardans 
and Peñuelas, 2004); and (c) well- developed biocrusts will increase 
the resistance (according the Orwin and Wardle index; Orwin and 
Wardle, 2004) of all P pools to warming and, to a lesser extent, to 
rainfall reduction (Belnap, 2011; Delgado- Baquerizo et al., 2014).

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This research was conducted in two sites located in central 
(Aranjuez, 40°02′N 3°32′W; 590 m a.s.l.) and southeast (Sorbas, 
37°05′N 2°04′W; 397 m a.s.l.) Spain (Figure S1). Both sites have a 
Mediterranean semiarid climate, with an average annual tempera-
ture and rainfall of 15°C and 349 mm for Aranjuez and 17°C and 
274 mm for Sorbas, respectively, with precipitation falling mainly in 
autumn/winter and spring (Maestre et al., 2013). They have soils de-
rived from gypsum, classified as Gypsiric Leptosols (IUSS Working 
Group WRB, 2006), which have pH mean values of 7.0 and 7.5 in 
Aranjuez and Sorbas, respectively. Perennial plant cover is sparse 
(<40% at both sites) and dominated by the grass Stipa tenacissima L. 
and the shrubs Retama sphaerocarpa L. Boiss, Gypsophila struthium L. 
and Helianthemum squamatum (L) Dum Cours. In both places, open 
areas between plants patches are composed of well- developed BSCs 
dominated by lichens such as Diploschistes diacapsis (Ach.) Lumbsch, 
Squamarina lentigera (Weber) Poelt and Fulgensia subbracteata (Nyl.) 
Poelt (see Maestre et al., 2013 for a species checklist).

2.2  |  Experimental design and soil sampling

At each site, we established a factorial experimental design with 
three factors, each with two levels: biocrust cover (incipient bi-
ocrust communities with cover <20% vs. well- developed communi-
ties with cover >50%; Figure S2), warming (control vs. 1.98°C and 
1.39°C mean annual temperature increase for each study period in 
Aranjuez and Sorbas, respectively) and rainfall reduction (control vs. 
a ~30% rainfall reduction; Figure S3). Ten and eight replicated plots 
(1.25 × 1.25 and 1.2 × 1.2 m size in Aranjuez and Sorbas, respectively) 

per combination of treatments were established in Aranjuez and 
Sorbas, respectively. These plots were randomly placed either on in-
cipient biocrust cover (<20% of biocrust cover; hereafter low cover 
plots) or biocrust- dominated (>50% of biocrust cover; hereafter 
high cover plots) microsites resulting in a total of 80 and 64 plots in 
Aranjuez and Sorbas, respectively. The plots were carefully chosen 
to be comparable, with no a priori reason to attribute the observed 
differences in visible biocrust cover.

We simulated the average of predictions derived from six 
Atmosphere- Ocean General Circulation Models for the second half 
of the 21st century (2040– 2070) in central and south- eastern Spain 
(De Castro et al., 2005). To achieve such degree of warming, we 
used open top chambers (OTCs) of hexagonal design with sloping 
sides of 40 cm × 50 cm × 32 cm. Both the design and installation of 
the open top chambers were carried out in such a way that reduced 
undesirable experimental artefacts (Hollister and Webber, 2000). 
Some studies have reported the impact of the warming methodol-
ogy on soil moisture (see Bokhorst et al., 2016; Klein et al., 2005; 
Reed et al., 2016). However, the values of soil moisture regis-
tered during the experiment (MoistureRR = 0.09 ± 0.06 m3 m−3 soil; 
0.08 ± 0.05 m3 m−3 soil and MoistureWA+RR = 0.09 ± 0.06 m3 m−3 soil; 
0.08 ± 0.05 m3 m−3 soil in Aranjuez and Sorbas, respectively) reflect 
that OTCs had minor effects on our study.

Although future rainfall forecasts for our study areas are uncer-
tain, most models estimate significant reductions in the total amount 
of rainfall, particularly during spring and autumn (between 10% and 
50%; De Castro et al., 2005; Giorgi and Lionello, 2008; IPCC, 2021). 
Rainfall reduction was achieved using passive rainfall shelters (RS), 
which allowed to reduce ~33% and ~36% of rainfall in Aranjuez 
and Sorbas, respectively (Maestre et al., 2013). We continuously 
monitored the effects of treatments on soil temperature (0– 2 cm 
depth) and soil moisture (0– 5 cm depth) using automated sensors 
(HOBO Pro v2 Temp/RH and H8 Data Loggers, Onset Corporation, 
Bourne, USA and ECH2O humidity sensors, Decagon Devices Inc.). 
Additional details of the experimental design can be found in Escolar 
et al. (2015) and Maestre et al. (2013).

The experimental plots kept a minimum separation of 1 m to 
ensure sampling independent areas. The full experiments have 
been running continuously since November 2008 and May 2010 in 
Aranjuez and Sorbas, respectively. Since the beginning of the ex-
periment, we carried out six samplings in Aranjuez (sampling years: 
2009, 2011, 2012, 2013, 2015 and 2017), and four samplings in 
Sorbas (sampling years: 2011, 2013, 2015 and 2017). At each sam-
pling, composite soil samples (0– 1 cm depth) were obtained in five 
selected plots per combination of treatments. We chose this depth 
because it the first top cm of topsoil is considered as a ‘critical zone’ 
in drylands (see Pointing and Belnap, 2012), where most exchanges 
of matter and energy between the atmosphere and the soil take 
place, and because it is a depth largely affected by biocrust activity 
(Belnap et al., 2003; Maestre et al., 2013; Weber et al., 2016). These 
five sampled plots were randomly selected in the first sampling 
years. However, and to minimize the disturbance impact of sampling 
on the same plots, alternated samples were selected in subsequent 
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sampling years. Visible biocrusts were carefully removed from the 
soil before sieved (2- mm mesh). After sieving, soil samples were air 
dried for 1 month and kept in polyethylene bags until laboratory 
analyses.

2.3  |  Assessing soil P fractions

We quantified both labile and more stable P pools using the modified 
sequential extraction method of Tiessen and Moir (1993), which is 
based on the Hedley fractionation technique (Hedley et al., 1982). 
This extraction estimates different P fractions of decreasing bioa-
vailability. Inorganic P (Pi), extracted with ion exchange resins (Resin 
Pi), represents the most bioavailable P fraction, which is absorbed 
on surfaces of soil crystalline compounds. Bicarbonate- extractable 
P is weakly absorbed by soil colloids and it is still available for plant 
uptake. Both Pi and organic P (Po) extracted with NaOH are strongly 
chemisorbed by soil Fe- Al components, and are not considered im-
mediately plant- available P. Finally, the procedure ends with the 
extraction of the most stable forms of P, HCl- extractable Pi, which 
is typically associated to Ca in soils, and residual P, which repre-
sents the P pool from the primary mineral such as apatite (Hedley 
et al., 1982; Tiessen et al., 1984).

In short, 0.5 g of soil samples were placed in 50 ml polyethylene 
centrifuge tubes together with 30 ml of demineralized water and 
two 4 × 2 cm anion- exchange membranes (AMI- 7001S, Membranes 
International Inc., New Jersey). After tubes were shaken, resins 
were removed and placed in a clean 50 ml tubes adding 0.7 M NaCl 
to extract PO3−

4
 (Guppy et al., 2000). Then, soil samples were se-

quentially extracted with 30 ml aliquots of 0.5M NaHCO3 (adjusted 
to pH 8.5), 0.1 M NaOH, 1 M HCl and 0.5 M H2SO4 after a 550°C soil 
combustion for 1 h. For each extraction, tubes were shaken for 16 h 
and then centrifuged at 900 g for 30 min (Guppy et al., 2000). The 
concentration of PO3−

4
− P in the supernatant was used to estimate 

Pi associated with each P fraction. Po fractions were estimated by 
subtracting Pi from the total P obtained after digesting the Po into 
Pi in the 0.5M NaHCO3, and 0.1M NaOH extracts. We used an alka-
line digestion with 0.148M K2S2O8 and 3M NaOH for the NaHCO3 
extract (NaHCO3- Pt), and an acid digestion with (NH4)2S2O8 and 
0.9M H2SO4 for the NaOH extract (NaOH- Pt). Both digestions were 
made in the autoclave at 121°C for 1 h and 1 h 30 min, respectively 
(Tiessen and Moir, 2006). For the determination of residual P, soil 
samples were heated in a furnace at 550°C for 1h. Then, the burned 
soil residue was extracted with 5 ml of 0.5 M H2SO4, shaken for 1h, 
filtered and the PO3−

4
 concentration measured in this extract (Chen 

et al., 2015). We used the Malachite Green Method (Fernández 
et al., 1985; modified from Hess and Derr, 1975) to estimate PO3−

4
− P 

concentration in the extracts. Malachite green was found to be the 
most sensitive basic dye for phosphate determination (Itaya and 
Ui, 1966). The pH of the extracts was adjusted to neutral pH to reach 
a correct colour development of samples as necessary. The absor-
bance of samples was measured at 655 nm wavelength by triplicate 
in a microplate reader (Jupiter, Asys Hitech GmbH).

The different P fractions were grouped according to the Walker 
and Syers's (1976) model. We defined calcium P (Ca- P) as the inor-
ganic P extracted with HCl (1M), and occluded P as the residual P 
fraction derived from primary minerals such as apatite. We estimated 
non- occluded P (bioavailable P) as the sum of resin- Pi, NaHCO3- Pi 
and NaOH- Pi, whereas organic P (Po) was the sum of NaHCO3- Po 
and NaOH- Po (Feng et al., 2016; Walker and Syers, 1976). We will 
refer to these grouped functional fractions as ‘P pools’ (Cross and 
Schlesinger, 1995; Hou et al., 2018b) to differentiate them from the 
‘P fractions’ originated by the original fractionation procedure.

2.4  |  Estimating the resistance of soil P pools to 
simulated climate change

Resistance is defined as the degree to which a variable is changed 
due to a disturbance (Pimm, 1984). To assess whether biocrusts in-
crease the resistance of soil P pools (non- occluded P, organic P, Ca- P, 
occluded P and total P) to simulated climate change, we calculated 
the Resistance Index (RI) of Orwin and Wardle (2004):

where D0 is the difference of concentrations in a given P pool with 
respect to the control (C0) before starting the experimental treatments 
(i.e. warming and rainfall reduction) and at the end of the applied pe-
riod of each treatment for each soil sample. To calculate the resistance 
index, we selected the samples of the warming and rainfall reduction 
treatments, both before (2008 and 2010 in Aranjuez and Sorbas, re-
spectively) and at the end (2017 in both Aranjuez and Sorbas) of the 
treatment. Values for RI are in the range of −1 and +1, which indicate 
minimal and maximal resistance to disturbance of each treatment, 
respectively.

2.5  |  Statistical analyses

To test the effect of biocrust cover, warming (WA), rainfall reduction 
(RR) and their interactions on the soil concentrations of the differ-
ent P pools (hypotheses i and ii), we first checked for normality and 
homogeneity of variances in our data, and used the log transforma-
tion (and the Tukey's Ladder of Powers transformation when the log 
transformation failed) to normalize them. Giving the singularity of the 
sampling protocol chosen to minimize plot disturbance, we applied 
repeated measurements ANOVA only in those plots sampled at least 
three times. The time variable corresponded to the first, second and 
third time a single plot was sampled. For repeated measurements 
ANOVA, we tested the sphericity assumption using the Mauchly 
sphericity test. When the sphericity assumption was rejected (i.e. 
Mauchly's test, p < 0.05), we applied the Greenhouse– Geisser sphe-
ricity correction. The degree to which all soil P pools changed due to 
a WA and RR treatments (resistance index) of biocrusts (hypothesis 

RI
(
t0

)
= 1 −

2||D0
|
|(

C0 +
||D0

||
) ,
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iii) were tested through permutational multivariate analysis of vari-
ances (PERMANOVA, replicate permutations = 999; function Adonis 
from the vegan package (Oksanen et al., 2012). This method does 
not rely on the normality assumption of ANOVA and can handle ex-
perimental designs such as those used here. All analyses were con-
ducted in R version 4.1.1 (R Core Team, 2020).

3  |  RESULTS

3.1  |  Simulated climate change effects

We found a high temporal variability for all P pools at both study 
sites, independent of climate change treatments and biocrust de-
velopment (Figure 1). Soil concentrations of non- occluded P, Po, Ca- 
P, occluded P and total P were significantly higher in high biocrust 
cover plots at both study sites (Figure 1; see Table S1 for F-  and p- 
values; Tables S3 and S4 for means and standard errors of the differ-
ent P pools/fractions concentrations, respectively).

Warming significantly increased the concentration of non- 
occluded P, Po, Ca- P and total P (Table S1; Figure 1a), the later 
through their effects on both NaHCO3 Pi and NaOH Po in Aranjuez 
(see Table S4 for F-  and p- values and Table S5 for means and stan-
dard errors of the different P fractions concentrations). Occluded 
P was not significantly related to warming at this site. In contrast 
to Aranjuez, we only detected a significant warming effect on non- 
occluded P at Sorbas (Table S1, Figure 1b), which was driven by the 
increase in NaHCO3 extracted Pi in warmed plots (Table S4 for F-  
and p- values; Table S5 for means and standard errors of the different 
P fractions concentrations). Overall, rainfall reduction did not have 
any significant effect on soil P pools, neither Aranjuez nor in Sorbas 
(Table S1 for F-  and p- values; Table S3 for means and standard errors 
of the different P pools concentrations).

3.2  |  Resistance of P pools to climate change

The resistance of all major P pools (i.e. non- occluded P, Ca- P, oc-
cluded P and total P) to warming was lower in low than in high bi-
ocrust cover plots in Aranjuez, whereas in Sorbas this response was 
only found for Ca- P and Total P (Table S2 for Pseudo F-  and p- values, 
Figure 2). The differences between low and high biocrust cover 
plots in non- occluded and total P pools were driven by changes in 
the NaHCO3- Pi, NaHCO3- Pt fractions in Aranjuez, and in NaOH- Po 
and NaOH- Pt fractions in Sorbas (see Table S6 for Pseudo F-  and 
p- values). We found a significantly higher resistance to rainfall re-
duction in soils under well- developed biocrusts for non- occluded 
and occluded P in Aranjuez (Table S2 for Pseudo F-  and p- values, 
Figure 2). In Sorbas, we did not find any significant effect of biocrust 
cover on resistance to rainfall reduction for the major P pools. 
However, we found higher resistance in soils under well- developed 
biocrusts for the NaOH- Po fraction at this site (Table S6 for Pseudo 
F-  and p- values).

4  |  DISCUSSION

Our climate change treatments affected all soil P pools, including 
organic, inorganic and recalcitrant pools. Well- developed biocrusts 
are known to confer resistance to the effects of climate change on 
biotic and abiotic soil attributes (i.e. N and C cycle, soil respiration, 
abundance and activity of microbial communities, etc.) in drylands 
(Delgado- Baquerizo et al., 2016; Escolar et al., 2015), and play major 
roles in the transformation of inorganic to organic P pools in Central 
European forests (Baumann et al., 2017). Our results expand find-
ings from previous studies and provide novel evidence showing the 
key role biocrusts play regulating responses of soil P pools to climate 
change in drylands.

4.1  |  Biocrust impacts on soil P pools and their 
responses to simulated climate change

The degree of biocrust development had a significant effect on 
soil P pools independently of simulated climate change treatments, 
supporting our first hypothesis (i.e. soils under biocrusts will have 
higher concentration of both labile and stable P pools). Former 
studies have reported the enrichment in total organic P under bi-
ocrusts compared with bare soil (Baumann et al., 2017, 2019; Belnap 
et al., 2003; Pointing and Belnap, 2012; Reynolds et al., 2001). Our 
findings expand these findings to include all P fractions. Biocrusts 
can contribute extra amounts of P to the soil through the addition of 
biocrust metabolites (e.g. phosphatidyglycerol, inositol phosphate, 
phosphatidylserine; Dembitsky et al., 1991) and dead biomass, and 
by favouring organic matter decomposition and microbial activity 
and consequently, all types of P- releasing processes (Belnap, 2011; 
Cross and Schlesinger, 2001; Shen et al., 2011). Even so, possible 
differences on the substrate properties, not apparently visible, that 
may affect the development of the biocrust cover could also contrib-
ute to the differences found.

Our results partially support our third hypothesis (i.e. that well- 
developed biocrusts increase the resistance of P pools to warming), 
as biocrusts increased the resistance of some P pools to warming. 
Biocrusts did not confer more resistance to warming for organic P, 
something probably related with the reductions in biocrust cover 
and photosynthetic activity induced by this treatment (Ladrón de 
Guevara et al., 2014, 2018; Figure S5). One would expect that the 
largest microbial abundance typically observed under biocrusts 
(Castillo- Monroy et al., 2011; Delgado- Baquerizo et al., 2013b) could 
promote higher immobilization rates and consequently higher resis-
tance of the organic P in these soils. However, the warming- induced 
reductions in biocrust cover observed in our experiments (Figure S5) 
may have reduced this effect. Biocrusts also conferred resistance 
to rainfall reduction in the mineral P pools in Aranjuez. Both micro-
bial solubilization through organic acids and chemical weathering of 
primary minerals could be favoured due to the retention of water 
inlets under a well- developed biocrust compared with an incipient 
biocrust. In contrast, the frequent dew events at Sorbas favour less 
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F I G U R E  1  Concentrations (mean + standard error) of non- occluded P, organic P, calcium bound P, occluded P and total P for control and 
simulated climate change treatments: warming (WA), rainfall reduction (RR) and its interaction (WA+RR) in low (right column) and high (left 
column) biocrust cover plots in Aranjuez (a) and Sorbas (b), respectively.
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stressful conditions for biocrust constituents, which may minimize 
the impact of the simulated precipitation reduction treatment at this 
experimental site (Ladrón de Guevara et al., 2014; Uclés et al., 2015).

4.2  |  Warming affects soil P pools

Our study provides experimental evidence that soil warming may 
increase topsoil P pools concentrations in semi- arid grasslands (hy-
pothesis ii, i.e. warming and to a lesser extent, rainfall reduction will 
positively affect to both more labile and stable P pools). Although 
the mechanism explaining the observed changes in soil P pools is 
still poorly understood, the increase in soil total- P with warming 
observed may be related to the large decline in biocrust cover ob-
served with warming in the high biocrust cover plots in Aranjuez 
(>80% reduction over the first 8 years of the experiment; Ladrón 
de Guevara et al., 2018). Thus, P from dead lichen tissues is likely 
transferred to the topsoil and incorporated to occluded and non- 
occluded forms through biological and chemical transformations 
(García- Velázquez et al., 2020). Strong evidence of rapid lichen litter 
decomposition increased by warming in the same area of our study 
has been recently found (Berdugo et al., 2021). Taken together, 
these results suggest that the microbial community could transfer 
mid- term available P coming from lichen tissues to more labile ones 
through microbial P solubilization from occluded P contributing to 
the increase in P available for plants. Additionally, soil warming could 
increase the mineral weathering rate of apatite by microorganisms 
(White et al., 1999; White and Blum, 1995), accelerating the kinetics 
of soil chemical reactions and contributing to new P inputs to the soil 
(Dixon et al., 2016).

Previous experiments conducted in drylands have reported that 
simulated warming has been found to reduce microbial diversity and 
biomass (DeAngelis et al., 2015; Delgado- Baquerizo et al., 2014; 
Maestre et al., 2015), the cover of biocrust- forming lichens (Ladrón 
de Guevara et al., 2018) and higher UV degradation of plant and li-
chen litter (Almagro et al., 2015; Belnap, 2011; Berdugo et al., 2021; 
Castenholz and Garcia- Pichel, 2012). The death of biocrust- forming 
lichens (including the release of immobilized P by the microbes) and 
the subsequent decomposition of their tissues mediated by warming 
(Berdugo et al., 2021; Ladrón de Guevara et al., 2018) may explain 
the increase in labile P and organic P in the topsoil in our experiment. 
The parallel increase in mineral recalcitrant pools, such as Ca- P and 
occluded P with warming, is less obvious, but P solubilizing bacteria 
and fungi, which are responsible of the transfer of P from mineral 
to organic pools, may be less favoured with the increase in available 
inorganic and organic P observed under warming (García- Velázquez 
et al., 2020).

Rainfall reduction had no significant effects on P pools, in partial 
agreement with the low impacts of this treatment found by Sardans 
et al. (2006). Turner et al. (2003) suggested that microbes can trans-
fer substantial amounts of P to the soil due to lysis of bacterial cells 
after rapid rewetting of dry soils promoted by the intermittent water 
inputs in drylands. We thought that our rainfall reduction treatment 
might reflect this microbial effect. However, our data did not sup-
port this mechanism, and the expected transfer of microbial immo-
bilized P to non- occluded P triggered by reduced soil moisture (Luo 
et al., 2020) did not show up in our experiment. Instead, our data 
support that soil micro- organisms are highly resistant to drought in 
drylands (Delgado- Baquerizo et al., 2014; Yuste et al., 2014).

Interestingly, our warming treatment had minor effects in Sorbas. 
This remarkable difference respect to Aranjuez could be explained 
by the large influence that local atmospheric dust deposition, dew in-
puts and soil erosion have on the chemical composition of topsoil in 
dryland and biocrust- dominated ecosystems (Reynolds et al., 2001; 
Wang et al., 2017). First, Mediterranean areas are significantly af-
fected by the Saharan dust deposition (Okin et al., 2004; Rodriguez- 
Navarro et al., 2018). Particularly, the Southeast of Spain, where 
Sorbas is located, is the area of the Iberian Peninsula most affected 
by Saharan dust intrusions (Israelevich et al., 2012; Morales- Baquero 
and Pérez- Martínez, 2016; Pey et al., 2013; Rodríguez et al., 2010; 
Russo et al., 2020). Morales- Baquero and Pérez- Martínez (2016) 
estimated that large amounts of dust particles (75 kg ha−1 year−1) 
and P (0.07 kg ha−1 year−1) from the Sahara Desert are deposited on 
Southeast Spain. In support of this, we found that our 0– 1 cm soils 
fit well with the typical gypsiferous soil profile in Aranjuez, but not 
so well in Sorbas, where the mineral composition was dominated by 
calcite and silicates, including illite, kaolinite and palygorskite which 
are the dominant mineral components of Saharan dust (Ehrmann 
et al., 2017; Formenti et al., 2014; Gelado- Caballero, 2015; Marsden 
et al., 2019; Figure S4). The higher frequency of atmospheric dust 
deposition events on Sorbas than in Aranjuez could thus reduce and/
or nullify the effects of the experimental treatments of warming and 
rainfall reduction. Biocrusts also capture of atmospheric dust con-
taining P and clay particles (Belnap, 2011; Reynolds et al., 2001), 
contributing to the thickening of soil P reservoirs and subsequently 
to the fertility of this ecosystem (Belnap, 2011). Second, the water 
inlets via dewfall in Sorbas, which are a major water source for 
biocrust- forming organisms such as lichens (Chamizo et al., 2021; 
Ladrón de Guevara et al., 2014), are much more numerous in Sorbas 
than in Aranjuez due to its proximity to the sea (Ladrón de Guevara 
et al., 2014). Uclés et al. (2013) showed that dewfall condensation 
was observed 78% of the nights in a study site near Sorbas. Thus, 
the impact of the warming treatment could be lower, and the con-
ditions less stressful for biocrusts in Sorbas than in Aranjuez, where 

F I G U R E  2  Differences between high and low biocrust cover plots in the resistance to warming and rainfall reduction of different P pools 
in Aranjuez and Sorbas. To calculate the resistance index (RI), we selected the warming and rainfall reduction samples, both before (2008 
and 2010 in Aranjuez and Sorbas, respectively) and at the end (2017 in both Aranjuez and Sorbas) of the climate change treatments. Values 
for RI are in the range of −1 and +1, indicating minimal and maximal resistance to disturbance of each treatment, respectively. Differences 
between biocrust covers (p < 0.05, after PERMANOVA test) are indicated by different lowercase letters.
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microbes may keep the P mineral solubilizing activity during longer 
periods of time. Additionally, heavy rainfall events produced by 
extreme atmospheric phenomena are more frequent in coastland 
areas of southern and eastern Mediterranean than in inland areas 
of the Iberian Peninsula (Millán et al., 1995; Pastor et al., 2000; 
Riesco Martín et al., 2013). This may have eroded the soil surface in 
Sorbas, inducing higher variability in the different P pools evaluated 
between years.

5  |  CONCLUSIONS

Our study is the first to experimentally assess the joint effects of 
major climate change drivers and biocrusts on major soil P pools in 
drylands. Our results highlight the important role of biocrusts in 
regulating major P pools in dryland soils, and in increasing the resist-
ance of the P cycle to the impacts of simulated climate change. We 
also found large impacts of warming on the P fractions evaluated, 
with significant increases in major pools (such as non- occluded P, 
organic P, Ca- P and total P, which may be related both the decom-
position of BSC tissues; Berdugo et al., 2021; Ladrón de Guevara 
et al., 2018) and the decrease in the activity of P solubilizing bacteria 
and fungi responsible for the transfer of mineral to organic P pools 
(García- Velázquez et al., 2020). Given the observed negative impacts 
of warming and altered rainfall regimes on the diversity, abundance 
and composition of dryland biocrust communities (Ferrenberg 
et al., 2015; Guan et al., 2017; Ladrón de Guevara et al., 2018), 
their capacity to buffer changes in topsoil P pools driven by climate 
change will likely be significantly diminished in a warmer and more 
arid world.
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