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As ocean acidification (OA) is gradually increasing, concerns regarding its ecological 
impacts on marine organisms are growing. Our previous studies have shown that seawater 
acidification exerted adverse effects on physiological processes of the blue mussel Mytilus 
edulis, and the aim of the present study was to obtain energy-related evidence to verify 
and explain our previous findings. Thus, the same acidification system (pH: 7.7 or 7.1; 
acidification method: HCl addition or CO2 enrichment; experimental period: 21 d) was set 
up, and the energy-related changes were assessed. The results showed that the energy 
charge (EC) and the gene expressions of cytochrome C oxidase (COX) reflecting the ATP 
synthesis rate increased significantly after acidification treatments. What’s more, the 
mussels exposed to acidification allocated more energy to gills and hemocytes. However, 
the total adenylate pool (TAP) and the final adenosine triphosphate (ATP) in M. edulis 
decreased significantly, especially in CO2 treatment group at pH 7.1. It was interesting to 
note that, TAP, ATP, and COXs gene expressions in CO2 treatment groups were all 
significantly lower than that in HCl treatment groups at the same pH, verifying that CO2-
induced acidification exhibited more deleterious impacts on M. edulis, and ions besides 
H+ produced by CO2 dissolution were possible causes. In conclusion, energy-related 
changes in M. edulis responded actively to seawater acidification and varied with different 
acidification conditions, while the constraints they had at higher acidification levels suggest 
that M. edulis will have a limited tolerance to increasing OA in the future.

Keywords: energy allocation, total adenylate pool, energy charge, adenosine triphosphate, cytochrome C oxidase, 
Mytilus edulis, seawater acidification

INTRODUCTION

Oceans have absorbed a large amount of anthropogenic carbon dioxide (CO2) since the industrial 
revolution, leading to ocean acidification (OA; Caldeira and Wickett, 2003; Doney et  al., 2009). 
The average seawater surface pH has declined by approximately 0.1 units compared with 
pre-industrial levels, and it is predicted to decline by an additional 0.3–0.4 units by the end 
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of this century (Fabry et  al., 2008; Gattuso et  al., 2015). OA 
has been reported to exerted adverse effects on marine organisms, 
including fertilization (Shi et  al., 2017; Han et  al., 2021), 
physiological responses (Peng et  al., 2017; Zhao et  al., 2017a,b, 
2020), immune responses (Liu et  al., 2016; Su et  al., 2018), 
behavioral responses (Peng et  al., 2017; Rong et  al., 2018, 
2020), and so on (Liu, 2021). Kroeker et  al. (2011) findings 
indicated that OA decreased the diversity, biomass, and trophic 
complexity of benthic marine communities in reduced pH 
zones, with the highest reduction seen in the key calcifying 
species. In fact, natural CO2 vents in the Mediterranean Sea 
and Indo-Pacific are virtually devoid of calcifying organisms 
at pH 7.7 and below (Hall-Spencer et  al., 2008). Owing to 
relatively low metabolic rates, poor acid-base regulation capacities 
and calcareous skeletal structures or shells, a large fraction of 
mollusk species presented a high vulnerability to OA (Thomsen 
et  al., 2010; Wittmann and Pörtner, 2013; Wang and Wang, 
2020). Bivalve mollusks, particularly in the early stages of their 
life, can react with decreased rates of growth and calcification, 
as well as a decreased shell strength toward elevated seawater 
pCO2 (Beniash et  al., 2010; Gazeau et  al., 2010; Talmage and 
Gobler, 2010; Gaylord et  al., 2011; Stevens and Gobler, 2018). 
The slowness of growth and calcification seen in bivalve mollusks 
under acidic conditions was attributed to a higher energy 
consumption for the maintenance of physiological homeostasis 
(Lannig et  al., 2010; Thomsen and Melzner, 2010; Melzner 
et  al., 2020). For example, the total energy loss of Mytilus 
edulis in the treatments at pH 7.7 and pH 7.4 increased by 
42 and 59%, respectively, compared with that of the control 
at pH 8.0 (Thomsen and Melzner, 2010). Similarly, Beniash 
et  al. (2010) found that Crassostrea virginica greatly increased 
its energy consumption and standard metabolic rate to maintain 
its internal stability when it was exposed to an acidic environment 
at pH 7.5.

It is well documented that the organisms adopt different 
energy strategies when facing different acidic conditions. 
Organisms may compensate for the elevated energy demand 
during moderate acidification stress by increasing their energy 
intake, assimilation, and/or metabolic flux to cover the excessive 
demand for adenosine triphosphate (ATP). However, such 
compensation might be incomplete or impossible during extreme 
stress, and organisms would enter a metabolically depressed 
state to conserve energy and extend their survival time (Guppy 
and Withers, 1999). Melzner et  al. (2011) found that strong 
pCO2 stress (pH < 7.4) coupled with food limitation caused  
M. edulis to prefer allocating its resources toward the conservation 
of somatic mass, and the nacre was partially sacrificed because 
it required an extra energy input to maintain an intact nacre 
surface in the corrosive fluid. A recent study demonstrated 
that oysters Crassostrea gigas exhibited energy modulations with 
slight inhibition of aerobic metabolism, stimulation of anaerobic 
metabolism, and an increase in the glycolytic enzyme activity 
after exposure to seawater acidification (Cao et  al., 2018). 
However, another earlier report declared that the long-term 
acclimation of M. edulis to elevated seawater pCO2 in the 
Western Baltic Sea resulted in an increase in aerobic metabolic 
rates rather than metabolic depression during moderate 

hypercapnia (pH > 7.4; Thomsen and Melzner, 2010). It seemed 
that the energy responses of bivalves to seawater acidification 
were species-specific and varied under different acidic conditions.

Our previous studies showed that seawater acidification had 
adverse effects on M. edulis (Sun et  al., 2016, 2017; Xu et  al., 
2020). The mortality rate of mussels increased significantly, 
while the rates of growth and calcification decreased considerably 
after acidification treatments. Ultrastructural impairments in 
gills, digestive glands, and hemocytes occurred, and the 
corresponding key physiological processes of ingestion, digestion, 
and immune functions were obviously influenced. What interested 
us most were the specific energy responses of M. edulis to 
acidified seawater and the consequent influences on M. edulis 
to cope with seawater acidification. Therefore, the present study 
focused on evaluating the energy responses of M. edulis to 
different acidification conditions. Understanding the energy 
strategies that M. edulis employs to address acidification stress 
and their biological limitations can serve as a quantitative basis 
for assessing the sublethal effects of seawater acidification on 
M. edulis and contribute to the prediction of the mussel 
population fate under future OA.

MATERIALS AND METHODS

Organism Collection and Acclimation
Adult individuals of M. edulis (shell length 48.88 ± 0.72 mm 
and wet weight 7.20 ± 0.58 g) were collected in Laoshan Bay 
(36°15ʹN, 120°40ʹE), Qingdao, China, and directly transferred 
to the experimental aquaria. The individuals were cleaned 
carefully and then acclimated in the experimental tanks (Vol. = 8 l; 
30 mussels per tank) for a week before the experiments under 
the controlled conditions:temperature 15 ± 1°C; salinity 31 ± 1; 
pH 8.1 ± 0.1 (Sun et  al., 2016, 2017). Natural seawater was 
filtered on a 0.45 μm pore size membrane and completely 
renewed every day. Food algae, green microalgae Chlorella sp., 
was supplied daily to the holding tanks by natural gravity 
(approximately 1 ml min−1), and the final density in each tank 
was 1.5 × 105 cells ml−1.

Experimental Design and Acidification 
System Setup
The acidification system consisted of two acidification levels, 
one representing the near-future OA (pH 7.7, pCO2 ≈ 1,500 ppm; 
Orr et al., 2005) and the other mimicking the CO2 sequestration 
leak scenarios (pH 7.1, pCO2 ≈ 5,000 ppm; Berge et  al., 2006). 
Each acidification level was simulated by two different 
acidification methods of HCl addition (seawater was acidified 
by adding 1 M HCl) and CO2 enrichment (seawater was bubbled 
with pure CO2 gas) according to our previous study (Sun 
et  al., 2017). Seawater pHNBS was measured and adjusted by 
using a pH controller (pH/ORP-101, HOTEC, Taiwan), and 
the pH fluctuations were controlled within 0.08 units. The pH 
of the control was equal to the current average ocean surface 
value (pH 8.1, pCO2 ≈ 390 ppm). The pHNBS and salinity were 
monitored daily, while the total alkalinity (AT) was measured 
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weekly. All the other carbonate system variables were calculated 
using CO2SYS software according to Pierrot et  al. (2006). The 
chemical parameters of the seawater acidified by CO2 were as 
follows (Table 1). The acclimated mussels were randomly divided 
into 5 groups, including 1 control group (pH 8.1) and 4 
acidifying treatment groups (2 CO2-treated groups: pH 7.7 
and pH 7.1; 2 HCl-treated groups: pH 7.7 and pH 7.1). Each 
group had three parallel groups with 15 individuals in. The 
experiments lasted for 21 days. During the experimental period, 
the temperature was kept at 15 ± 1°C and the salinity of the 
experimental seawater was 31 ± 1. The green microalgae Chlorella 
sp. was provided once a day at a final density of 1.5 × 105 cells ml−1.

Assessments of Energy Changes
Sample Preparation
Six mussels in each parallel group were randomly collected 
on the 21st day of the experiment. The gills and soft tissue 
(the whole tissues except shell) were sampled and then ground 
with phosphate-buffered saline (PBS, 0.14 M sodium chloride, 
3 mm potassium chloride, 8 mm disodium hydrogen phosphate 
dodecahydrate, and 1.5 mm potassium phosphate monobasic; 
pH 7.4), and the hemocytes were sampled according to Sun 
et  al. (2017). The collected samples were sonicated on ice 
bath, and the homogenates were mixed with 20% (v/v) perchloric 
acid at 1:1 (v/v) and then centrifuged at 4000 g, 4°C for 10 min. 
The supernatant was adjusted to pH 6.5 with 1 M KOH and 
added to 10 ml with 10% (v/v) perchloric acid, of which the 
pH was preset to 6.5 with 1 M KOH, and then filtered with 
a 0.22 μm microporous membrane. A portion of the filtrate 
(200 μl) was used for reversed-phase high-performance liquid 
chromatography analysis, and the remains were used for the 
quantitative analysis of the total proteins.

Measurements of the Energy Changes in Gills, 
Soft Tissue and Hemocytes
The total adenylate pool (TAP) is generally stable in mitochondria, 
and its content reflects not only the cell ability to produce 
high-energy phosphate compounds but also the cell energy 
reserve status (Xu et  al., 2005). The energy charge (EC) was 
defined as the number of high-energy phosphate groups loaded 
in the total adenylate system, and it was proposed as a metabolic 
regulatory parameter reflecting the states of ATP regeneration 
and ATP utilization (Atkinson, 1968). TAP and EC could 
be  calculated according to the following equations 
(Atkinson, 1968):

The adenylate (ATP, ADP, and AMP) contents of the samples 
were measured according to the methods of Zhang et al. (2016) 
and Zhu et  al. (2017) with some minor adjustments. We  used 
ultrapure water instead of phosphate buffer as the solvent and 
10% (v/v) perchloric acid at pH 6.5 for the preparation of 
the adenylate standards, adjusted the flow rate to 0.7 ml min−1 
and maintained the column temperature at 20°C during the 
analysis. The total proteins of the samples were determined 
by the Bradford (1976) method, and the ATP, ADP, and AMP 
contents were normalized to their corresponding total proteins.

qRT-PCR Analysis of COXs Gene 
Expressions in Gills
Cytochrome C oxidase (COX) is the last and rate-limiting 
enzyme in the respiratory electron transport chain in cells 
and can cause the transmembrane proton electrochemical 
potential difference that ATP synthase then uses to synthesize 
ATP, so its activity directly affects the ATP synthesis rate (Keilin 
and Hartree, 1938). We  used “Mytilus” and “Cytochrome C 
oxidase” as key words to search the gene bank and found 3 
common gene sequences, COX I, COX II, and COX III, and 
1 particular gene sequence, COX IV. Thus, 4 COX I-IV structural 
subunits of M. edulis were selected as target genes, and their 
expression profiles were determined by qRT-PCR analysis.

The extraction of total RNA and the synthesis of cDNA 
were performed according to Wang et  al. (2011). The obtained 
cDNA mix was stored at −80°C and diluted 8-fold for subsequent 
qRT-PCR analysis.

qRT-PCR analysis was carried out according to Zhang et al. 
(2008) with the M. edulis actin gene as the endogenous control. 
The mRNA expressions of COXs were analyzed by the 2−ΔΔCt 
method (Livak and Schmittgen, 2001), and data were expressed 
in terms of the relative mRNA expressions. All the primers 
used for qRT-PCR were listed in Table  2.

Statistical Analysis
Data were expressed as means ± standard deviation (SD) and 
analyzed by SPSS 26.0. The data were first tested for normal 
distribution and homogeneity of variance by Shapiro-Wilk’s 
test and Levene’s test, respectively. The significance of each 
difference between groups was assessed by one-way ANOVA 

TAP ATP ADP AMP= + +

EC ATP 5ADP ATP ADP AMP= +( ) + +( )0. /

TABLE 1 | Key parameters (means ± SD, n = 3) of carbonate chemistry in CO2 enriched seawater of different pH levels, including setting seawater pH, measured pH, 
total alkalinity (TA), concentrations of bicarbonate (HCO3

−), carbonate ion (CO3
2−), carbonic acid (H2CO3), and partial CO2 pressure (pCO2), calculated saturation states of 

aragonite (ΩAg), and calcite (ΩCal).

pH pH TA HCO3
− CO3

2− H2CO3 pCO2

ΩAg ΩCal

(set) (measured) (μM) (mM) (mM) (mM) (μatm)

8.1 8.10 ± 0.05 2098 ± 89 1733 ± 79 145 ± 15 14 ± 1 448 ± 39 2.25 ± 0.25 3.47 ± 0.32
7.7 7.67 ± 0.07 2098 ± 82 1946 ± 89 60 ± 8 44 ± 5 1,353 ± 107 0.94 ± 0.17 1.45 ± 0.26
7.1 7.06 ± 0.06 2098 ± 77 2059 ± 74 16 ± 2 188 ± 19 5,831 ± 321 0.24 ± 0.03 0.38 ± 0.06
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followed by a multiple comparison test (S-N-K). Any difference 
with a value of p < 0.05 was considered significant.

RESULTS

Energy Changes of M. edulis After 
Acidification Treatments
In gills (Figure  1), TAP changed little in either HCl treatment 
group (p > 0.05) compared with the control group; TAP decreased 
significantly (p < 0.05) in both CO2 treatment groups compared 
with the control group, significantly lower at pH 7.1 than pH 
7.7. Similarly, ATP remained unchanged in both HCl treatment 
groups while declined significantly in the CO2 treatment group 
at pH 7.1 (p < 0.05). Significant increases of EC (p < 0.05) were 
observed in the HCl treatment group at pH 7.1 and the two 
CO2 treatment groups, significantly higher at pH 7.1 than pH 7.7.

The energy changes in soft tissue were similar to those in 
gills with some exceptions (Figure  2). For instance, both TAP 
and ATP in the HCl treatment group at pH 7.1 decreased 
significantly in soft tissue (p < 0.05), while neither changed in gills.

TAP in hemocytes presented similar change trends to those 
seen in gills (Figure  3). ATP declined significantly in both CO2 
treatment groups compared with the control group (p < 0.05), 
significantly lower at pH 7.1 than pH 7.7, while it only decreased 
significantly in the HCl treatment group at pH 7.1 (p < 0.05). EC 
showed no significant change in any treatment group compared 
with the control group, which partly accounted for the greater 
decrease in hemocytes ATP after acidification treatments.

In general, the energy changes in the CO2 treatment groups 
were more substantial than those in the HCl treatment groups 
at the same pH (p < 0.05).

The ratios of the TAP in gills and hemocytes to that in 
soft tissue were calculated to evaluate the alterations of energy 
allocation after acidification treatments (Figure  4). At pH 7.7, 
the TAP ratios of gills and hemocytes changed little in either 
CO2 treatment groups or HCl treatment groups. At pH 7.1, 
the TAP ratios of gills changed little (p > 0.05), while the TAP 
ratios of hemocytes increased significantly (p < 0.05) in the 
CO2 treatment groups; the TAP ratios of both the gills and 
hemocytes increased significantly (p < 0.05) in the HCl 
treatment groups.

Expression Profiles of COXs in Gills of  
M. edulis After Acidification Treatments
The 4 COXs in gills analyzed in the present study all responded 
actively to seawater acidification, but the specific expression 
profiles varied with different COXs isoforms and acidification 
methods. The gene expression of COX I  was significantly 
upregulated in each treatment group compared with the control 
(p < 0.05), with the highest upregulation (1.7-fold) observed in 
the HCl treatment at pH 7.1, but there was no significant 
difference among the 4 treatment groups (Figure  5A). The 
gene expression of COX II increased more than 10-fold in 
each treatment group compared with the control (p < 0.05), 
with the highest upregulation (32.7-fold) observed in the HCl 
treatment group at pH 7.1; the COX II gene levels were 
significantly higher at pH 7.1 than pH 7.7 under HCl-induced 
acidification as well as CO2-induced acidification (Figure  5B); 
moreover, the COX II gene level was significantly higher in 
the HCl treatment group than the CO2 treatment group at 
the same pH (p < 0.05). COX III presented quite different 
response patterns to CO2-induced seawater acidification compared 
with the other three COXs (Figure  5C). The gene expression 
of COX III changed little in either treatment group at pH 7.7 
(p > 0.05); at pH 7.1, it increased significantly in the HCl 
treatment group (1.97-fold, p < 0.05) but decreased significantly 
(0.39-fold, p < 0.05) in the CO2 treatment group. The gene 
expression of COX IV remained unchanged at pH 7.7 (p > 0.05) 
while increased significantly in both treatment groups at pH 
7.1 (p < 0.05), and the upregulation level (7.5-fold) in the HCl 
treatment group was significantly higher than that (2.4-fold) 
in the CO2 treatment group (p < 0.05; Figure  5D). Of the 4 
COXs, COX II was most sensitive to the increase in the seawater 
acidity, and COX III presented the most different response 
patterns to the different acidification methods.

DISCUSSION

Organisms have been reported to adopt a variety of energy 
strategies to deal with stresses (Lannig et  al., 2010; Thomsen 
and Melzner, 2010; Pan et  al., 2015; Liu et  al., 2020), and 
similar observations were obtained in the present study. Energy-
related changes were found in M. edulis exposed to acidified 

TABLE 2 | Sequences of the primers used in the experiment.

Gene Accession number Direction Primer sequence (5ʹ-3ʹ)

actin AF172606
F CTCCACTCAATCCAAAAGCC
R AACCGTATGCGTGACACCA

COX I GU570522
F CGTTCTTATTGTGGCTCTTCATT
R CTCGCTCCCCTTTTATCTCC

COX II EU332534
F AGAAAACCCCCAGGATACATT
R ACGAATGAAGTACATCCGACCT

COX III U50219
F GTAACTCAAGCCCATAAGAG
R ATGCTCTTCTTGAATATAAGCGTACC

COX IV EU332541
F AGATTATCCCTTCCCAGCACT
R GGCATTCATCTCAGAAAAGGTT

F, forward primer; R, reverse primer.
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seawater, including energy reserve (TAP), energy flux (ATP), 
ATP synthesis rate (EC), energy allocation (TAP ratios), and 
COXs gene expressions. However, the specific energy changes 
varied with different pH levels and acidification  
methods.

The TAP content directly reflects the energy storage status 
and the ability to generate ATP (Xu et  al., 2005). Generally, 
the TAP content is stable under normal conditions, although 
the ratios of ATP, ADP, and AMP fluctuate to some extent 
with different oxidative phosphorylation levels. In the present 
study, we  observed that the TAP contents all decreased 

significantly (p < 0.05) in the three sampled tissues of M. edulis 
exposed to CO2-acidified seawater (both pH 7.7 and 7.1 
treatments), so was the TAP content in soft tissue of M. edulis 
exposed to HCl-acidified seawater at pH 7.1, which meant 
that the potential stocks for ATP synthesis decreased. Our 
previous study reported that seawater acidification damaged 
the ultrastructure of the gills and digestive glands and prohibited 
digestive enzyme activities, which ultimately resulted in a decline 
in feeding and digestion abilities (Xu et al., 2020). We believed 
that there might be  a correlation between the decrease in TAP 
and the weakening of the assimilation ability.

A

B

C

FIGURE 2 | Effects of seawater acidification induced by HCl addition and 
CO2 enrichment on TAP content (A), EC (B) and ATP content (C) in soft 
tissue of M. edulis. Data were expressed as means ± SD (n = 6). Different 
letters represent significant differences among experimental groups (p < 0.05).

A

B

C

FIGURE 1 | Effects of seawater acidification induced by HCl addition and 
CO2 enrichment on TAP content (A), EC (B) and ATP content (C) in gills of 
Mytilus edulis. Data were expressed as means ± SD (n = 6). Different letters 
represent significant differences among experimental groups (p < 0.05).
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EC is an effective index indicating the ATP synthesis rate. 
We  observed an elevation of EC in soft tissue but a decrease 
in ATP content in both HCl and CO2 treatment groups at 
pH 7.1, and similar situation was found in gills in CO2 treatment 
group at pH 7.1. There seemed to be  a paradox between the 
ATP synthesis rate and ATP availability. A reasonable explanation 
might be  that the excessive energy consumption induced by 
the enhanced acidification was beyond the energy compensation 
ability and that the equilibrium point between ATP production 
and consumption could not be  reached. Moreover, higher EC 

values and lower final ATP contents were obtained simultaneously 
in CO2-treated groups than in HCl-treated groups, indicating 
that more energy expenditure existed in CO2-treated groups, 
which implied that CO2 enrichment exerted greater pressure 
to M. edulis than HCl addition (Lannig et  al., 2010; Thomsen 
and Melzner, 2010; Melzner et al., 2020). As gills mainly perform 
the functions of feeding and breathing, the vitality of the gills 
is important for the energy-generating processes of M. edulis 
(Doeller et al., 2001). The failure to compensate for the excessive 
energy consumption of the gills weakened their feeding and 
repair capabilities, as observed in our previous study (Xu et al., 
2020). Hemocytes primarily perform immune functions in 
mussels (Loker et  al., 2004). We  found that EC in hemocytes 
changed little, while the ATP contents in hemocytes decreased 
significantly in both pH 7.7 (CO2) and 7.1 (CO2 and HCl) 
treatment groups compared with the control, which further 
supported the assumption that seawater acidification, especially 
induced by CO2, resulted in the overconsumption of ATP. 
We  tried to link the ATP content with the filtering rate, ROS 
production, and phagocytosis, which indicated energy intake, 
defensive behaviors, and immune function, respectively, and 
Pearson’s correlation coefficients were thus calculated to present 
their possible linkages (Sun et al., 2017). The results demonstrated 

A

B

C

FIGURE 3 | Effects of seawater acidification induced by HCl addition and 
CO2 enrichment on TAP content (A), EC (B) and ATP content (C) in 
hemocytes of M. edulis. Data were expressed as means ± SD (n = 6). Different 
letters represent significant differences among experimental groups (p < 0.05).

A

B

FIGURE 4 | Changes of energy allocation in gills (A) and hemocytes (B) of 
M. edulis under seawater acidification induced by HCl addition and CO2 
enrichment. Data were expressed as means ± SD (n = 6). Different letters 
represent significant differences among experimental groups (p < 0.05).
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a clear negative correlation between the ATP content and ROS 
production (p = −0.771) and a positive relationship between 
the ATP content and phagocytosis (p = 0.732) in the CO2-treated 
groups, but no significant correlation was found in the 
HCl-treated groups, which suggested that more energy was 
allocated to resistance to CO2 enrichment, and this was a 
possible explanation for why CO2 enrichment presented more 
detrimental impacts than HCl addition.

Here raised another question, namely, was the alteration of 
energy allocation necessary for the sustainability of M. edulis 
when facing the stress-induced decrease in energy availability? 
We  attempted to answer this question by calculating the TAP 
ratios of gills and hemocytes to soft tissue. The results 
demonstrated that obvious energy reallocation appeared in both 
CO2 and HCl treatments at pH 7.1, but it was more effective 
in the HCl treatment group than in the CO2 treatment group. 
This result was demonstrated by the fact that the TAP ratios 
of gills and hemocytes both increased significantly in the HCl 
group, while only the TAP ratio of hemocytes increased 
significantly in the CO2 group. Several pieces of evidence, 
including the lower mortality rates and higher growth indexes 
in HCl groups (Sun et  al., 2016, 2017; Xu et  al., 2020), have 
proven the necessity of energy reallocation.

The gene expressions of COXs part in gills generally increased 
significantly after acidification treatment, meaning a greater 
potential to accelerate the synthesis rate of ATP, which was 
consistent with the increasing trend of EC in gills. In fact, as 
the main rate-limiting enzyme of the mitochondrial respiratory 
chain, the increase in COXs gene expressions improved the 
efficiency of the entire respiratory chain, thus providing more 
energy to the cell (Achard-Joris et al., 2006), which was necessary 
for gills in a state of high-energy consumption. Liu and Lin 
(2012) also found that Pinctada martensii Dunker upregulated 
the expression of energy metabolism-related genes to mitigate 
OA damage. Achard-Joris et  al. (2006) suggested that the 
increased expression of the COX I  gene in shellfish exposed 
to heavy metal pollution contributed to the compensation for 
the decline in mitochondrial activity and coping with inner 
oxidative stress. In the present study, the significantly higher 
gene expressions of the 4 COXs in gills in HCl treatment 
groups partly accounted for the better maintenance of the 
ciliary vitality and ingestion capability of its gills (Xu et  al., 
2020). In summary, the upregulations of the COXs gene 
expressions were believed to be  an active response to seawater 
acidification at the genetic level.

We attempted to propose a hypothesis from the energy 
perspective, named the “cut and cover hypothesis,” to intuitively 
explain the growth index differences between the CO2 enrichment 
and HCl addition reported in our previous studies (Figure  6). 
Specifically, the obtained energy was first used to meet the 
requirement for the survival “pit” when the organism was 
exposed to a stressful condition and only the remaining energy 
was possible for growth, which could be  roughly described as 
“energy availability  - energy for survival = energy for growth.” 
In the present study, the energy availability in the CO2-treated 
group was lower, while the consumed energy for resistance 
was higher, that is to say, the remaining energy for growth 

A

B

C

D

FIGURE 5 | The expression profiles of four cytochrome C oxidases (COXs) 
[(A): COX I; (B): COX II; (C): COX III; (D): COX IV] in gills of M. edulis under 
seawater acidification induced by HCl addition and CO2 enrichment. Data 
were expressed as means ± SD (n = 6). Different letters represent significant 
differences among experimental groups (p < 0.05).
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was lower than that in the HCl-treated group. The lower dry 
weights of the soft tissue and the shell in CO2-treated group 
found in our previous study (Sun et al., 2016) provided favorable 
evidence for our conjecture.

In the present study, we  demonstrated that acidification 
induced by CO2 enrichment was more deleterious than that 
by HCl addition from the perspective of energy changes. In 
fact, the mechanisms involved in CO2-induced acidification 
were much more complex than HCl-induced acidification 
because dissolved CO2 affected the biological functions from 
the molecule to the whole organism not only through H+ but 
also through CO2-related changes in the bicarbonate system 
(Pörtner et  al., 2005). In the present study, we  found that 
with increasing H+ concentration in CO2-treated seawater, the 
partial CO2 pressure (pCO2), carbonic acid (H2CO3), and 
bicarbonate (HCO3

−) concentrations increased, while the 
carbonate ion concentrations (CO3

2−) and calculated saturation 
states of aragonite (ΩAg) and calcite (ΩCal) decreased (Table  1), 
confirming the occurrence of more complex chemical changes 
in CO2-acidified seawater.

M. edulis adapted a series of energy strategies, such as 
increasing the ATP synthesis rate and reallocating more energy 
to its gills and hemocytes, to cope with seawater acidification 
and thus had a certain tolerance to moderate seawater 
acidification. In the present study, by increasing EC and the 
expressions of COX I/II, the final ATP contents were successfully 
restored in gills and soft tissues in CO2 treatment groups at 
pH 7.7. However, with the enhancement of acidification, the 
failure to compensate for the excessive energy consumption 
was fatal for the survival of M. edulis. Meanwhile, CO2-induced 
acidification caused more complex chemical changes in seawater 
and thus exhibited more deleterious impacts on M. edulis. 
Moreover, owing to the presence of multiple stressors in addition 

to elevated pCO2, the challenges are greater for M. edulis living 
under natural OA (Shang et  al., 2018, 2020; Gu et  al., 2019). 
If OA continues to intensify, the survival of M. edulis will 
be  less likely.
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