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Abstract
Larger, more frequent wildfires in arid and semi- arid ecosystems have been associ-
ated with invasion by non- native annual grasses, yet a complete understanding of 
fine fuel development and subsequent wildfire trends is lacking. We investigated 
the complex relationships among weather, fine fuels, and fire in the Great Basin, 
USA. We first modeled the annual and time- lagged effects of precipitation and tem-
perature on herbaceous vegetation cover and litter accumulation over a 26- year 
period in the northern Great Basin. We then modeled how these fine fuels and 
weather patterns influence subsequent wildfires. We found that cheatgrass cover 
increased in years with higher precipitation and especially when one of the previous 
3 years also was particularly wet. Cover of non- native forbs and native herbs also 
increased in wet years, but only after several dry years. The area burned by wildfire 
in a given year was mostly associated with native herb and non- native forb cover, 
whereas cheatgrass mainly influenced area burned in the form of litter derived from 
previous years’ growth. Consequently, multiyear weather patterns, including pre-
cipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year 
because of the time needed to develop these fine fuel loads. The strong relationship 
between precipitation and wildfire allowed us to expand our inference to 10,162 
wildfires across the entire Great Basin over a 35- year period from 1980 to 2014. 
Our results suggest that the region’s precipitation pattern of consecutive wet years 
followed by consecutive dry years results in a cycle of fuel accumulation followed by 
weather conditions that  increase the probability of wildfire events in the year when 
the cycle transitions from wet to dry. These patterns varied regionally but were 
strong enough to allow us to model annual wildfire risk across the Great Basin based 
on precipitation alone.
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1  | INTRODUCTION

Wildfire frequencies have increased in many arid and semi- arid re-
gions of the world, partly because of changes in climate, vegetation, 
and land use (Brooks et al., 2004; Krawchuk, Moritz, Parisien, Van 
Dorn, & Hayhoe, 2009; Dennison, Brewer, Arnold, & Moritz, 2014). 
Desert shrublands are historically fuel limited because sparse peren-
nial bunchgrasses and shrubs compete for limited water and other re-
sources, resulting in barren interspaces among plants maintained, in 
part, by biological soil crusts (Reisner, Grace, Pyke, & Doescher, 2013). 
Livestock grazing and other soil disturbances have facilitated invasion 
of these interspaces by annual species, changing the amount and con-
tinuity of fine fuels in some shrublands (Davies & Nafus, 2013; Leffler, 
Monaco, James, & Sheley, 2016; Reisner et al., 2013). Greater road 
access and human use of desert environments have helped spread in-
vasive plants and created new wildfire ignition sources (Mann et al., 
2016; Pyke, Chambers, Beck, Brooks, & Mealor, 2016; Van Linn et al., 
2013). A positive feedback between fire- prone non- native annual 
grasses and wildfire has resulted in a grass–fire cycle in many arid 
and semi- arid environments around the world (D’Antonio & Vitousek, 
1992). This combination of increased fine fuel, fuel continuity, and 
ignitions, coupled with climate drivers, has resulted in more fire 
starts, larger fires, longer fire seasons, and shorter fire return intervals 
(Abatzoglou & Kolden, 2011).

The Great Basin, the largest cold desert in North America 
(505,772 km2), is a prime example of a shrubland ecosystem, that is 
changing rapidly because of increased size and frequency of wildfires. 
The semi- arid climate of the Great Basin supports vast salt desert 
scrub (e.g., Atriplex spp.) and sagebrush (e.g., Artemisia spp.) shrub-
lands. However, there is considerable evidence that invasion of cheat-
grass (Bromus tectorum) and other non- native annual species has led 
to a grass–fire cycle that has increased fire frequency in the northern 
Great Basin up to four times historic levels (Balch, Bradley, D’antonio, 
& Gómez- Dans, 2013) and steadily transformed native shrubland 
habitats into cheatgrass- dominated grasslands (Brooks et al., 2004; 
D’Antonio & Vitousek, 1992). This conversion can occur after a single 
fire but is especially likely after repeated fires (Chambers et al., 2014). 
The altered fire regimes and loss of sagebrush habitats in the Great 
Basin have threatened many native species and fostered ambitious 
conservation strategies for protecting remaining habitat from wildfire 
and restoring native shrublands after fire (Arkle et al., 2014; Coates 
et al., 2016; Knick, Dobkin, Rotenberry, Schroeder, & Vander Haegen, 
2003).

Non- native annual grasses and forbs in the Great Basin are often 
most successful in hotter, drier locations and after disturbances that 
remove perennial grasses, alter biological soil crusts, or otherwise 
expose soils (Haubensak, D’Antonio, & Wixon, 2009). Part of this 
competitive advantage relates to differences in life history traits be-
tween non- native annual and native perennial grasses (Alba, Skálová, 
McGregor, D’antonio, & Pyšek, 2015). For example, cheatgrass, which 
originated from Eurasia and arrived in North America in the late 1800s, 
is successful within the Great Basin by germinating earlier (i.e., early fall 
through early spring), growing faster (including at cooler temperatures), 

and producing more seed than native perennials (James, Drenovsky, 
Monaco, & Rinella, 2011; Mack & Pyke, 1983). That rapid growth 
and high densities of cheatgrass enable it to compete effectively with 
native perennials for limited resources like water and nutrients, par-
ticularly in shallow soils (James et al., 2011). Cheatgrass produces vi-
able seed by late spring and early summer (Chambers, Roundy, Blank, 
Meyer, & Whittaker, 2007; Chambers et al., 2016; Novak & Mack, 
2001) well before many native grasses and forbs. These life history 
strategies result in early senescence, which creates a dry, spatially 
continuous fuel bed during the hottest, driest part of the year when 
wildfires in the Great Basin are most common (Davies & Nafus, 2013). 
When summer wildfires burn through areas infested with cheatgrass, 
the exposed soil creates an ideal environment for cheatgrass seed to 
germinate upon the arrival of fall and winter precipitation. The rapid 
vegetative growth of cheatgrass suppresses growth and recovery of 
native perennial plants, particularly in parts of the Great Basin where 
precipitation and native perennial bunchgrass cover are low (Brummer 
et al., 2016). Hence, the propensity of cheatgrass to dominate follow-
ing fire is highest in warmer, drier locations (Taylor, Brummer, Rew, 
Lavin, & Maxwell, 2014) as well as where prefire biological soil crust 
cover is low and native perennial grasses and forbs are depleted 
(Chambers et al., 2014; Shinneman & Baker, 2009).

Interannual variability in germination, growth, establishment, and 
biomass of grassland and shrubland plants can be substantial and is 
related to both precipitation and temperature (Clarke, Latz, & Albrecht, 
2005; Holmgren et al., 2006; Horn, Bishop, & Clair, 2017; Horn, 
Nettles, & Clair, 2015; Hsu & Adler, 2014; Sala, Gherardi, Reichmann, 
Jobbagy, & Peters, 2012). In the Great Basin, adequate precipitation 
and soil moisture in the fall or winter and spring are critical for ger-
mination and growth of annual grasses, particularly when tempera-
tures are favorable (Bradley, Curtis, & Chambers, 2016; Mack & Pyke, 
1983). Hence, years with above- average precipitation generally have 
higher cover and biomass of cheatgrass (Chambers et al., 2007). As 
this biomass senesces and dries, it accumulates as litter, which can 
persist over several years. Litter helps entrap the next generation of 
annual plant seed and can further promote annual plant establishment 
(Jones, Chambers, Johnson, Blank, & Board, 2015). Consequently, high 
cheatgrass biomass has been observed 2 years after an unusually wet 
winter and spring (Bradley & Mustard, 2005). The combination of high 
annual grass biomass and multiyear accumulation of litter may greatly 
increase the probability of wildfire and drive the grass- fire cycle of the 
Great Basin (Balch et al., 2013). This pattern may be reversed, how-
ever, during extended periods of drought when many annual species 
have low germination and survival (Bradley et al., 2016).

Despite considerable evidence that the cheatgrass–fire cycle has 
led to a new fire regime in the Great Basin (Balch et al., 2013; Brooks 
et al., 2004; D’Antonio & Vitousek, 1992), a complete understanding 
of how fine fuels develop and influence wildfire patterns is lacking. 
Our study has three objectives aimed at advancing understanding of 
the effects of multiyear weather on fine fuels and wildfire in the Great 
Basin (Figure 1). Objective 1 was to assess the relationships among 
weather, herbaceous vegetation, and annual wildfire characteristics in 
a northern Great Basin landscape using long- term (26 year) field data. 
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Objective 2 was to examine the relationship between weather and an-
nual wildfire characteristics across the entire Great Basin over the last 
35 years. Objective 3 was to demonstrate how these analyzes could 
create a spatially explicit wildfire risk assessment based on weather 
data alone. Our hypotheses were as follows: (1) higher than normal 
winter and spring precipitation increase herbaceous plant cover, par-
ticularly cheatgrass, and other non- native annual species (Hsu, Powell, 
& Adler, 2012; Rao & Allen, 2010; Robinson et al., 2013); (2) higher 
annual cheatgrass cover is associated with more wildfires and larger 
area burned (D’Antonio & Vitousek, 1992); and (3) years with above- 
average antecedent precipitation, especially 1–2 years prior, result in 
more wildfires and more area burned (Balch et al., 2013; Billings, 1994; 
Knapp, 1998; Littell, McKenzie, Peterson, & Westerling, 2009). These 
hypotheses were relevant for each of our objectives, but we were only 
able to test the first two hypotheses in our focal study area in the 
northern Great Basin where long- term vegetation data were available. 
Spatially continuous vegetation data are unavailable on an annual 
basis across the entire Great Basin at this time (but see Boyte & Wylie, 
2016), and thus, an additional goal of this study was to determine if 
interpolated, spatially continuous, monthly weather data could predict 
wildfire patterns and wildfire risk across this vast landscape in the ab-
sence of annual fuel load data.

2  | MATERIALS AND METHODS

2.1 | Study area

We defined the Great Basin based on three U.S. EPA Level III 
Ecoregions (Snake River Plain, Northern Basin and Range, and Central 
Basin and Range; http://www.epa.gov/wed/pages/ecoregions/

level_iii_iv.htm), which include parts of eastern California, southern 
Idaho, Nevada, southeastern Oregon, and western Utah (Figure 2). 
We subdivided the Great Basin study area using the U.S. Department 
of Interior Bureau of Land Management’s (BLM) Major Land Resource 
Area (MLRA) boundaries because they provided a spatial scale more 
amenable to our analyzes than would Level IV Ecoregions (which were 
too finely divided) and because MLRAs are used by BLM, the primary 
fire management agency in the region.

The Great Basin is characterized by basin and range topography 
with elevations ranging from 341 to 4,340 m. Annual precipitation 
ranges from 79 to 1,291 mm (Appendix 1: Fig. A1a) and falls mainly 
as winter snow and early- spring rain. Average daily minimum and 
maximum temperatures range from −4.7 to 8.6°C in winter (October–
March) and 9.8–28.4°C in summer (July–September), with both precip-
itation and temperature varying strongly with elevation and latitude. 
The dominant plant communities, as characterized by LANDFIRE’s 
potential vegetation type (www.landfire.gov), include Wyoming sage-
brush (Artemisia tridentata wyomingensis) shrublands (26% of the land 
area), Salt desert shrublands (23%), juniper (Juniperus spp.) woodlands 
(18%), dwarf sagebrush (Artemisia arbuscula) shrublands (8%), and 
mountain sagebrush (Artemisia tridentata vaseyana) shrublands (4%; 
Appendix 1: Fig. A1b). Other vegetation types, such as riparian, aspen 
(Populus tremuloides), and mixed conifer forests, occupy the remaining 
land area (21%). Habitats most strongly influenced by the grass–fire 
cycle include sagebrush shrublands, juniper woodlands, salt desert 
shrublands, and grasslands. Invasive annual grasslands, predominantly 
composed of cheatgrass, are now widespread (Appendix 1: Fig. A1c).

Within the Snake River Plains MLRA located in the northern 
Great Basin, we assessed annual changes in herb and litter cover in a 
focal study area where a long- term (26- year) vegetation dataset was 

F IGURE  1 Conceptual model of hypothesized relationships among weather, fine fuel, and fire. Fine fuel is characterized as herbaceous non- 
native and native vegetation, and litter. Litter is shown as dark brown plant matter lying horizontally, which can persist across years. Numbered 
circles correspond to a subset of our study objectives (1a–d) examined at a focal study area within the northern Great Basin. Objective 1a refers 
to the relationship between weather and herbaceous fine fuel, 1b refers to the relationship between herbaceous plant cover in previous years 
and litter cover in a focal year, 1c refers to the relationship between herbaceous fine fuel and fire, and 1d refers to the relationship between 
weather and fire. Objectives 2 and 3 (not shown) were examined across the entire Great Basin, with Objective 2 addressing the relationship 
between weather and fire at the Great Basin- scale, and Objective 3 assessing our ability to use this relationship to predict and forecast relative 
fire risk across this area

http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm
http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm
http://www.landfire.gov
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available. These long- term monitoring plots were established in 1989 
with the goal of tracking trends in vegetation at the Orchard Combat 
Training Center located in the Morley Nelson Snake River Birds of Prey 
National Conservation Area in southwestern Idaho (NCA; Figure 2). 
The NCA is a 1,963 km2 landscape of intact and invaded (by non- 
native grasses and forbs) sagebrush steppe and salt desert scrub eco-
logical sites. Like the majority of the Great Basin, the focal study area 
experiences some cattle and sheep grazing, usually in the winter and 
spring. Elevations across the NCA range from 687 to 1,110 m. Average 
daily minimum and maximum temperatures range from −2.3 to 9.4 
°C in winter (October–March) and 11.8 to 30.8°C in summer (July–
September). Total annual precipitation ranges from 172 to 321 mm, 
with over 60% falling as rain and snow during the winter and nearly 
30% as rain in the spring (April–June).

Wildfires in the Great Basin burn in the late spring and summer, 
and occasionally into the fall (Brooks, Matchett, Shinneman, & Coates, 
2015). On average, wildfire ignitions occur between 14 May and 9 
October each year, but fire ignitions have occurred as early as 5 March 

and as late as 23 November (1984–2014, n = 2,593 fires; Monitoring 
Trends in Burn Severity; www.mtbs.gov, accessed 7 July 2017). The 
average start date of fires in the Great Basin is 30 July. Start dates 
vary little among different MLRAs in the Great Basin, but the length of 
fire season tends to be shorter in the south compared with the north 
(Brooks et al., 2015). The Snake River Plain, located in the northern 
Great Basin, has the longest fire season (111 days). The average an-
nual fire start date within the NCA (i.e., within our focal study area 
within the Snake River Plain) is 12 July, but fires have been observed 
as early as 5 June and as late as 1 October (1984–2014; n = 77 fires; 
MTBS).

2.2 | Field sampling

We assessed annual changes in herb cover at 57 permanent plots in 
the NCA. In 1989, a permanently marked, 100- m transect was es-
tablished in each of these randomly placed plots. Each plot has been 
measured annually since using line- point intercept sampling (Elzinga, 

F IGURE  2 Focal and Great Basin study 
area maps. Historic fire polygons are shown 
in gray. The focal study area is located at 
the Morley Nelson Snake River Birds of 
Prey National Conservation Area located 
within the Snake River Plains Major Land 
Resource Area (MLRA) of the northern 
Great Basin. Long- term vegetation plots 
are shown. The Great Basin study area is 
delineated as three Ecoregions (see text) 
and subdivided by Major Land Resource 
Areas (MLRA) numbered: (1) Malheur 
High Plateau, (2) Central Rocky and Blue 
Mountain Foothills, (3) Owyhee High 
Plateau, (4) Snake River Plains, (5) Eastern 
Idaho Plateaus, (6) Klamath and Shasta 
Valleys and Basins, (7) Fallon- Lovelock Area, 
(8) Humboldt Area, (9) Central Nevada 
Basin and Range, (10) Great Salt Lake Area, 
(11) Wasatch and Uinta Mountains, (12) 
Sierra Nevada Mountains, (13) Carson 
Basin and Mountains, and (14) Southern 
Nevada Basin and Range. The location of 
the focal study area is shown for reference 
(red polygon)

http://www.mtbs.gov
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Salzer, & Willoughby, 1998). All species present at each point were re-
corded every meter along each transect. Points extend vertically from 
ground to the highest canopy, and data were recorded for each spe-
cies contacted across multiple canopy layers. Canopy cover for each 
species and functional group was calculated at each plot by dividing 
the number of points where a species or functional group was present 
by 100. Using this approach, we created the following vegetation/
fine fuel variables: Cheatgrass (cover of the non- native annual Bromus 

tectorum); ExoticForb (cover of all non- native forbs, which were domi-
nated by curveseed butterwort—commonly called burr buttercup, 
Ceratocephala testiculata; prickly Russian thistle, Salsola tragus; clasp-
ing pepperweed, Lepidium perfoliatum; tall tumblemustard, Sisymbrium 
altissimum); NativeHerb (cover of all native herbs, which was domi-
nated by Sandberg bluegrass, Poa secunda, a common species at drier 
sites in the Great Basin; Holthuijzen & Veblen, 2015); and Litter (all 
non- native and native herbaceous litter covers).

2.3 | Weather variable development

For our focal landscape analyzes in the northern Great Basin (objec-
tive 1), we used raw precipitation (mm) and temperature (°C) values 
derived from monthly PRISM data (PRISM, 2010). PRISM data are 
interpolated values from hundreds of meteorological stations and re-
ported as 800- m gridded monthly data (Daly, Gibson, Taylor, Johnson, 
& Pasteris, 2002). We used these data to calculate variables represent-
ing seasonal weather in each year 1989–2014 for each pixel intersect-
ing a plot in our focal study area (Table 1). In total, we generated 77 
precipitation and five temperature variables for each season and year 
at each plot (see Table 1). For precipitation, we calculated seasonal: 
(1) precipitation within a given year, (2) average and maximum pre-
cipitation 1, 2, and 3 years prior, and (3) the change in precipitation 
from 1 to 3 years prior to a given year. We calculated the change in 
precipitation from 1, 2, and 3 years previous to a given year as year 
being calculated minus the average of the 3 years prior, the year being 
calculated minus the average of the 2 years prior, and the year being 
calculated minus 1 year prior. We repeated this procedure using the 
maximum (instead of average) precipitation from the previous 3 years 
and the previous 2 years. The difference values calculated from these 
procedures (regardless of number of years included or whether aver-
age or maximum was used) allowed us to assess how different the pre-
cipitation was during a given year relative to the previous 1–3 years. 
Increasingly negative values indicated that a given year was drier than 
preceding years and increasingly positive values indicated an increase 
in precipitation relative to previous years. Values close to zero indi-
cated little change in precipitation relative to previous years. Seasons 
are defined in Table 1 and are consistent with seasonal precipitation 
characterization in the Great Basin (Bates, Svejcar, Miller, & Angell, 
2006) and cluster analyzes of monthly precipitation in other deserts 
of the region as well (Tagestad, Brooks, Cullinan, Downs, & McKinley, 
2016).

At the scale of the Great Basin (objectives 2 and 3), we used an 
anomaly approach for our precipitation variables because of the con-
siderable regional variation across such a large landscape. We did not 
include temperature in these Great Basin- wide models because tem-
perature was not an important predictor in any of the focal study area 
models. We converted each precipitation variable from units of mm 
to an anomaly by dividing each variable by its 65- year (1950–2014) 
average value and multiplying by 100. Thus, we expressed each pixel’s 
value for a given variable in a given year (1980–2014) as a percentage, 
with values >100% representing above- average and values <100% 
representing below- average precipitation for that pixel in that year.

TABLE  1 Precipitation and temperature variables used in 
analyzes

Variable component Description

Precipitation and temperature time periods

ANNUAL Water year (October–September)

WINTER Winter (October–March)

SPRING Spring (April–June)

WIN+SPR Winter–spring (October–June)

SUMMER Summer (July–September)

Precipitation and temperature time lags

P Total precipitation during specified time 
period in the given year

1yrP Total precipitation during specified time 
period 1 year prior to the given year

2yrPave Average precipitation during specified time 
period 2 years prior to the given year

2yrPmax Maximum precipitation during specified 
time period 2 years prior to the given year

3yrPave Average precipitation during specified time 
period 3 years prior to the given year

3yrPmax Maximum precipitation during specified 
time period 3 years prior to the given year

Tave Average daily temperature during specified 
time period in the given year

Precipitation difference from previous years

Δ1yrP Delta precipitation from 1 year prior 
relative to the given year (given year 
− previous year)

Δ2yrPave Delta precipitation from the average of 
2 years prior relative to the given year 
(given year—average of 2 years previous)

Δ2yrPmax Delta precipitation from the maximum of 
2 years prior relative to the given year 
(given year—maximum of 1–2 years 
previous)

Δ3yrPave Delta precipitation from the average of 
3 years prior relative to the given year 
(given year—average of 3 years previous)

Δ3yrPmax Delta precipitation from the maximum of 
3 years prior relative to the given year 
(given year—maximum of 1–3 years 
previous)

Precipitation variables combined three variable components: (1) time pe-
riod, (2) time lags, and (3) difference from previous year(s). Given year re-
fers to any water year (October–September) from 1980 to 2014 for which 
these calculations were made.
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2.4 | Fire variable development

We compiled fire perimeter data from multiple sources (e.g., Monitoring 
Trends in Burn Severity (MTBS), GeoMac, BLM offices, USDA Forest 
Service regions, and state fire agencies) to create, to our knowledge, 
the most comprehensive inventory of fire perimeter data available 
(Appendix 1: Fig. A1d; Welty, Pilliod, & Arkle, 2017). The dataset con-
sists of over 57,000 wildfires that occurred from 1878 to 2015 in the 
U.S., the vast majority of which are more recent (e.g., post- 1980, due 
to increased reporting) and from the western U.S., due to the preva-
lence of public land and ecosystems with frequent fire return intervals. 
To create this dataset, we used GIS to merge all contributing fire pe-
rimeter datasets and dissolve overlapping fires within a given year (see 
Welty et al., 2017). We attempted to prevent duplication of a given 
fire in our dataset by assuming: (1) that an area can only burn once 
per year (to remove overlapping polygons representing the same fire); 
and (2) that burned polygons <1 km apart in the same year are part of 
the same fire or fire complex, whereas those >1 km apart are separate 
fires (allows for multipart perimeters within 1 km, but prevents distant 
fires from being merged). Thus, our dataset could underrepresent the 
number of fires and hectares burned in any given year when an area 
truly burned more than once in the same year (unlikely in the Great 
Basin). We might also underrepresent the number of fires in a year 
when truly different fires or fire complexes are within 1 km of one 
another. Finally, we would omit truly unburned islands or misrepresent 
fire perimeters whenever a coarser, more generalized version of a fire 
perimeter is larger than that of a smaller version of the same fire (e.g., 
figure 2 in Balch et al., 2013). However, systematic data checks re-
vealed these caveats had minimal influence on final fire counts or area 
burned. For analyzes pertaining to the present study, we only include 
the 10,162 fires occurring within our Great Basin study boundary from 
1980 to 2014 to limit regional and temporal biases due to differences 
in fire record submission (see Appendix 1: Fig. A1d for fire polygons 
used in analyzes). Variables representing annual fire characteristics 
were calculated for each year by summing burned area (haBURNED), 
obtaining a count of fires (nFIRES), and by defining uncharacteristically 
“large” fire years (BIGYR1SD) as those years when haBURNED was >1 
SD from the long- term mean for the area being evaluated.

2.5 | Data analysis

We subdivided Objective 1 into four parts (Figure 1). We first as-
sessed the relative importance of precipitation and temperature 
for fine fuel loads (Objective 1a), specifically cheatgrass, non- native 
forbs, native herbs, and litter cover, over the 26 years of data. We 
then assessed which plant functional groups drive litter cover in sub-
sequent years and the number of years over which litter from these 
different groups may persist (Objective 1b). Next, we assessed the 
relationship between herbaceous fine fuels and annual fire charac-
teristics (Objective 1c). Finally, we examined the indirect relationship 
between weather (i.e., seasonal and annual precipitation and tempera-
ture, including time lags of 1–3 years) and annual fire characteristics 
(Objective 1d), without considering fine fuel loads (Figure 1). This final 

relationship was important to establish so that we could extend our 
analyzes across the Great Basin (see objective 2) where spatially con-
tinuous, annual weather data existed, but annual vegetation data did 
not. We modeled the relationships among precipitation, temperature, 
herb cover, and fire characteristics using nonparametric multiplicative 
regression (NPMR, see below).

For objective 2, we evaluated weather as a driver of fire character-
istics across the Great Basin using NPMR to model how annual vari-
ability in precipitation influences the number of fires, area burned, and 
the probability of a uncharacteristically large fire year within MLRAs 
of the Great Basin. We used zonal statistics to calculate averages 
for all 77 precipitation variables within each MLRA and year (sample 
unit = MLRA- year). We used this approach, rather than calculating 
precipitation conditions within the actual fire polygons in each MLRA 
because the latter approach would result in different locations in each 
year contributing to average values for each MLRA, thus confounding 
the effects of location (within each MLRA) and year (our variable of 
interest in this analysis). We calculated the within- MLRA averages to 
represent, for each year: (1) precipitation in that year, (2) precipitation 
1, 2, and 3 years prior, and (3) the change in precipitation from 1 to 
3 years prior relative to the given year. Response variables were cal-
culated for each MLRA- year by summing haBURNED, nFIRES, and by 
determining which MLRA- years had BIGYR1SD.

To address objective 3, we developed a NPMR model predicting 
wildfire occurrence within 800- m pixels. We used GIS to determine 
the centroid pixel of all 10,162 wildfires and to randomly select 21,858 
unburned pixels, a value that summed to 32,000 pixels, the compu-
tational limit of our analysis software. For each wildfire pixel, we ex-
tracted all 77 of our precipitation variables for the year in which the 
wildfire occurred. For each randomly selected (unburned) pixel, we 
extracted all 77 of our precipitation variables for a randomly selected 
year between 1980 and 2014. Thus, this analysis evaluated how pre-
cipitation conditions at wildfire sites (in the year of the wildfire) differ 
from those at unburned locations in the same range of years. We then 
applied this model to the observed precipitation values for each pixel 
in the Great Basin (n = 1.2 million 800- m pixels) for each of the re-
cent years 2011–2013 and mapped the resulting fire risk estimates 
to illustrate spatial and temporal variability in risk across sequential 
years in the Great Basin. We used the “sm” package in R Studio ver-
sion 0.99.489 (Bowman & Azzalini, 2014; R Development Core Team, 
2014) to create probability density distributions of the estimated fire 
risk values for all pixels that intersected a fire polygon (burned pixels) 
and all pixels that did not intersect a fire polygon (unburned pixels) in 
each year 2011–2013. We plotted these distributions and used 100 
bootstrap runs (sampling with replacement) to test the null hypothesis 
that for each year 2011–2013, there was no difference in the distribu-
tion of estimated fire risk values for burned and unburned pixels. We 
provide a p- value for each of the 3 years evaluated.

Nonparametric multiplicative regression models were run using 
HyperNiche 2.28 software (McCune & Mefford, 2009). We used 
this approach because it allowed us to assess how predictor vari-
ables interacted multiplicatively (rather than additively) and poten-
tially nonlinearly (see Arkle et al., 2014 for details). For each NPMR 
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analysis, we used a local linear model (LLR; for models with quanti-
tative response variables) or a local mean model (LMM; for models 
with binary response variables) with Gaussian weighting functions to 
conduct free- search iterations of combinations of predictors (screened 
to remove correlated variables) and their tolerances (tolerance = SD 
of Gaussian weighting function of each predictor) to maximize model 
fit, while minimizing overfitting (McCune, 2009). Fit for models with 
binary response variables was assessed using logβ, which evaluates 
the improvement of the fitted model over the naïve model (i.e., the 
overall occupancy rate), expressed in powers of 10. Fit of models with 
quantitative response variables was assessed using cross- validated 
R2 (xR2). We controlled overfitting through minimum average neigh-
borhood size, minimum data- to- predictor ratio, and “leave- one- out” 
cross- validation of logβ and xR2. Bootstrap resampling (each dataset 
resampled with replacement 100 times) was used to quantify the sta-
bility of models (when different combinations of sample units were 
analyzed) by providing an average logβ or xR2 (±SE). We also report the 
average neighborhood size (N* = average number of sample units con-
tributing to the estimate of the response at each point on the modeled 
surface) and Monte Carlo randomization results (null hypothesis = fit 
of best model is no better than chance, using the same number of 
predictor variables in 100 free- search iterations with randomly shuf-
fled response values). For each predictor variable in each final model, 
we report sensitivity (a measure of relative importance of quantitative 
predictors) and tolerance (a measure of niche breadth). Sensitivity indi-
cates the relative importance of quantitative predictors, where a value 
of 1 indicates that, on average, changing the value of the predictor 
by ±5% of its range, results in a 5% change in the response estimate. 
This provides a measure of relative importance for each quantitative 
predictor in the model. High tolerance values, relative to the range of 
the predictor, indicate that data points farther in predictor space are 
used to estimate response values at the target point.

We showed three- dimensional graphical representations of each 
model to illustrate interactions among the most influential variables, with 
a few exceptions. On two occasions, we showed the first and third most 
important variables (based on sensitivity values): (1) Litter response to 
precipitation in our focal study area and (2) nFires response to precipita-
tion in our focal study area. In both cases, the second most important vari-
able was redundant with the top variable. We showed two- dimensional 
representations of models when a single variable had more than twice 
the relative importance of the next most important variable in the model.

3  | RESULTS

3.1 | Relationships among weather, herbaceous 
vegetation, and wildfire in a northern Great Basin 
landscape

We present the results of Objective 1 in four parts: (1) weather pre-
dicts herbaceous vegetation and litter cover (fine fuels); (2) herba-
ceous vegetation predicts litter cover in subsequent years; (3) fine 
fuels predict wildfire characteristics; and (4) weather predicts wildfire 
characteristics.

3.1.1 | Objective 1a: Weather predicts herbaceous 
vegetation and litter cover (fine fuels)

Temperature and precipitation varied year- to- year across the 26 years 
of field sampling in our focal study area in the northern Great Basin. 
From 1989 to 2014, at our study plots, mean seasonal tempera-
tures ranged from 1.5 to 5.0°C (winter), 11.6 to 16.4°C (spring), and 
18.1 to 23.2 C (summer). Over this time period, annual (water year) 
precipitation at our plots ranged from 169 to 381 mm (26-year 
average ± SD = 269 ± 65 mm/year).

Across years, average canopy cover of cheatgrass ranged 0.2%–
19.4%. This variability was associated with annual precipitation, 
but not temperature. Cheatgrass cover (Cheatgrass) was highest in 
years with high precipitation (ANNUALP; not shown), particularly 
when at least one of the previous 3 years had very high precipitation 
(ANNUAL3yrPmax; Figure 3a). ANNUAL3yrPmax was a very influen-
tial variable indicating that this previous precipitation likely created 
the seed bank that then was available for germination 1–3 years 
later. Cheatgrass cover also tended to be higher the first year that 
winter–spring precipitation transitioned from dry to wet (i.e., pos-
itive values of ΔWIN + SPR2yrPave; not shown). This three- variable 
model explained 69% of the interannual variability in cheatgrass cover 
(p = .024; Table 2).

Non- native forb cover (ExoticForb) was relatively high, on aver-
age up to 25.4%, but also variable through time. The four species that 
mostly comprised ExoticForb varied across the 26- year period: tall 
tumblemustard (0.2%–11.9%), clasping pepperweed (0.07%–12.3%), 
burr buttercup (0.6%–13.1%), and prickly Russian thistle (0.01%–
21.7%). This variability was associated with seasonal precipitation, 
but not temperature. Cover of non- native forbs was highest in years 
with winters and springs that were wetter than the average of the 
previous 2 years (i.e., positive values of ΔWIN + SPR2yrPave), espe-
cially when the previous winter–spring was particularly dry (i.e., low 
values of WIN + SPR1yrP; Figure 3b). Similarly, non- native forb cover 
was higher when at least one of the previous two winters was par-
ticularly dry (WINTER2yrPmax; not shown). This three- variable model 
explained 74% of the interannual variability in non- native forb cover 
(p = .073; Table 2).

Native herb cover (NativeHerb), which included all native grasses 
and forbs, was strongly associated with seasonal precipitation, 
but not temperature. The dominant native herbaceous vegetation 
was the perennial bunchgrass Sandberg bluegrass, which ranged 
4%–34% cover annually and averaged 17.5% across all years. No 
other native perennial grass or forb had cover greater than 2% on 
average. Native herb cover was highest the first wet year following 
2 years with low winter–spring precipitation (i.e., positive values of 
ΔWIN+SPR2yrPave; Figure 3c). Native herb cover also was higher 
when at least one of the previous 2 years had dry winters and springs 
(i.e., low values of WIN + SPR2yrPmax; not shown) and especially 
when at least one of those springs was particularly dry (i.e., low val-
ues of SPRING3yrPmax; not shown). This three- variable model ex-
plained 63% of interannual variability in native herb cover (p = .073; 
Table 2).



     |  8133PILLIOD et aL.

Litter cover (Litter) varied annually, but with periods of accumu-
lation over consecutive years. Across years, average litter cover was 
54%. Sixty- five percent of the interannual variability in litter cover 
could be predicted by an interaction of two variables: average winter 
precipitation for the previous 2 years (WINTER2yrPave) and precipi-
tation the previous summer (SUMMER1yrP) (p = .073; Table 2). Litter 
cover was highest when the two previous winters and the previous 
summer had high precipitation, but relatively low when previous win-
ters were dry and the previous summer was wet (Figure 3d). Litter 
cover was not related to temperature.

3.1.2 | Objective 1b: Herbaceous vegetation predicts 
litter cover in subsequent years

Using cover of cheatgrass (Cheatgrass), non- native forbs (ExoticForb), 
and native herbs (NativeHerb) in a given year and 1–3 years previ-
ous as potential predictors, we found that herbaceous litter cover 
(Litter) was best predicted by an interaction between non- native forb 
and cheatgrass cover 1 year earlier, as well as non- native forb cover 
2 years earlier (xR2 = 0.53; p = .024; N* = 7.3; 67.3% improvement 
over the best model with one fewer predictor variable). Therefore, 

F IGURE  3 Modeled relationships between precipitation (mm) and (a) cheatgrass, (b) non- native forb, (c) native herb, and (d) herbaceous 
litter cover from 57 plots sampled annually 1989–2014 in sagebrush ecological sites at the Morley Nelson Snake River Birds of Prey National 
Conservation Area in southwestern Idaho. Negative values of delta precipitation variables (e.g., ΔWIN + SPR2yrPave) indicate seasons that were 
drier than corresponding seasons in previous years. Panels at right show observed (black lines) and model estimated (red lines) cover values 
(primary y- axes) and observed values of the most influential precipitation variable from each model (blue lines; secondary y- axes) through time
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litter cover in any given year was positively associated with non- native 
forbs and cheatgrass, but with a 1-  to 2- year time lag (Figure 4). Litter 
cover was not related to cover of plant functional groups growing in 
that year nor was it strongly predicted by Cheatgrass, ExoticForb, or 
NativeHerb cover from 3 years prior.

3.1.3 | Objective 1c: Fine fuels predict wildfire 
characteristics

The number of fires (nFIRES) and area burned (haBURNED) an-
nually in our focal study area varied substantially. However, in-
terannual variability in the number of fires was not predictable 
based on herbaceous plant nor litter cover, as no combination 

of predictor variables produced a model with an xR2 > 0.05. 
The area burned annually ranged from 56 to 42,543 ha (aver-
age ± SD = 4,448 ± 8,873 ha/year) and was associated with herba-
ceous plant and litter cover in a given year (xR2 = 0.40; p = .024; 
Table 3). Specifically, the area burned was positively related to 
native herb and litter cover, and negatively related to non- native 
forb cover present in that year (Figure 5). Four years fell outside of 
the first standard deviation for haBURNED and were consequently 
classified as uncharacteristically large fire years for our binary anal-
ysis of BIGYR1SD. Large fire years were more likely in years when 
native herb cover was high (Figure 6). The probability of a large 
fire year increased to 0.40 as native herb cover surpassed 40% (log 
β = 0.152; p = .019; Table 3).

TABLE  2 Nonparametric multiplicative regression (NPMR) analysis results for models using precipitation variablesa to predict fine fuel 
coverb in a focal study area of the northern Great Basin from 1989 to 2014

Response
Model Fit 
(xR2) N*

Bootstrap (mean 
fit ± SD) % Improvement Predictor Sensitivity Tolerance

Cheatgrass 0.69 5.3 0.97 ± 0.04 12.5 ANNUAL3yrPmax 2.4 17 (10%)

ANNUALP 1.1 169 (80%)

ΔWIN+SPR2yrPave 1 178 (60%)

ExoticForb 0.74 1.8 0.95 ± 0.03 5.4 ΔWIN+SPR2yrPave 0.6 59.4 (20%)

WIN+SPR1yrP 0.45 39.3 (20%)

WINTER2yrPmax 0.39 20.3 (15%)

NativeHerb 0.63 2.1 0.88 ± 0.02 11.5 ΔWIN+SPR2yrPave 1.9 14 (5%)

WIN+SPR2yrPmax 0.8 118 (75%)

SPRING3yrPmax 0.6 55 (45%)

Litter 0.65 2.6 0.91 ± 0.01 5.6 WINTER2yrPave 0.8 54 (40%)

WINTER1yrP 0.7 14 (10%)

SUMMER1yrP 0.3 13 (30%)

N* is the average neighborhood size or the average number of sample units contributing to the estimate of the response at each point on the modeled 
surface. xR2 is the cross- validated R2. Percent Improvement is the increase in model fit (as measured by xR2) obtained by adding the final variable to each 
model. Large improvements indicate that increased model complexity is warranted because of improved model fit.
aSee Table 1 for definitions of precipitation variables.
bCheatgrass = cheatgrass (Bromus tectorum) cover, ExoticForb = non- native forb cover, NativeHerb = native herbaceous cover, and Litter = herbaceous 
litter cover.

TABLE  3 Nonparametric multiplicative regression (NPMR) analysis results for models using fine fuel covera to predict wildfire 
characteristicsb in a focal study area of the northern Great Basin from 1989 to 2014

Response Model Fit Fit Metric N*
Bootstrap (mean 
fit ± SD) % Improvement Predictor Sensitivity Tolerance

nFIRES na xR2 na na na na na na

haBURNED 0.40 xR2 1.9 0.95 ± 0.10 302 ExoticForb 0.66 9.17 (20%)

Litter 0.52 7.50 (20%)

NativeHerb 0.52 6.99 (20%)

BIGYR1SD 0.15 logβ 11.4 0.14 ± 0.03 na NativeHerb 0.39 6.90 (20%)

N* is the average neighborhood size or the average number of sample units contributing to the estimate of the response at each point on the modeled 
surface. xR2 is the cross- validated R2. Percent Improvement is the increase in model fit (as measured by xR2) obtained by adding the final variable to each 
model. Large improvements indicate that increased model complexity is warranted because of improved model fit.
aExoticForb = non- native forb cover, NativeHerb = native herbaceous cover, and Litter = herbaceous litter cover.
bnFIRES = number of fires within the focal study area in a given year, haBURNED = area burned within the focal study area in a given year, BIGYR1SD = bi-
nary variable indicating whether the ha burned within the focal study area in a given year was >1 SD from the mean.
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3.1.4 | Objective 1d: Weather predicts wildfire 
characteristics

The number of fires that burned annually was associated with pre-
cipitation, but not temperature. The number of fires was highest when 
the preceding two winters and springs were particularly wet (i.e., 
higher values of WIN + SPR2yrPave) and when the summer of the fire 
year was dry (i.e., lower values of SUMMERP; Figure 7). Dry summers 
within the previous 2 years (SUMMER2yrPmax) also explained the 
number of fires that burned in our focal study area (not shown) and 
the three- variable model explained 69% of the variation in number of 
fires across 26 years (p = .073; Table 4).

The area burned annually across our focal study area could be 
predicted by an interaction of annual precipitation (ANNUALP) and 
spring precipitation relative to the average spring precipitation over 
the 3 years prior to the fire (ΔSPRING3yrPave). Although this model 
explained 38% of interannual variability in area burned, the model fit 

was not better than that obtained from any of the two- predictor mod-
els with randomly shuffled response values (p = .75; Table 4). Several 
years with extremely high burn totals may have influenced model fit. 
However, predicting uncharacteristically large fire years (BIGYR1SD) 
was difficult as well, with the best model (SPRING2yrPave and 
ΔWIN + SPR1yrP) fitting no better than randomly shuffled data 31% 
of the time (p = .31; Table 4).

3.2 | Relationship between weather and annual 
wildfire characteristics across the entire Great Basin 
over the last 35 years

Across the Great Basin, annual precipitation was highly variable 
(Figure 8). Few years from 1980 to 2014 are within the first standard 
deviation of the mean precipitation, indicating that receiving an “aver-
age” amount of precipitation is a rare occurrence. Moreover, Great 
Basin precipitation generally follows a multiyear wet and multiyear 

F IGURE  5  (a, b) Modeled relationships between fine fuels and 
area burned annually in sagebrush ecological sites at the Morley 
Nelson Snake River Birds of Prey National Conservation Area in 
southwestern Idaho. Fine fuels were characterized from vegetation 
data collected from 57 plots sampled annually 1989–2014. Gray 
areas are regions of predictor space with too few observations to 
make reliable estimates of area burned. (c) Observed (black line) and 
model estimated (red line) cover values (primary y- axis) and observed 
values of the most influential vegetation variable (brown line; 
secondary y- axis) through time

(a)

(b)

(c)

F IGURE  4  (a, b) Modeled relationships between plant cover in 
previous years and litter cover from 57 plots sampled annually 1992–
2014 in sagebrush ecological sites at the Morley Nelson Snake River 
Birds of Prey National Conservation Area in southwestern Idaho. 
Data from 1989 to 1991 could not be included because this analysis 
required plant cover data collected 1–3 years prior to litter cover 
data. (c) Observed (black line) and model estimated (red line) cover 
values (primary y- axis) and observed values of the most influential 
vegetation variable (brown line; secondary y- axis) through time

(a)

(b)

(c)
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dry pattern (Figure 8). We found that, on average, the Great Basin 
experienced 2.5 years of uninterrupted positive and 2.5 years of un-
interrupted negative precipitation anomaly. These patterns were not 

always synchronous across all regions (i.e., MLRAs) within the Great 
Basin, as some years showed strong latitudinal variation.

The number of fires in a given MLRA- year was highest when 
the preceding three springs were wetter on average (i.e., high val-
ues of SPRING3yrPave) and when the summer of the fire year was 
much drier than the preceding three summers (i.e., negative values 

F IGURE  6  (a) Modeled relationship between fine fuels in 
sagebrush ecological sites at the Morley Nelson Snake River Birds 
of Prey National Conservation Area in southwestern Idaho and 
uncharacteristically large fire years (BIGYR1SD, see text for definition). 
Fine fuels were characterized from vegetation data collected from 
57 plots sampled annually 1989–2014. (b) Observed large fire years 
(black circles) and model estimated (red line) probability of large fire 
year (primary y- axis), along with observed values of the most influential 
vegetation variable (brown line; secondary y- axis) through time

(a)

(b)

F IGURE  7  (a) Modeled relationships between precipitation 
(mm) and the number of fires occurring annually at the Morley 
Nelson Snake River Birds of Prey National Conservation Area in 
southwestern Idaho, 1989–2014. (b) Observed (black line) and model 
estimated (red line) number of fires (primary y- axis) and observed 
values of the most influential precipitation variable (blue line; 
secondary y- axis) through time

(a)

(b)

TABLE  4 Nonparametric multiplicative regression (NPMR) analysis results for models using precipitation variablesa to predict fire 
characteristicsb in a focal study area of the northern Great Basin from 1989 to 2014

Response Model fit Fit metric N*
Bootstrap (mean 
fit ± SD) % Improvement Predictor Sensitivity Tolerance

nFIRES 0.69 xR2 3.4 0.94 ± 0.01 86.2 SUMMERP 1.0 45 (75%)

SUMMER2yrPmax 0.8 4 (10%)

WIN+SPR2yrPave 0.8 31 (20%)

haBURNED 0.38 xR2 1.6 0.70 ± 0.10 286.1 ANNUALP 1.6 10 (5%)

ΔSPRING3yrPave 0.4 35 (25%)

BIGYR1SD 2.54 logβ 1.5 3.61 ± 2.27 24.0 SPRING2yrPave 1.5 4 (5%)

WIN+SPR1yrP 0.2 70 (20%)

N* is the average neighborhood size or the average number of sample units contributing to the estimate of the response at each point on the modeled 
surface. xR2 is the cross- validated R2. Percent Improvement is the increase in model fit (as measured by xR2) obtained by adding the final variable to each 
model. Large improvements indicate that increased model complexity is warranted because of improved model fit.
aSee Table 1 for definitions of precipitation variables.
bnFIRES, number of fires within the focal study area in a given year; haBURNED, area burned within the focal study area in a given year; BIGYR1SD, binary 
variable indicating whether the ha burned within the focal study area in a given year was >1 SD from the mean.
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of ΔSUMMER3yrPave; p = .02; Table 5; Figure 9). This model ex-
plained 66% of the variation in the annual number of fires across 
the 14 MLRAs from 1980 to 2014. However, this relationship was 
weaker in some MLRAs (e.g., Great Salt Lake) and stronger in others, 
such as the Owyhee High Plateau (Appendix 1: Fig. A2a,b). Winter 
precipitation variables were not important predictors of the number 
of fires nor were precipitation variables derived solely from a single 
year.

The area burned in a given MLRA- year was highest when the 
preceding three springs were wetter on average (i.e., high values of 

SPRING3yrPave), when the preceding winter was wetter than nor-
mal (i.e., high values of WINTER1yrP), and when the spring of the fire 
year was much drier than the preceding spring (i.e., negative values of 
ΔSPRING1yrP; p = .02; Table 5; Figure 10). This model explained 43% 
of the variation in area burned across the Great Basin from 1980–
2014. Analysis of residuals indicated that the model fit observed data 
well (Appendix 1: Fig. A3a,b). Most of the unexplained variation in 
area burned in any given MLRA was caused by a few (1–3) years with 
exceptionally large fire years. The effects of these variables on area 
burned varied strongly with MLRA (Appendix 1: Fig. A4). Precipitation 

TABLE  5 Nonparametric multiplicative regression (NPMR) analysis results for models using precipitation variablesa to predict fire 
characteristicsb across the Great Basin from 1980 to 2014

Response Model fit Fit metric N*
Bootstrap (mean 
fit ± SD) % Improvement Predictor Sensitivity Tolerance

nFIRES 0.66 xR2 14.8 0.68 ± 0.06 8.7 MLRA na na

SPRING3yrPave 0.19 17.8 (15%)

ΔSUMMER3yrPave 0.14 263.0 (70%)

haBURNED 0.43 xR2 15.8 0.53 ± 0.08 5.2 MLRA na na

ΔSPRING1yrP 0.17 51.1 (15%)

WINTER1yrP 0.11 124.0 (65%)

SPRING3yrPave 0.09 89.4 (75%)

BIGYR1SD 13.80 log β 39.6 15.80 ± 2.90 4.0 ΔSPRING1yrP 0.44 17.1 (5%)

ΔANNUAL1yrP 0.21 20.1 (10%)

ΔWINTER3yrPave 0.05 51.0 (20%)

Major land resource area (MLRA) represents bioclimatic regions.
aSee Table 1 for definitions of precipitation variables.
bnFIRES, number of fires across the Great Basin in a given year; haBURNED, area burned across the Great Basin in a given year; BIGYR1SD, binary variable 
indicating whether the ha burned across the Great Basin in a given year was >1 SD from the mean.

F IGURE  8 Within the Great Basin, 
average winter (October–March), spring 
(April–June), and summer (July–September) 
precipitation (primary y- axis) and total area 
burned by wildfires (ha * 1,000; secondary 
y- axis) from 1980 to 2014. Upper panel 
shows the number of reported fires in the 
Great Basin annually
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variables derived solely from a given year were not important predic-
tors of the area burned in that year.

The probability of an uncharacteristic large fire year, a year 
when total area burned in an MLRA exceeded 1 SD of the 35- 
year average for that MLRA (BIGYR1SD), was higher when spring 
precipitation was unusually low compared to the year before (i.e., 
negative values of ΔSPRING1yrP; Figure 11). Large fires also were 
more likely when a dry year followed a wet year (i.e., negative val-
ues of ΔANNUAL1yrP), especially when winter precipitation was 
low relative to the average winter precipitation the 3 years before 
the fire (i.e., negative values of ΔWINTER3yrPave; Table 5). The 
ΔSPRING1yrP was the most influential variable, with a value of 
−100 resulting in a 30% chance of an MLRA experiencing a fire year 
outside of 1 SD of the 35- year average (Figure 11).

3.3 | A spatially explicit wildfire risk assessment 
based entirely on precipitation data across the 
Great Basin

Precipitation conditions at wildfire centroid pixels (in the year of the 
wildfire) differed from conditions at unburned (in any year) pixel lo-
cations (p = .04; logβ = 186.6; N* = 1,859; 17.1% improvement over 
the best model with one fewer predictor variable; Appendix 1: Fig. 
A5). Wildfire centroids tended to occur in locations that experienced a 

wet spring during the preceding year (i.e., high values of SPRING1yrP; 
Sensitivity = 0.36, Tolerance = 17.5 [5% of predictor’s range]), had sum-
mer precipitation that was drier than the average of the three previous 
years (i.e., negative values of ΔSUMMER3yrPave; Sensitivity = 0.09, 
Tolerance = 88.9 [15% of predictor’s range]), and had winter–spring 
precipitation that was drier than the average of the three previous 
years (i.e., negative values of ΔWIN + SPR3yrPave; Sensitivity = 0.44, 
Tolerance = 16.6 [5% of predictor’s range]). Probability of fire occur-
rence was most sensitive to ΔWIN + SPR3yrPave and least sensitive 
to ΔSUMMER3yrPave.

Projecting the model to each pixel, based on that pixel’s precip-
itation values for each year 2011–2013, and mapping the resulting 
fire risk estimates, showed substantial variation in fire risk across 
the Great Basin within a given year and high temporal variability 
across years (Figure 12). Fires tended to occur more often in areas 
of higher model estimated fire risk, and for each of the 3 years ex-
amined, the distribution of model estimated fire risk values was sig-
nificantly different for burned versus unburned pixels (p < .000 in all 
three cases). In 2011, fire risk was relatively high in the northwest 
portion of the Great Basin (i.e., Malheur High Plateau and Humbolt 

F IGURE  9  (a) Modeled relationship between precipitation 
anomaly (percent of average) and the number of fires occurring 
annually within MLRAs of the Great Basin from 1980 to 2014. 
Negative values of ΔSUMMER3yrPave indicate summers that were 
drier than the average of the previous three summers. Negative 
y- axis values occur due to a high rate of change in the response 
variable in that region of predictor space. (b) Observed (black line) 
and model estimated (red line) number of fires across the Great 
Basin (primary y- axis) and observed values of the most influential 
precipitation variable (blue line; secondary y- axis) through time

(a)

(b)

F IGURE  10  (a, b) Modeled relationship between precipitation 
anomaly (percent of average) and area burned annually within 
MLRAs of the Great Basin from 1980 to 2014. Negative values of 
ΔSPRING1yrP indicate springs that were drier than the previous 
spring. Negative y- axis values occur due to a high rate of change in the 
response variable in that region of predictor space. (c) Observed (black 
line) and model estimated (red line) area burned across the Great 
Basin (primary y- axis) and observed values of the most influential 
precipitation variable (blue line; secondary y- axis) through time

(a)

(b)

(c)
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Area MLRAs) and in the Snake River Plains MLRA, but moderate 
overall in comparison with values from across the Great Basin in 
2012. In 2012, fire risk was elevated across a wide swath of the 
Great Basin, but especially in the Great Salt Lake MLRA. Although 
much of the study area had elevated risk, fires in 2012 tended to 
occur in areas at the highest end of the fire risk distribution for that 
year. The following year, 2013, saw a substantial decrease in relative 
fire risk across the Great Basin, and areas with elevated risk were 
limited to the northwest portion of the Owyhee High Plateau and 
to the Snake River Plains MLRAs. Although 2013 had the greatest 
difference in fire risk values between burned and unburned pixels 
of any year examined, model estimated fire risk values for 2013 
burned pixels were substantially lower than those that burned in 
2012 (Figure 12).

4  | DISCUSSION

4.1 | Relationships among weather, herbaceous 
vegetation, and wildfire

In many arid and semi- arid ecosystems, precipitation is the main de-
terminant of annual plant productivity (Holmgren et al., 2006). As 

expected, cheatgrass cover increased in wet years in our focal study 
area, a finding consistent with many other studies from the western 
US (e.g., Bradley, 2009; Brummer et al., 2016). Above- average an-
nual precipitation can result in exceptionally tall cheatgrass that forms 
dense, continuous cover in the Great Basin (Bradley & Mustard, 2005). 
Surprisingly, our data also suggest that cheatgrass is responding to 
multiyear precipitation patterns, despite being an annual plant. This 
may be the result of increased cheatgrass seed production over sev-
eral years that then resides in the soil or dense litter (Billings, 1994; 
Rotundo & Aguiar, 2005). Cheatgrass seed can accumulate quickly in 
soil (within 1–2 years; Humphrey & Schupp, 2001) and remains viable 
for more than a decade (Billings, 1994). An experimental study in east-
ern Oregon found that cheatgrass cover increased suddenly when a 
wet winter followed 4 years of simulated drought (Bates et al., 2006). 
However, germination of annuals depends upon available seed and our 
data suggest that the combination of precipitation in previous years 
with precipitation in a given year determines cheatgrass cover. In other 
words, 1 year of high seed production sets the stage for high cheat-
grass cover within the next several years as long as annual precipita-
tion is sufficient. High germination rates of cheatgrass during wet years 
can nearly completely exhaust available stored seed (Smith, Meyer, & 
Anderson, 2008). Hence, without available seed, cheatgrass would be 
unable to take advantage of winter and spring moisture, such as when 
multiyear droughts end (Germino, Belnap, Stark, Allen, & Rau, 2016).

Our data suggest that non- native forb species dominate when a 
multiyear dry period transitions to wet conditions. Annual forbs can 
grow rapidly during brief periods of precipitation, especially at a time 
when perennial species may be less competitive. This finding is consis-
tent with an experiment in eastern Oregon which demonstrated that 
annual forb cover peaked when a 2–3 year simulated drought was in-
terrupted by wet winter conditions (Bates et al., 2006). Although subtle, 
these findings suggest potentially contrasting responses of cheatgrass 
and non- native forbs to multiyear precipitation patterns. These non- 
native species are competitors in our focal study area, and they may be 
temporally partitioning resource use. More research on the temporal 
dynamics between cheatgrass and annual forbs is needed, especially 
information on how that dynamic influences fuel loads and fire risk.

Native herbaceous vegetation is also an important fuel for wild-
fires, yet few studies have examined how weather influences the tem-
poral dynamics of native vegetation in the context of fine fuel loads in 
the Great Basin. We found that cover of native herbs increased when 
at least one of the previous two winter and springs were dry and par-
ticularly in a year that transitioned from dry to wet. Our data suggest 
that this transition may benefit native herbs because of reduced com-
petition with cheatgrass that depends on early season moisture for 
germination and growth and does poorly during extended drought. 
Deep- rooted native perennials can survive when surface soils dry, but 
annuals cannot. Also, the opposite is likely true, whereby wet winters 
and springs increase competition between native herbs and non- 
native grasses and forbs that take advantage of shallow soil moisture 
for increased growth (cover) and seed production (Smith et al., 2008). 
The distinct influence of weather patterns on cheatgrass versus na-
tive plants in the Great Basin was also noted by Bradley and Mustard 

F IGURE  11  (a) Modeled relationship between precipitation 
anomaly (percent of average) and uncharacteristically large fire years 
(BIGYR1SD, see text for definition) in the Great Basin. Negative 
values of ΔSPRING1yrP indicate springs that were drier than the 
previous spring. (b) Observed large fire years (black circles) and model 
estimated (red line) probability of large fire year (primary y- axis), along 
with observed values of the most influential precipitation variable 
(blue line; secondary y- axis) through time

(a)

(b)
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F IGURE  12 Model predicted elevated fire risk (warmer colors) relative to background levels (cooler colors) for three recent years. Observed 
fire boundaries (black polygons) are shown for each year. White regions of the Great Basin maps had combinations of predictor variable values 
that were too rare for reliable predictions of fire risk to be made. Panels at right show, for each year, the probability density of fire risk values for all 
burned (black lines) and unburned (gray lines) pixels in the Great Basin (n = 1.2 million 800- m pixels total). All three years are plotted on the same 
x- axis scale for comparison of distributions across time. Blue lines are reference bands indicating the region that the black and gray lines would 
both occupy if their distributions were not different according to a randomization test produced through 100 bootstrap runs with replacement
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(2005), who reported that, based on satellite- derived greenness indi-
ces, ecosystems dominated by cheatgrass show an amplified interan-
nual response to rainfall distinct from native bunchgrasses.

Litter is a relatively understudied component of fine fuels in the 
Great Basin as well (Germino et al., 2016). In our focal study area, litter 
peaked after 1–2 wet winters and a year after a dry summer, a pattern 
consistent with our cheatgrass weather model. Cheatgrass cover the 
previous year was one of best predictors of litter cover in our focal 
study area. However, cheatgrass was not the only contributor to litter 
because non- native forb cover 1 and 2 years before were also import-
ant predictors of litter cover. The contribution of non- native annual 
forbs as litter, and thus as components of fine fuel accumulation over 
several years needs additional investigation.

Litter dynamics are complicated to model because litter can accu-
mulate and persist over several years, as well as diminish from decom-
position, grazing, redistribution (e.g., from wind), and fire. We found 
that plant cover, regardless of functional group, three years prior to 
a given year was a poor predictor of litter cover in that year, which 
suggests that most fine fuel litter persists for only 1–2 years in this 
landscape. Factors contributing to litter decomposition in arid environ-
ments involve temperature and moisture, including microbial degrada-
tion at night, when dew and water vapor are absorbed by litter, and 
photochemical and thermal degradation during the day (Gliksman et al., 
2017). In dry areas, these processes are fairly slow, leading to multiyear 
persistence and accumulation of fine fuels, especially where non- native 
annual grasses and forbs have invaded and domestic grazers are absent 
(Davies, Svejcar, & Bates, 2009). Rodents and other wild herbivores can 
also reduce litter accumulation (St Clair, O’Connor, Gill, & McMillan, 
2016). However, herbivory and decomposition of litter, particularly 
cheatgrass litter, may be slowed as cellulose and lignin form an increas-
ing component of above- ground plant material under increasing atmo-
spheric carbon dioxide levels (Ziska, Reeves, & Blank, 2005).

The development of fine fuels, in combination with natural (i.e., 
lightning) and human- caused ignitions, drives wildfires in arid and 
semi- arid environments (Crimmins & Comrie, 2004; Greenville, 
Dickman, Wardle, & Letnic, 2009; Knapp, 1998; Turner, Ostendorf, 
& Lewis, 2008; Westerling, Gershunov, Brown, Cayan, & Dettinger, 
2003). However, in our semi- arid focal study area, we were unable to 
predict the number of fires from the cover of herbaceous vegetation 
and litter. This lack of association may be the result of a high number 
of human- caused fires in the area (i.e., outside of a major metropoli-
tan area), especially in years when fuel loads and conditions were not 
conducive to fire spread. Alternatively, this lack of association could 
arise because the number of fires in a year is more strongly related 
to weather patterns than to fuel conditions, a supposition, that is 
supported by our finding a strong association between weather and 
number of fires in the same study area. In contrast, we were able to 
predict the area burned annually, including predicting the probability 
of unusually large fire years, from fine fuel data. Our data suggest that 
fire size in this region was mostly a function of growth of native peren-
nial bunchgrasses the year prior to a fire as well as litter from previous 
year’s production of annuals (i.e., cheatgrass and non- native forbs), but 
not high cheatgrass cover.

Cheatgrass cover may not be a good predictor of area burned in a 
given year because the conditions that promote growth of cheatgrass 
(i.e., high precipitation) may also cause high fuel moisture and thus 
limit fire spread and area burned. An alternative explanation is that 
domestic grazing may remove cheatgrass preferentially in wet years 
when it is abundant and nutritious, thus decoupling the relationship 
between cheatgrass and area burned in a given year. Experimental 
research in the northern Great Basin has shown that targeted graz-
ing can reduce above- ground biomass of cheatgrass by 80%–90% 
and limit the ability of fire to spread (Diamond, Call, & Devoe, 2010). 
Winter and spring grazing by sheep and cattle may have influenced 
the annual wildfire trends in our focal study area, and we consider this 
an important component of the unexplained variance in our findings.

Although the drying of fuels is important for combustion, tempera-
ture variables did not come out as important predictors of fire over 
the 26- year period in our focal study area. The lack of temperature ef-
fects is puzzling, but perhaps the northern Great Basin is nearly always 
warm enough to sufficiently cure fine fuels between precipitation 
events (Davies & Nafus, 2013). Alternatively, our seasonal tempera-
ture variables derived from monthly mean values may have been too 
coarse to predict biological phenomena. However, other studies also 
have found minimum influence of temperature on cheatgrass cover, 
with the exception of relatively weak effects of warmer winters and 
warmer summers (Bradley, 2009; Brummer et al., 2016).

In spite of the apparent disconnect between cheatgrass produc-
tion and wildfires in any given year, our models are consistent with an-
alyzes of wildfire across the Great Basin that show a 1- year lag effect 
of precipitation on both area burned and number of fires (Littell et al., 
2009), especially in landscapes dominated by cheatgrass (Balch et al., 
2013; Knapp, 1998). Similar to our findings, Balch et al. (2013) found 
that 27% of the variation in fire size across the Great Basin was a func-
tion of annual precipitation the previous year, but not the year of the 
fire. Several years of above- average precipitation can lead to a buildup 
of fine fuel (Hsu et al., 2012; Rao & Allen, 2010) and thus more fires 
and larger area burned. The accumulation of fine fuels that appears to 
be driving wildfire patterns in this landscape over several years also 
suggests that decomposition of litter from grasses and forbs is rela-
tively slow. More research on how Great Basin fires are influenced by 
the accumulation, persistence, and decomposition or removal of her-
baceous litter is needed.

The indirect relationship between antecedent precipitation and fire 
is well established for arid and semi- arid ecosystems (e.g., Abatzoglou 
& Kolden, 2013; Balch et al., 2013; Billings, 1994; Brooks & Matchett, 
2006; Crimmins & Comrie, 2004; Knapp, 1998; Littell et al., 2009; 
Westerling et al., 2003). However, we found that this relationship is 
far more complex than expected when timing and lag effects are con-
sidered. Perhaps the most striking finding from these analyzes was 
that wildfires are more likely and burn more area when several years 
of wet winters and springs are followed by a dry spring or summer. 
When dry summers were not preceded by wet years, fires were less 
common and less area burned. This suggests that fire risk is not always 
higher during multiyear droughts, a common misconception. Further, 
our models of antecedent weather explained only about 38% of the 
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variation in area burned in our focal study area and 43% across the 
Great Basin, which is slightly higher than the 27% reported by Balch 
et al. (2013), but also indicates that these processes are complex and 
influenced by a number of unmeasured factors. Other factors that 
could influence this relationship include a lack of ignitions in otherwise 
fire- prone years, acute fire weather events that cause “blow ups” that 
lead to unusually large fire size (Barbero, Abatzoglou, Steel, & Larkin, 
2014), and fire suppression efforts that keep fire sizes smaller than 
they might have become. We found that from weather data across 
the Great Basin we could predict the number of fires that burned in 
any given year (69% variance explained) better than the area burned 
(43% variance explained), perhaps because fire starts do not depend 
as much on fuel conditions and fire suppression as does area burned.

Our models also revealed regional variability in the relationship 
between precipitation and fire across the Great Basin. This regional 
variability is probably a reflection of the heterogeneity of topography, 
climate, soils, vegetation, and land use (Knapp, 1998; Littell et al., 
2009). For example, we observed fewer wildfires over the last 35 years 
in drier, more southerly Great Basin MLRAs, such as the Southern 
Nevada Basin and Range, which is not nearly as invaded by non- native 
annuals as the northern Great Basin (see Appendix 1: Fig. A2a,b). In 
these and adjacent hot desert environments, wildfire events are par-
ticularly rare historically because of the lack of fuel to carry fire (Brown 
& Minnich, 1986; Brooks & Berry, 2006; Brooks & Matchett, 2006; 
Rao & Allen, 2010; Schmid & Rogers, 1988). Research from other hot 
deserts has shown that at least two years of above- average precipita-
tion may be required to buildup enough fuel to carry wildfires (Turner 
et al., 2008). Some researchers estimate that twice the normal rainfall 
may be required to meet this threshold (Greenville et al., 2009; Letnic 
& Dickman, 2006).

The fire return interval or time between consecutive fires for a par-
ticular location is obviously a critical part of the grass–fire cycle, but 
we chose not to model these response variables for the Great Basin. 
Definitions for these variables are scale dependent and further compli-
cated by fire size, shape, and mosaicking (i.e., unburned patches within 
burn areas). Fires appear to have been fairly uncommon in sagebrush 
ecosystems historically, with fire return intervals estimated at any-
where from every 1–2 decades up to a century, depending on eleva-
tion, location, and site characteristics (Baker, 2006; Heyerdahl, Miller, 
& Parsons, 2006; Mensing, Livingston, & Barker, 2006). However, re-
cent analyzes have found that fire return intervals are now 2–4 times 
more frequent where cheatgrass is dominant (Balch et al., 2013). In 
light of our findings, future research may want to include assessments 
of how changes in non- native forbs may also be contributing to fire 
regime change in the Great Basin. In addition, considerations of future 
changes in litter accumulation and degradation rates under different 
climate forecasts may be warranted.

4.2 | A spatially explicit wildfire risk assessment 
based entirely on precipitation data

Using precipitation patterns to predict fire risk is intriguing and has 
been considered for many years, although never implemented (e.g., 

Hessl, McKenzie, & Schellhaas, 2004; Knapp, 1998; Westerling et al., 
2003). For example, Greenville et al. (2009) suggested that assessing 
cumulative rainfall for 2 years along with rainfall in any given year could 
be used to successfully predict annual area burned when combined 
with the mean Southern Oscillation Index from June to November in 
the year prior. We found that seasonal precipitation information could 
be applied spatially, such that within a given year, specific locations of 
the Great Basin could be identified as having higher or lower relative 
fire risk. Similar to Greenville et al. (2009), we found that precipitation 
in the year of a fire explained only part of the variation in the number 
of wildfires or area burned. Fire risk was also associated with sea-
sonally specific precipitation in the years preceding a fire (especially 
winter and spring precipitation) as well as the change in precipitation 
in the year of fire relative to previous years. This combined effect of 
antecedent and current- year precipitation could allow for better plan-
ning of fire suppression or fuel treatments using readily available, ex-
isting weather data. Our predictive model could be modified to help 
resource managers identify areas of high wildfire probability just prior 
to the fire season or during fuel treatment planning, and thus allocate 
suppression or fuel treatment resources more effectively. This may be 
particularly important in light of findings suggesting that fire suppres-
sion and fuel treatments are likely to be a more effective means of 
conservation than postwildfire restoration efforts in sagebrush eco-
systems, which have had limited success in many fire- prone climate 
zones over the last two decades (Knutson et al., 2014).

Future climate scenarios add a level of uncertainty to many of the 
processes discussed here (McKenzie, Gedalof, Peterson, & Mote, 2004). 
For example, increased temperatures could increase evapotranspira-
tion and aridity resulting in less favorable conditions for cheatgrass 
(Bradley et al., 2016). However, climate change predictions for greater 
amounts of fall, winter and early- spring precipitation (Abatzoglou & 
Kolden, 2011), may create even greater cheatgrass build up (Boyte, 
Wylie, & Major, 2016). Increasing atmospheric carbon dioxide levels 
may also exacerbate the increased productivity of cheatgrass, as well 
as native perennial grasses, and thus increase fine fuel development 
(Chambers et al., 2014; Smith, Huxman, Zitzer, & Charlet, 2000; Ziska 
et al., 2005). The uncertainty of these processes may be unsettling 
to fuel planners and resource managers, but wildfire prediction from 
current and future climate data is an active area of research (Higuera, 
Abatzoglou, Littell, & Morgan, 2015; McKenzie & Littell, 2017).

5  | CONCLUSIONS

Our data supported the hypothesis that precipitation influences 
herbaceous plant production and thus the amount of fine fuels 
available for combustion. It is well established that non- native an-
nual grasses in the Great Basin dry into dense, continuous stands of 
dead plants and litter, which can fuel wildfires (Brooks et al., 2004; 
Davies & Nafus, 2013), particularly in the absence of grazing (Davies, 
Bates, Svejcar, & Boyd, 2010). However, we found that both na-
tive and non- native grasses and forbs influence the number of fires 
and area burned suggesting that cheatgrass is not the sole driver 
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of the grass–fire cycle in this region. Second, we found support for 
our hypothesis that years with more fires and area burned tend to 
occur after one or more years of above- average precipitation. This 
could be explained by the accumulation of persistent litter, which in-
creases fuel loads through time. This suggests that precipitation pat-
terns may act indirectly on fire through mechanisms of vegetation 
and litter production and these indirect effects may be time lagged 
by 1–3 years as fine fuels accumulate and conditions are right for 
combustion and fire spread.

These findings have broad implications for conservation and man-
agement of the Great Basin as well as arid and semi- arid shrublands 
worldwide (D’Antonio & Vitousek, 1992; Hoekstra, Boucher, Ricketts, 
& Roberts, 2005). The Great Basin has garnered national attention 
in the U.S. as a result of conservation efforts for the Greater Sage- 
grouse (Centrocercus urophasianus). One of the greatest threats to 
this iconic bird is the loss of shrubland habitat due to the cheatgrass–
fire cycle that has converted native shrublands to annual grasslands 
after burning repeatedly. This threat is so significant that in 2015 the 
Department of Interior released Secretarial Order (SO 3336) to en-
hance policies and strategies for preventing and suppressing range-
land fire and restoring rangeland landscapes affected by fire in the 
western United States (USDI, 2015). The major findings from our 
analyzes span the majority of the western range of the Greater Sage- 
grouse and the application of our precipitation- based fire risk model 
could be an important contribution to meeting the Secretarial Order. 
This information may also help resource managers prioritize the lo-
cation and timing of fuel management actions, such as maintenance 
of fuel breaks, green stripping, brown stripping, and targeted grazing 
(Maestas et al., 2016). Our findings suggest that land managers inter-
ested in reducing fine fuels may need to consider how to manage pre-
vious years’ herbaceous production, in the form of litter from annual 
forbs and cheatgrass, instead of solely managing biomass from the 
current growing season.

ACKNOWLEDGMENTS

The Joint Fire Science Program provided funding for this project 
(#11- 1- 2- 30). Charles Baun and the Conservation Branch staff of the 
Orchard Combat Training Center provided 26 years of vegetation 
data. We thank Jeanne Chambers and four anonymous reviewers for 
helpful comments on earlier versions of this manuscript. Any use of 
trade, firm, or product names is for descriptive purposes only and does 
not imply endorsement by the U.S. government.

CONFLICT OF INTEREST

None declared.

ORCID

David S. Pilliod  http://orcid.org/0000-0003-4207-3518 

Justin L. Welty  http://orcid.org/0000-0001-7829-7324 

Robert S. Arkle  http://orcid.org/0000-0003-3021-1389

REFERENCES

Abatzoglou, J. T., & Kolden, C. A. (2011). Climate change in western US 
deserts: Potential for increased wildfire and invasive annual grasses. 
Rangeland Ecology & Management, 64, 471–478.

Abatzoglou, J. T., & Kolden, C. A. (2013). Relationships between climate 
and macroscale area burned in the western United States. International 
Journal of Wildland Fire, 22, 1003–1020.

Alba, C., Skálová, H., McGregor, K. F., D’antonio, C., & Pyšek, P. (2015). Native 
and exotic plant species respond differently to wildfire and prescribed fire 
as revealed by meta- analysis. Journal of Vegetation Science, 26, 102–113.

Arkle, R. S., Pilliod, D. S., Hanser, S. E., Brooks, M. L., Chambers, J. C., Grace, 
J. B., … Wirth, T. A. (2014). Quantifying restoration effectiveness using 
multi- scale habitat models: Implications for sage- grouse in the Great 
Basin. Ecosphere, 5, 132.

Baker, W. L. (2006). Fire and restoration of sagebrush ecosystems. Wildlife 
Society Bulletin, 34, 177–185.

Balch, J. K., Bradley, B. A., D’antonio, C. M., & Gómez-Dans, J. (2013). 
Introduced annual grass increases regional fire activity across the arid 
western USA (1980–2009). Global Change Biology, 19, 173–183.

Barbero, R., Abatzoglou, J. T., Steel, E. A., & Larkin, N. K. (2014). Modeling 
very large- fire occurrences over the continental United States from 
weather and climate forcing. Environmental Research Letters, 9, 124009.

Bates, J. D., Svejcar, T., Miller, R. F., & Angell, R. A. (2006). The effects of 
precipitation timing on sagebrush steppe vegetation. Journal of Arid 
Environments, 64, 670–697.

Billings, W. D. (1994). Ecological impacts of cheatgrass and resultant fire on 
ecosystems in the western Great Basin. In S. B. Monsen and S. G. Kitchen 
(Eds.), Proceedings—Ecology, Management, and Restoration of Intermountain 
Annual Rangelands (pp. 22–30). General Technical Report INT GTR-313. 
Ogden, Utah: U.S. Department of Agriculture, Forest Service.

Bowman, A. W., & Azzalini, A. (2014). R package ‘sm’: Nonparametric smooth-
ing methods(version 2.2-5.4) URL http://www.stats.gla.ac.uk/~adrian/
sm, http://azzalini.stat.unipd.it/Book_sm

Boyte, S. P., & Wylie, B. K. (2016). Near- real- time cheatgrass percent cover 
in the northern Great Basin, USA, 2015. Rangelands, 38, 278–284.

Boyte, S. P., Wylie, B. K., & Major, D. J. (2016). Cheatgrass percent cover change: 
Comparing recent estimates to climate change–driven predictions in the 
northern Great Basin. Rangeland Ecology & Management, 69, 265–279.

Bradley, B. A. (2009). Regional analysis of the impacts of climate change 
on cheatgrass invasion shows potential risk and opportunity. Global 
Change Biology, 15, 196–208.

Bradley, B. A., Curtis, C. A., & Chambers, J. C. (2016). Bromus response 
to climate and projected changes with climate change. In Germino M. 
J., Chambers J. C., and Brown C. S. (Eds.), Exotic brome-grasses in arid 
and semiarid ecosystems of the western US (pp. 257–274). Switzerland: 
Springer International Publishing.

Bradley, B. A., & Mustard, J. F. (2005). Identifying land cover variability dis-
tinct from land cover change: Cheatgrass in the Great Basin. Remote 
Sensing of Environment, 94, 204–213.

Brooks, M. L., & Berry, K. H. (2006). Dominance and environmental cor-
relates of alien annual plants in the Mojave Desert, USA. Journal of Arid 
Environments, 67, 100–124.

Brooks, M. L., D’antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., 
DiTomaso, J. M., … Pyke, D. (2004). Effects of invasive alien plants on 
fire regimes. BioScience, 54, 677–688.

Brooks, M. L., & Matchett, J. R. (2006). Spatial and temporal patterns of wild-
fires in the Mojave Desert, 1980–2004. Journal of Arid Environments, 
67, 148–164.

Brooks, M. L., Matchett, J. R., Shinneman, D. J., & Coates, P. S. (2015). Fire 
patterns in the range of the greater sage-grouse, 1984-2013—Implications 
for conservation and management (No. 2015–1167). Sacramento, 
California: US Geological Survey.

Brown, D. E., & Minnich, R. A. (1986). Fire and changes in creosote bush 
scrub of the western Sonoran Desert, California. American Midland 
Naturalist, 116, 411–422.

http://orcid.org/0000-0003-4207-3518
http://orcid.org/0000-0003-4207-3518
http://orcid.org/0000-0001-7829-7324
http://orcid.org/0000-0001-7829-7324
http://orcid.org/0000-0003-3021-1389
http://orcid.org/0000-0003-3021-1389
http://www.stats.gla.ac.uk/~adrian/sm
http://www.stats.gla.ac.uk/~adrian/sm
http://azzalini.stat.unipd.it/Book_sm


8144  |     PILLIOD et aL.

Brummer, T. J., Taylor, K. T., Rotella, J., Maxwell, B. D., Rew, L. J., & Lavin, M. 
(2016). Drivers of Bromus tectorum abundance in the Western North 
American sagebrush steppe. Ecosystems, 19, 986–1000.

Chambers, J. C., Bradley, B. A., Brown, C. S., D’Antonio, C., Germino, M. J., 
Grace, J. B., … Pyke, D. A. (2014). Resilience to stress and disturbance, 
and resistance to Bromus tectorum L. invasion in cold desert shrublands 
of western North America. Ecosystems, 17, 360–375.

Chambers, J. C., Germino, M. J., Belnap, J., Brown, C. S., Schupp, E. W., & 
Clair, S. B. S. (2016). Plant community resistance to invasion by Bromus 
species: The roles of community attributes, Bromus interactions with 
plant communities, and Bromus traits. In Germino M. J., Chambers 
J. C., and Brown C. S. (Eds.), Exotic brome-grasses in arid and semiarid 
ecosystems of the Western US (pp. 275–304). Springer International 
Publishing, Switzerland: Springer International Publishing.

Chambers, J. C., Roundy, B. A., Blank, R. R., Meyer, S. E., & Whittaker, A. 
(2007). What makes Great Basin sagebrush ecosystems invasible by 
Bromus tectorum? Ecological Monographs, 77, 117–145.

Clarke, P. J., Latz, P. K., & Albrecht, D. E. (2005). Long- term changes in 
semi- arid vegetation: Invasion of an exotic perennial grass has larger 
effects than rainfall variability. Journal of Vegetation Science, 16, 
237–248.

Coates, P. S., Ricca, M. A., Prochazka, B. G., Brooks, M. L., Doherty, K. E., 
Kroger, T., … Casazza, M. L. (2016). Wildfire, climate, and invasive grass 
interactions negatively impact an indicator species by reshaping sage-
brush ecosystems. Proceedings of the National Academy of Sciences, 113, 
12745–12750.

Crimmins, M. A., & Comrie, A. C. (2004). Interactions between anteced-
ent climate and wildfire variability across south- eastern Arizona. 
International Journal of Wildland Fire, 13, 455–466.

Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., & Pasteris, P. (2002). 
A knowledge- based approach to the statistical mapping of climate. 
Climate Research, 22, 99–113.

D’Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by ex-
otic grasses, the grass/fire cycle, and global change. Annual Review of 
Ecology and Systematics, 23, 63–87.

Davies, K. W., Bates, J. D., Svejcar, T. J., & Boyd, C. S. (2010). Effects of 
long- term livestock grazing on fuel characteristics in rangelands: An 
example from the sagebrush steppe. Rangeland Ecology & Management, 
63, 662–669.

Davies, K. W., & Nafus, A. M. (2013). Exotic annual grass invasion alters 
fuel amounts, continuity and moisture content. International Journal of 
Wildland Fire, 22, 353–358.

Davies, K. W., Svejcar, T. J., & Bates, J. D. (2009). Interaction of historical 
and nonhistorical disturbances maintains native plant communities. 
Ecological Applications, 19, 1536–1545.

Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large 
wildfire trends in the western United States, 1984–2011. Geophysical 
Research Letters, 41, 2928–2933.

Diamond, J. M., Call, C. A., & Devoe, N. (2010). Effects of targeted cat-
tle grazing on fire behavior of cheatgrass- dominated rangeland in the 
northern Great Basin, USA. International Journal of Wildland Fire, 18, 
944–950.

Elzinga, C. L., Salzer, D. W., & Willoughby, J. W. (1998). Measuring and moni-
toring plant populations. BLM Technical Reference 1730-1. Denver, CO: 
Bureau of Land Management.

Germino, M. J., Belnap, J., Stark, J. M., Allen, E. B., & Rau, B. M. (2016). 
Ecosystem impacts of exotic annual invaders in the genus Bromus. In 
Germino M. J., Chambers J. C., and Brown C. S. (Eds.), Exotic brome-
grasses in arid and semiarid ecosystems of the western US (pp. 61–95). 
Springer International Publishing, Switzerland Springer International 
Publishing.

Gliksman, D., Rey, A., Seligmann, R., Dumbur, R., Sperling, O., Navon, Y., 
… Grünzweig, J. M. (2017). Biotic degradation at night, abiotic degra-
dation at day: Positive feedbacks on litter decomposition in drylands. 
Global Change Biology, 23, 1564–1574.

Greenville, A. C., Dickman, C. R., Wardle, G. M., & Letnic, M. (2009). The fire 
history of an arid grassland: The influence of antecedent rainfall and 
ENSO. International Journal of Wildland Fire, 18, 631–639.

Haubensak, K., D’Antonio, C., & Wixon, D. (2009). Effects of fire and envi-
ronmental variables on plant structure and composition in grazed salt 
desert shrublands of the Great Basin (USA). Journal of Arid Environments, 
73, 643–650.

Hessl, A. E., McKenzie, D., & Schellhaas, R. (2004). Drought and Pacific 
Decadal Oscillation linked to fire occurrence in the inland Pacific 
Northwest. Ecological Applications, 14, 425–442.

Heyerdahl, E. K., Miller, R. F., & Parsons, R. A. (2006). History of fire and 
Douglas- fir establishment in a savanna and sagebrush–grassland mo-
saic, southwestern Montana, USA. Forest Ecology and Management, 
230, 107–118.

Higuera, P. E., Abatzoglou, J. T., Littell, J. S., & Morgan, P. (2015). The chang-
ing strength and nature of fire- climate relationships in the Northern 
Rocky Mountains, USA, 1902–2008. PLoS ONE, 10, e0127563.

Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005). 
Confronting a biome crisis: Global disparities of habitat loss and pro-
tection. Ecology Letters, 8, 23–29.

Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. 
R., … Lima, M. (2006). Extreme climatic events shape arid and semiarid 
ecosystems. Frontiers in Ecology and the Environment, 4, 87–95.

Holthuijzen, M. F., & Veblen, K. E. (2015). Grass- shrub associations over a 
precipitation gradient and their implications for restoration in the Great 
Basin, USA. PloS One, 10, e0143170.

Horn, K. J., Bishop, T. B., & Clair, S. B. S. (2017). Precipitation timing and soil 
heterogeneity regulate the growth and seed production of the invasive 
grass red brome. Biological Invasions, 19, 1339–1350.

Horn, K. J., Nettles, R., & Clair, S. B. S. (2015). Germination response to 
temperature and moisture to predict distributions of the invasive grass 
red brome and wildfire. Biological Invasions, 17, 1849–1857.

Hsu, J. S., & Adler, P. B. (2014). Anticipating changes in variability of grass-
land production due to increases in interannual precipitation variability. 
Ecosphere, 5, 1–15.

Hsu, J. S., Powell, J., & Adler, P. B. (2012). Sensitivity of mean annual primary 
production to precipitation. Global Change Biology, 18, 2246–2255.

Humphrey, L. D., & Schupp, E. W. (2001). Seed banks of Bromus tectorum–
dominated communities in the Great Basin. Western North American 
Naturalist, 61, 85–92.

James, J. J., Drenovsky, R. E., Monaco, T. A., & Rinella, M. J. (2011). Managing 
soil nitrogen to restore annual grass- infested plant communities: Effective 
strategy or incomplete framework? Ecological Applications, 21, 490–502.

Jones, R., Chambers, J. C., Johnson, D. W., Blank, R. R., & Board, D. I. (2015). 
Effect of repeated burning on plant and soil carbon and nitrogen in cheat-
grass (Bromus tectorum) dominated ecosystems. Plant and Soil, 386, 47–64.

Knapp, P. A. (1998). Spatio- temporal patterns of large grassland fires in 
the Intermountain West, USA. Global Ecology & Biogeography Letters, 7, 
259–272.

Knick, S. T., Dobkin, D. S., Rotenberry, J. T., Schroeder, M. A., & Vander 
Haegen, W. M. (2003). Teetering on the edge or too late? Conservation 
and research issues for avifauna of sagebrush habitats. The Condor, 
105, 611–634.

Knutson, K. C., Pyke, D. A., Wirth, T. A., Arkle, R. S., Pilliod, D. S., Brooks, 
M. L., … Grace, J. B. (2014). Long- term effects of seeding after wildfire 
on vegetation in Great Basin shrubland ecosystems. Journal of Applied 
Ecology, 51, 1414–1424.

Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., & Hayhoe, K. 
(2009). Global pyrogeography: The current and future distribution of 
wildfire. PLoS ONE, 4, e5102.

Leffler, A. J., Monaco, T. A., James, J. J., & Sheley, R. L. (2016). Importance 
of soil and plant community disturbance for establishment of Bromus 
tectorum in the Intermountain West, USA. NeoBiota, 30, 111.

Letnic, M., & Dickman, C. R. (2006). Boom means bust: Interactions be-
tween the El Niño/Southern Oscillation (ENSO), rainfall and the 



     |  8145PILLIOD et aL.

processes threatening mammal species in arid Australia. Biodiversity 
and Conservation, 15, 3847–3880.

Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). 
Climate and wildfire area burned in western US ecoprovinces, 1916–
2003. Ecological Applications, 19, 1003–1021.

Mack, R. N., & Pyke, D. A. (1983). The demography of Bromus tectorum: 
Variation in time and space. The Journal of Ecology, 71, 69–93.

Maestas, J. D., Pellant, M., Okeson, L., Tilley, D., Havlina, D., Cracroft, T., … 
Messmer, D. (2016). Fuel breaks to reduce large wildfire impacts in sage-
brush ecosystems. Plant Materials Technical Note No. 66, 30. Boise, ID, 
USA: USDA Natural Resources Conservation Service.

Mann, M. L., Batllori, E., Moritz, M. A., Waller, E. K., Berck, P., Flint, A. L., … 
Dolfi, E. (2016). Incorporating anthropogenic influences into fire prob-
ability models: Effects of human activity and climate change on fire 
activity in California. PLoS ONE, 11(4), e0153589.

McCune, B. (2009). Nonparametric multiplicative regression for habitat mod-
eling. In: http://www.pcord.com/NPMRintro.pdf (Accessed July 1, 2017).

McCune, B., & Mefford, M. J. (2009). HyperNiche V. 2.1. 3, Non-parametric mul-
tiplicative habitat modeling. MjM Software, Gleneden Beach, Oregon, USA.

McKenzie, D., Gedalof, Z. E., Peterson, D. L., & Mote, P. (2004). Climatic 
change, wildfire, and conservation. Conservation Biology, 18, 890–902.

McKenzie, D., & Littell, J. S. (2017). Climate change and the eco- hydrology 
of fire: Will area burned increase in a warming western USA? Ecological 
Applications, 27, 26–36.

Mensing, S., Livingston, S., & Barker, P. (2006). Long- term fire history in 
Great Basin sagebrush reconstructed from macroscopic charcoal in 
spring sediments, Newark Valley, Nevada. Western North American 
Naturalist, 66, 64–77.

Novak, S. J., & Mack, R. N. (2001). Tracing plant introduction and spread: 
Genetic evidence from Bromus tectorum (Cheatgrass) introductions of 
the invasive grass Bromus tectorum worldwide were broadly similar and 
closely tied to patterns of European human immigration. AIBS Bulletin, 
51, 114–122.

PRISM. (2010). PRISM Climate Group. Oregon State University. http://
prism.oregonstate.edu (Accessed 17 September 2015).

Pyke, D. A., Chambers, J. C., Beck, J. L., Brooks, M. L., & Mealor, B. A. 
(2016). Land uses, fire, and invasion: Exotic annual Bromus and human 
dimensions. In Germino M. J., Chambers J. C., and Brown C. S. (Eds.), 
Exotic brome-grasses in arid and semiarid ecosystems of the western US 
(pp. 307–337). Springer International Publishing, Switzerland Springer 
International Publishing.

R Development Core Team. (2014). R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna, 
Austria. ISBN 3-900051-07-0. http://www.R-project.org

Rao, L. E., & Allen, E. B. (2010). Combined effects of precipitation and ni-
trogen deposition on native and invasive winter annual production in 
California deserts. Oecologia, 162, 1035–1046.

Reisner, M. D., Grace, J. B., Pyke, D. A., & Doescher, P. S. (2013). Conditions 
favouring Bromus tectorum dominance of endangered sagebrush 
steppe ecosystems. Journal of Applied Ecology, 50, 1039–1049.

Robinson, T. M., La Pierre, K. J., Vadeboncoeur, M. A., Byrne, K. M., Thomey, 
M. L., & Colby, S. E. (2013). Seasonal, not annual precipitation drives 
community productivity across ecosystems. Oikos, 122, 727–738.

Rotundo, J. L., & Aguiar, M. R. (2005). Litter effects on plant regeneration in 
arid lands: A complex balance between seed retention, seed longevity 
and soil–seed contact. Journal of Ecology, 93, 829–838.

Schmid, M. K., & Rogers, G. F. (1988). Trends in fire occurrence in the 
Arizona upland subdivision of the Sonoran Desert, 1955 to 1983. The 
Southwestern Naturalist, 437–444.

Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E., & Peters, D. (2012). 
Legacies of precipitation fluctuations on primary production: Theory 
and data synthesis. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 367, 3135–3144.

Shinneman, D. J., & Baker, W. L. (2009). Environmental and climatic vari-
ables as potential drivers of post- fire cover of cheatgrass (Bromus 
tectorum) in seeded and unseeded semiarid ecosystems. International 
Journal of Wildland Fire, 18, 191–202.

Smith, S. D., Huxman, T. E., Zitzer, S. F., & Charlet, T. N. (2000). Elevated 
CO2 increases productivity and invasive species success in an arid eco-
system. Nature, 408, 79.

Smith, D. C., Meyer, S. E., & Anderson, V. J. (2008). Factors affecting Bromus 
tectorum seed bank carryover in western Utah. Rangeland Ecology & 
Management, 61, 430–436.

St Clair, S. B., O’Connor, R., Gill, R., & McMillan, B. (2016). Biotic resistance 
and disturbance: Rodent consumers regulate post- fire plant invasions 
and increase plant community diversity. Ecology, 97, 1700–1711.

Tagestad, J., Brooks, M., Cullinan, V., Downs, J., & McKinley, R. (2016). 
Precipitation regime classification for the Mojave Desert: Implications 
for fire occurrence. Journal of Arid Environments, 124, 388–397.

Taylor, K., Brummer, T., Rew, L. J., Lavin, M., & Maxwell, B. D. (2014). Bromus 
tectorum response to fire varies with climate conditions. Ecosystems, 
17, 960–973.

Turner, D., Ostendorf, B., & Lewis, M. (2008). An introduction to patterns of 
fire in arid and semi- arid Australia, 1998–2004. The Rangeland Journal, 
30, 95–107.

USDI - United States Department of Interior. (2015). Secretarial Order 
Number 3336, Rangeland Fire Prevention, Management, and 
Restoration. http://www.forestsandrangelands.gov/rangeland/docu-
ments/SecretarialOrder3336.pdf. (Accessed November 2, 2016).

Van Linn, P. F., Nussear, K. E., Esque, T. C., DeFalco, L. A., Inman, R. D., & 
Abella, S. R. (2013). Estimating wildfire risk on a Mojave Desert land-
scape using remote sensing and field sampling. International Journal of 
Wildland Fire, 22, 770–779.

Welty, J. L., Pilliod, D. S., & Arkle, R. S. (2017). Combined wildfire dataset for 
the United States and certain territories, 1870–2015: U.S. Geological 
Survey data release, https://doi.org/10.5066/f75h7f5m

Westerling, A. L., Gershunov, A., Brown, T. J., Cayan, D. R., & Dettinger, M. 
D. (2003). Climate and wildfire in the western United States. Bulletin of 
the American Meteorological Society, 84, 595–604.

Ziska, L. H., Reeves, J. B., & Blank, B. (2005). The impact of recent increases 
in atmospheric CO2 on biomass production and vegetative retention of 
Cheatgrass (Bromus tectorum): Implications for fire disturbance. Global 

Change Biology, 11, 1325–1332.

How to cite this article: Pilliod DS, Welty JL, Arkle RS. Refining 
the cheatgrass–fire cycle in the Great Basin: Precipitation 
timing and fine fuel composition predict wildfire trends. Ecol 
Evol. 2017;7:8126–8151. https://doi.org/10.1002/ece3.3414

http://www.pcord.com/NPMRintro.pdf
http://prism.oregonstate.edu
http://prism.oregonstate.edu
http://www.R-project.org
http://www.forestsandrangelands.gov/rangeland/documents/SecretarialOrder3336.pdf
http://www.forestsandrangelands.gov/rangeland/documents/SecretarialOrder3336.pdf
https://doi.org/10.5066/f75h7f5m
https://doi.org/10.1002/ece3.3414


8146  |     PILLIOD et aL.

APPENDIX A

F IGURE  A1 Great Basin study area showing (a) 1980–2014 average annual precipitation, (b) potential vegetation types reclassified from 
LANDFIRE (see Table A1), (c) areas dominated by introduced annual herbaceous vegetation (IAH) according to LANDFIRE. Major Land Resource 
Area (MLRA) codes in the lower right panel are: (1) Malheur High Plateau, (2) Central Rocky and Blue Mountain Foothills, (3) Owyhee High 
Plateau, (4) Snake River Plains, (5) Eastern Idaho Plateaus, (6) Klamath and Shasta Valleys and Basins, (7) Fallon- Lovelock Area, (8) Humboldt 
Area, (9) Central Nevada Basin and Range, (10) Great Salt Lake Area, (11) Wasatch and Uinta Mountains, (12) Sierra Nevada Mountains, (13) 
Carson Basin and Mountains, (14) Southern Nevada Basin and Range, (d) fires burned from 1980 to 2014
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TABLE  A1 List of vegetation classes in the Great Basin derived 
from LANDFIRE (http://www.landfire.gov/) ordered from largest to 
smallest area. Vegetation classes are composites of potential 
vegetation types, which are biophysical characteristics of the Great 
Basin

Vegetation class
Variable 
name Hectares

Percent of great 
basin (%)

Wyoming sagebrush 
shrubland

WYSAGE 1,358,303 26

Salt desert shrubland SDS 1,206,619 23

Other vegetation types OTHER 1,132,780 21

Juniper woodland Juniper 969,701 18

Dwarf sagebrush 
shrubland

DWSage 449,497 8

Mountain sagebrush 
shrubland

MTSAGE 189,121 4

5,306,020 100

F IGURE  A2A Observed (black lines) and model estimated (red lines) number of fires for each year by MLRA. Model estimates are derived 
from precipitation variables in the Great Basin- level model. Note different y- axes scales

http://www.landfire.gov/
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F IGURE  A2B Observed (black lines) and model estimated (red lines) number of fires for each year by MLRA. Model estimates are derived 
from precipitation variables in the Great Basin- level model. Note different y- axes scales
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F IGURE  A3A Observed (black lines) and model estimated (red lines) area burned for each year by MLRA. Model estimates are derived from 
precipitation variables in the Great Basin- level model. Note different y- axes scales



8150  |     PILLIOD et aL.

F IGURE  A3B Observed (black lines) and model estimated (red lines) area burned for each year by MLRA. Model estimates are derived from 
precipitation variables in the Great Basin- level model. Note different y- axes scales

F IGURE  A4 Model estimated area burned versus one- year 
change in spring precipitation for four representative MLRAs. Each 
point is one year (1980–2014) in a given MLRA. Model estimates are 
derived from precipitation variables in the Great Basin- level model
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F IGURE  A5 Modeled relationships between precipitation 
and annual relative fire risk across the Great Basin from 1980 
to 2014. The best fitting model contained three precipitation 
predictor variables: ΔSUMMER3yrPave, SPRING1yrP, and 
ΔWIN + SPR3yrPave. Panel (a) shows that fire risk is highest the 
year following wet springs and particularly when summers are dry 
(negative values) compared to the three years prior. Panel (b) shows 
that fire risk is highest the year following wet springs and particularly 
when winter and spring precipitation in the given year is lower than 
the three years prior


