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Abstract

Motivation: The Li and Stephens model, which approximates the coalescent describing the pattern

of variation in a population, underpins a range of key tools and results in genetics. Although highly

efficient compared to the coalescent, standard implementations of this model still cannot deal with

the very large reference cohorts that are starting to become available, and practical implementa-

tions use heuristics to achieve reasonable runtimes.

Results: Here I describe a new, exact algorithm (‘fastLS’) that implements the Li and Stephens

model and achieves runtimes independent of the size of the reference cohort. Key to achieving this

runtime is the use of the Burrows-Wheeler transform, allowing the algorithm to efficiently identify

partial haplotype matches across a cohort. I show that the proposed data structure is very similar

to, and generalizes, Durbin’s positional Burrows-Wheeler transform.

Contact: gerton.lunter@well.ox.ac.uk

1 Introduction

The genetic variation in a population of interbreeding individuals is

highly structured. Kingman (1982) introduced the canonical model

that describes this structure mathematically, known as Kingman’s

coalescent, later extended by Hudson (1983) and Griffiths and

Marjoram (1997) to include recombination. Although mathematic-

ally elegant, it is challenging to use these models directly for statistic-

al inference. Li and Stephens (2003) introduced a model (LS) that is

both a good approximation to the coalescent with recombination,

and computationally tractable. As a result, LS now underpins a large

range of key tools and scientific findings (Beaumont, 2010; Howie

et al., 2009; The International HapMap Consortium, 2005; The

Wellcome Trust Case Control Consortium, 2007). Depending on

whether the input sequence is haploid or diploid, LS in its straight-

forward implementation as a hidden Markov model (HMM) runs in

linear or quadratic time in the number of reference haplotypes.

While this is orders of magnitude more efficient than algorithms

based directly on Kingman’s coalescent or the ARG, the recent avail-

ability of affordable DNA sequencing technology has provided ac-

cess to very large reference sets, on which even the LS model is

intractable in its standard implementation, so that current imple-

mentations of LS use heuristics to cope with datasets encountered in

practice (Howie et al., 2009).

A very different algorithm that is making an impact in genomics

was introduced by Burrows and Wheeler (1994). Known as the

Burrows-Wheeler transform (BWT), it permutes an arbitrary text in

such a way that the original text can be recovered, while at the same

time improving the compressibility of the transformed text by

increasing simple repetitions. In addition, the transformed text, even

in compressed form, serves as an index that allows rapid searching

in the original text. In genomics this idea has so far been used mainly

for fast alignment of short reads against a large and relatively repeti-

tive reference genome (Langmead et al., 2009; Li and Durbin,

2009). More recently, Durbin (2014) introduced a variant of the

BWT, termed the Positional Burrows-Wheeler Transform (PBWT),

that exploits the additional structure that exists in a set of haplo-

types in a population sample. These data, which are usually encoded

as a series of 0 and 1 s representing the absence or presence in a sam-

ple of particular genetic variants along a reference sequence, have a

natural representation as a matrix, where rows represent samples

and columns represent the particular positions in a reference. Local

matches between samples are only relevant at matching positions,

and exploiting this restriction leads to improvements over a stand-

ard application of the BWT. The resulting data structure again

allows for fast haplotype searches against a database, and achieves

very high compression ratios.
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2 Approach

There are two main results in this paper. First, I establish a formal

connection between the standard and positional BWT, showing how

the PBWT as introduced in Durbin (2014) is a special case of the

BWT. This connection also shows how the PBWT can be slightly

generalized to cope with the multiallelic case. Besides providing an

additional perspective on the positional BWT algorithms, which

helps to better understand them, it also provides a mechanical way

to ‘lift’ existing algorithms operating on the BWT data structure to

their positional equivalent, allowing the large literature on BWT

algorithms to be applied to the current data structure. I show how

this works by deriving the haplotype search algorithm from the

equivalent BWT algorithm.

The second contribution consist of algorithms that implement

the LS model on top of the BWT. More precisely, I present algo-

rithms that compute maximum-likelihood (‘Viterbi’) paths through

the LS hidden Markov model, providing a parsimonious description

of a given sequence as an imperfect mosaic of reference haplotypes.

The ability to efficiently identify matches in the database of refer-

ence haplotypes result in considerable improvements in runtime

over the standard implementation, reducing the linear and quadratic

asymptotic runtime to empirical constant time, independent of the

number of reference haplotypes. More precisely, for H samples of n

loci each, the standard implementation runs in OðHnÞ time for a

haploid input sequence, and OðH2nÞ for a diploid input sequence,

while the proposed algorithms run in empirical O(n) time in both

cases. This allows the Li and Stephens model to be used on very

large reference panels, without recourse to approximations.

3 Materials and methods

3.1 Haplotype matching using the BWT
Let x0; . . . ; xH�1 be H haplotype sequences, each consisting of n

symbols from the alphabet A representing the possible allelic states

at a locus; for simplicity I will often use A ¼ f0;1g in this paper. A

straightforward way of identifying haplotype matches would be to

use the BWT on the concatenation x0x1 � � � xH�1 of haplotype

sequences. It turns out that a more efficient algorithm is obtained, in

terms of time and memory use, by embedding this sequence of Hn

characters into a sequence of 2Hn characters taken from a much

larger alphabet. The increase in sequence length and alphabet size is

offset by the additional structure in the BWT that results from the

chosen embedding. This in turn translates into better compression

and a streamlined search algorithm.

I will write x½j� for the jth symbol in the sequence x, and x½j;kÞ
for the subsequence starting at position j and ending at k – 1. I will

also use ½i; jÞ to denote the half-open interval fi; iþ 1; . . . ; j� 1g,
and if Mij is a matrix, Mk½i; jÞ is the subsequence Mk;i;Mk;iþ1; . . . ;

Mk;j�1 of the kth row of the matrix. Throughout this paper, all indi-

ces start at 0.

Let p0; . . . ;pn�1 be n additional symbols in the alphabet, ordered

such that p0 < � � � < pn�1 < 0 < 1. Introduce a new sequence X

of length 2Hn by inserting a symbol pj after each symbol xi½j� and

concatenating the resulting sequences into a single sequence of the

form

X ¼ x0½0� p0 x0½1� p1 � � � x0½n� 1� pn�1

x1½0� p0 x1½1� p1 � � � x1½n� 1� pn�1

..

. ..
.

xH�1½0� p0 � � � xH�1½n� 1� pn�1

(1)

(To impose a particular initial ordering I will later on replace the

last symbol pn�1 by H symbols p0
n�1 < � � � < pH�1

n�1 , but to avoid

cluttering the notation I ignore this detail for now.) Consider all cyc-

lic shifts Xk ¼ X½k�X½kþ 1� � � �X½2Hn� 1�X½0� � � �X½k� 1� of X.

Let M be the matrix obtained by writing Xk on the kth row of a

square matrix, and sorting the resulting rows lexicographically. Let

p be the permutation that sorts the rows, so that

Xpð0Þ < Xpð1Þ < � � � < Xpð2Hn�1Þ, and Mij ¼ XpðiÞ½j�. The Burrows-

Wheeler transform of X is the last column of this matrix:

BWTðXÞ½i� ¼ XpðiÞ½2Hn� 1�. Note that this is almost the traditional

BWT of the sequence X, except that there is no special ‘end’ charac-

ter. This character is used to identify the start of the sequence; here,

the special structure of X is sufficient to navigate BWT(X).

Now consider how the matrix M may be constructed. The pos-

ition symbols pi determine the coarse structure of M, which is inde-

pendent of the data xi apart from the haplotype frequencies f 0
i and

f 1
i (see Fig. 1). The fine-scale structure of M within each ‘block’ of H

rows is determined by the data. More precisely, rows in the block

starting at index iH are those cyclic shifts of X that start with sym-

bol pi and end with xk½i� for some k 2 ½0;HÞ, such that these rows

are ordered lexicographically within the block. Let j7!ai
j denote the

permutation of ½0;HÞ that describes this order within block i, so that

row iH þ j ends with symbol xai
j
½i�. Determining M therefore boils

down to determining the n permutations ai
j for i 2 ½0; nÞ, since these

determine the top half of M, and those in turn determine the remain-

ing rows (see Fig. 1 and the explanation).

The permutations ai
j are determined recursively, working from

i ¼ n� 1 backwards. Because we imposed the special ordering

p0
n�1 < � � � < pH�1

n�1 on the final position symbols, the permutation

for block n – 1 is given by the identity permutation j 7!an�1
j ¼ j.

Now suppose the permutation ai
j for block i has been determined.

The sequences in block i – 1 are formed from those in block i by

moving two characters from the end to the front. The first character

in any sequence of this new block is pi�1, which does not influence

the ordering within the block. The second character is an allele

marker xai
j
½i�. To sort the sequences in block i – 1 in lexicographic

Algorithm 1 Calculating BWT(X)

Input: sequences x0; . . . ;xH�1, each of length n; alphabet A

Output: Block permutations j7!ai
j; i ¼ 0; . . . ; n� 1.

1: i n; an�1
j  j for j 2 ½0;HÞ

2: While i>0:

3: i i� 1; tc ¼
P

u< c f u
i ðc 2 AÞ

4: For j in ½0;HÞ:
5: c xai

j
½i�

6: ai�1
tc
 ai

j; tc  tc þ 1

Input: sequences x0; . . . ;xH�1, each of length n; alphabet

A ¼ f0;1g
Output: Block permutations j7!ai

j; i ¼ 0; . . . ; n� 1.

1: i n; an�1
j  j for j 2 ½0;HÞ

2: while i>0:

3: i i� 1; t 0; u f 0
i

4: For j in ½0;HÞ:
5: If xai

j
½i� ¼ 0:

6: ai�1
t  ai

j; t t þ 1

7: Else:

8: ai�1
u  ai

j; u uþ 1
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order, it is therefore sufficient to list those sequences that start a 0

symbol first, followed by those starting with a 1 symbol (followed

by other symbols if the locus is multiallelic), and otherwise leave the

original order undisturbed. Doing this results in Algorithm 1.

To show that the proposed construction is equivalent to the pos-

itional Burrows-Wheeler transform, Algorithm 1 is given both for

general alphabets A and specialized for the case A ¼ f0; 1g, since

that in that case the inner loop is precisely Algorithm 1 in Durbin

(2014) (except that the proposed algorithm runs back-to-front, as is

usual for BWT algorithms). As in the PBWT algorithm, the permuta-

tions ai
j play the role of the suffix array in the ordinary BWT algo-

rithm. Note that the output includes a permutation a�1
j , which

encodes how the very first characters xj½0� influence the permutation

of the cyclic shifts Xk; this permutation is used in Algorithm 5.

Following Durbin (2014) I now define the PBWT of x0; . . . ; xH�1 as

the first half of BWT(X), which is availably implicitly as

BWTðXÞ½Hiþ j� ¼ xai
j
½i�. Figure 1 shows that the second half of

BWT(X) is determined by the allele frequencies f c
i ; i 2 ½0; nÞ, which

can be computed easily from the relevant block in the first half of

BWT(X), so that the PBWT of x0; . . . ; xH�1 is in fact equivalent to

BWT(X).

3.2 Substring searching
Algorithm 1 calculates BWT(X) in linear time by exploiting the spe-

cial structure of X, and is not a specialization of an existing, general

algorithm to calculate the BWT. By contrast, Algorithm 2, which

performs a substring search, can be derived directly from its analo-

gous algorithm for a general BWT.

To describe the algorithm, let M be the sorted matrix of cyclic

shifts of an arbitrary sequence X of length n, so that

BWTðXÞ½i� ¼Mi½n� 1�, and let RaðiÞ (the ‘a-rank’ for row i) be the

number of times that a appears in BWTðXÞ½0; iÞ. This function can

be calculated efficiently from BWT(X), particular if the data is

stored in compressed form. Finally, let C(a) (the cumulative symbol

frequency) be the number of symbols in X that are less than a. This

notation makes it possible to write down Algorithm 2, for substring

searching. (The symbol . is used throughout to mark comments and

invariants in the algorithms.)

To understand the algorithm, consider all rows of M that end

with a symbol a. If these rows are cyclically shifted rightward, so

that the last symbol becomes the first and all others are moved one

position to the right, all rows will now start with a, and the relative

order in which they appear in M (which they must as M contains all

cyclic shifts of X) is the same as before the shift since they were

ordered lexicographically to start with. Suppose that Mk is a row

that ends with a, and that after right-shifting it ends up as row Mk0 ;

then the above observation means that the rank RaðkÞ of the symbol

a in Mk in the last column of M, is the same as the rank in the first

column of M of the symbol a in Mk0 . Because M is sorted lexico-

graphically, the rows that start with a form a contiguous block in

M, so that the first-column rank of the symbol a in row Mk0 is

k0 � CðaÞ, so that RaðkÞ ¼ k0 � CðaÞ or

LFðk; aÞ :¼ k0 ¼ CðaÞ þ RaðkÞ (2)

The function k7!LFðk; aÞ, mapping row k to the row corre-

sponding to its right-shifted counterpart k0, is called the last-to-first

mapping because it maps the last (rightmost) symbol of Mk to the

corresponding symbol in the first (leftmost) position of Mk0 . It is re-

peatedly used to identify the interval of rows corresponding to

sequences that match one additional character of w.

Note that the mapping is well-defined whether or not

Mk½n� 1� ¼ a. This makes it possible to think of k as representing a

possible location between two entries (k and k – 1) in M where a se-

quence (or sequence prefix) x not necessarily represented in M

would be inserted; this is the view taken in the search algorithm.

Alternatively, when k is thought of as a particular row in M, that

row’s initial character a can be obtained from the Cð�Þ function, and

since the mapping (2) is invertible when restricted to the set of rows

k ending in a, this makes the mapping k 7!LFðk;Mk½n� 1�Þ invert-

ible for all k. The existence of this inverse mapping also follows

Fig. 1. Structure of the matrix Mij. The rows Mi are sorted lexicographically; in

particular p0 < p1 < � � � < 0 < 1. The Burrows-Wheeler transform of X (see

text) is the rightmost column of M, while the positional BWT of the sequences

x0; . . . ; xH�1 is the upper half of the same column (see text). The column indi-

ces are determined by f a
i , the allele frequency of symbol a at locus i, and

Fa
i :¼

Pi
j¼0 f a

i , the cumulative frequency of symbol a across loci 0; . . . ; i. Note

that ordering of rows ðn � 1ÞH to Hn � 1 is determined by the special position

symbols p0
n�1 < � � � < pH�1

n�1 , but to avoid cluttering the notation these are all

written as pn�1

Algorithm 2 General subsequence search

Input: Sequence w½0; jÞ; BWTðXÞ of sequence X½0; nÞ
Output: Indices s, e such that Mk½0; jÞ ¼ w for k 2 ½s; eÞ
1: s 0; e n; i j

2: While s< e and i>0: " w½i; jÞ matches Mk½0; j� iÞ� for

k 2 ½s; eÞ
3: i i� 1

4: s Cðw½i�Þ þ Rw½i�ðsÞ
5: e Cðw½i�Þ þ Rw½i�ðeÞ

800 G.Lunter



directly from the observation that it corresponds to rotating the se-

quence one position leftward; it could be called the first-to-last map-

ping, k7!FLðkÞ, and is used in Algorithm 5.

To derive the corresponding algorithm for matching a sequence

in the PBWT data structure, it is enough to track the bounding vari-

ables for two steps through the standard BWT algorithm acting on

the ‘lifted’ sequence X, matching a haplotype character and a pos-

ition character. The first step identifies the new range depending on

the haplotype character to be matched, and points these variables to

the second half of the matrix. The next step moves the bounding

variable back into the first half by moving a position character in

front. Because of the regular form of BWT(X) (see Fig. 1), these two

steps can be followed algebraically and combined into a single up-

date step. The derivation, which is straightforward but requires add-

itional notation, is presented in the Appendix. The resulting

combined update step is given by a modified last-to-first mapping

function, which now additionally depends on the current position i:

LFðk; a; iÞ :¼ k0 ¼ r0
i ðkÞ if a ¼ 0

f 0
i þ k� r0

i ðkÞ if a ¼ 1;

�
(3)

or for an arbitrary alphabet, LFðk; a; iÞ ¼ ra
i ðkÞ þ

P
c< a f c

i . Here

ra
i ðkÞ is the positional analogue of RaðiÞ, and counts how often a

appears in the first k rows of the ith block of PBWTðx0; . . . ; xH�1Þ,
or equivalently, in BWTðXÞ½Hi;Hiþ kÞ ¼ xai

0
½i�; . . . ;xai

k�1
½i�, and f a

i

is the (haplotype) frequency of a at position i. This leads to

Algorithm 3.

3.3 Haploid Li and Stephens
The Li and Stephens (2003) model approximates the coalescent

model describing the relationship between DNA sequences in a

population, by generating a new sequence as a mosaic of imperfect

copies of existing sequences The popularity of the model stems from

the fact that it is both a good approximation to the full coalescent

model with recombination, as well as fast to compute in its natural

implementation as a hidden Markov model, running in OðHnÞ time

for H sequences of length n. However, for very large population

samples this is still too slow in practice.

Here I describe an algorithm to compute the maximum likeli-

hood path through the LS hidden Markov model (HMM) in empir-

ical O(n) time. The approach is not to consider single sequences to

copy from, but groups of sequences that share a common subse-

quence. Like the Viterbi algorithm for HMMs, the proposed algo-

rithm traverses the sequence to be explained, but rather than using a

dynamic programming approach, it uses a branch-and-bound ap-

proach considering (groups of) potential path prefixes to a max-

imum likelihood path. Where at each iteration the Viterbi algorithm

must consider all possible sequences that a potential path prefix

Algorithm 3 PBWT subsequence search

Input: Sequence w½0; jÞ, PBWT of x0; . . . ; xH�1

Output: Indices s, e such that xa0
k
½0; jÞ ¼ w for k 2 ½s; eÞ

1: s 0; e H; i j

2: While s< e and i>0: " w½i; jÞ matches xai
k
½i; jÞ for

k 2 ½s; eÞ
3: i i� 1

4: s LFðs;w½i�; iÞ " see equation (3)

5: e LFðe;w½i�; iÞ

Algorithm 4 Haploid Burrows-Wheeler Li and Stephens

Input: Sequence x½0; nÞ, PBWT of x0; . . . ;xH�1, scores

l � 0; q � 0.

Output: Minimum path score under the Li and Stephens

model

1: i n; st  ½ð0;H;0Þ�; gm 0;

traceback ½ðn� 1;�1;�1Þ�
2: While i>0: " st represent states of paths in full suffix set

for x½i; nÞ
3: i i� 1; st0  ½�; gm0  gmþ l; extended False

4: For (s, e, score) in st:

5: If score < gmþ q:

6: s0  LFðs;x½i�; iÞ; e0  LFðe;x½i�; iÞ
7: If s0 < e0:

8: st0:appendððs0; e0; scoreÞÞ
9: gm0  minðgm0; scoreÞ

10: If score ¼ gm: extended True

11: If scoreþ l < gm0 þ q:

12: s0  LFðs; 1� x½i�; iÞ; e0  LFðe;1� x½i�; iÞ
13: If s0 < e0: st0:appendððs0; e0; scoreþ lÞÞ
14: s0  LFð0; x½i�; iÞ; e0  LFðH;x½i�; iÞ
15: If s0 < e0 and extended ¼ False: " Never true on

1st iteration

16: st0:appendððs0; e0; gmþ qÞÞ
17: traceback:appendðði; gm idx; gmþ qÞÞ
18: gm gm0; st st0

19: gm idx any of fsjðs; e; scoreÞ 2 st and score ¼ gmg
20: Return gm, gm idx, traceback

Algorithm 5 Haploid traceback

Input: Sequence x½0; nÞ, PBWT of x0; . . . ;xH�1, scores

l � 0; q � 0, minimum score gm, corresponding index

gm idx, traceback list traceback.

Output: Representation path of a minimum-scoring path

1: Function FL(k, i): " “First-to-last” mapping

2: lo 0; hi H; a 0 if k < f 0
i else 1

3: While lo < hi: " LFðj; a; iÞ � k 8j < lo and

LFðj; a; iÞ > k 8j � hi

4: mid bðloþ hiÞ=2c
5: If LFðmid; a; iÞ � k: lo mid þ 1

6: Else: hi mid

7: Return a; lo� 1

8: i 0; path ½ði; ai�1
gm idxÞ�

9: For ðt locus; t idx; t scoreÞ in reverse(traceback):

10: While i � t locus:

11: a; gm idx FLðgm idx; iÞ
12: If a 6¼ x½i�: gm gm� l
13: i iþ 1

14: If gm ¼ t score:

15: gm idx t idx; gm gm� q;

path:appendðði; ai�1
gm idxÞÞ

16: Return path
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could end with, the proposed algorithm in principle considers all

extensions of the current potential path prefixes (the ‘branch’ part),

but ignores prefixes that cannot be part of an optimal path (the

‘bound’ part). For instance, if a prefix can be extended with a

matching nucleotide, a recombination does not have to be consid-

ered, since the recombination can be postponed at no cost. Below I

will show this more formally. This formal approach is perhaps not

necessary (or even helpful) for the haploid case, but becomes useful

when I introduce the diploid Li and Stephens algorithm.

First some definitions. A placed character is a character c at a se-

quence position i; it is equivalent to a pair cpi where pi is the pos-

ition symbol introduced before. Two placed characters are

contiguous if they occupy neighbouring positions; subsequences of

placed characters are contiguous if every pair of neighbouring char-

acters is; and two or more subsequences are contiguous if their con-

catenation is. A path p of m parts through a set of sequences

X ¼ fx0; . . . ; xH�1g is a contiguous sequence of m subsequences

s0; . . . ; sm�1 such that each si is a subsequence of some xj. I will write

a path as

p ¼ ðc0c1 � � � ck0�1Rck0
� � � ck1�1Rck1

� � � � � �Rckm�2
� � � cl�1Þ

where ci is a character placed at position i, and k0; k1; . . . ; km�2 are

the recombination breakpoints identified by the symbol R (which is

not part of the alphabet), and l is the length of the path. The (se-

quence) group associated with p is the set GðpÞ of all sequences x 2
X for which the subsequences x½km�2; lÞ agree with the suffix

ckm�2
� � � cl�1 that follows the last recombination in p. The extension

pcl (of length lþ1) is the path ðc0 � � �Rckm�2
� � � cl�1clÞ, if it exists;

since by definition all subsequences that make up a path are subse-

quences of some xj, existence of an extension implies that its group

is nonempty. The extension pR (of length l) is defined as

ðc0 � � �Rckm�2
� � � cl�1RÞ, and always exists; its group is X. Finally, the

path prefix p½0; tÞ is the path ðc0 � � � ct�1Þ including any R symbols

for recombinations between positions 0 and t – 1; a path prefix

never ends with an R symbol.

For a given sequence x and a path p, the Li and Stephens model

assigns a joint likelihood to the event that p occurred and gave rise

to sequence x. If p has m parts and has k mismatches to x, this likeli-

hood is

pðp; xÞ ¼ pm
q ð1� npqÞH

�m pk
lð1� 3plÞH

�k

¼ pq

1� npq

� �m pl

1� 3pl

� �k

ð1� npqÞHð1� 3plÞH

where pq is the probability of recombining into a particular other se-

quence, and pl is the probability of a mutation to one of the three

other nucleotides. The negative log likelihood takes a particularly

simple form,

�log pðp; xÞ ¼ mqþ klþ C;

where C is a constant, q ¼ �log ðpq=ð1� npqÞÞ and l ¼ �log ðpl=

ð1� 3plÞÞ. This motivates defining the path score as sxðpÞ ¼ mqþ
kl, where m and k are defined as above. I drop the subscript x from

sxðpÞ when this is possible without creating confusion.

Suppose we want to calculate a path p that minimizes sðpÞ. This

can be done by iteratively constructing path prefixes p0, so that at

each step one of them is a prefix of a full path p that minimizes sðpÞ.
Note that the minimum score achievable by a path p that has p0 as

its prefix depends on the prefix score sðp0Þ and the prefix group

Gðp0Þ, but not on the rest of the prefix. This is because Gðp0Þ is the

set of sequences the Li and Stephens model could be copying from at

the end of p0, and the Markov property of the model implies that the

minimum score only depends on the sequence being copied from

(and the prefix score). This justifies the definition of state of a path

(prefix) p0 to be the pair ðGðp0Þ; sðp0ÞÞ.
The key observation for the algorithm is that some states (G, s)

can be ignored, because any of their extensions give rise to paths

and scores that are also achievable via other states. To make this

precise I need one more definition. A set S of path prefixes, all of

length l, is a full prefix set for x½0; lÞ if for any sequence x0 whose

prefix x0½0; lÞ agrees with x½0; lÞ, there exists a path p that achieves

the minimum score (i.e. sx0 ðpÞ ¼ minp0 sx0 ðp0Þ) and whose prefix

p½0; lÞ is in S. If we can somehow find a way to iteratively construct

full prefix sets of increasing length, the problem of finding a

minimum-score path is solved, because the required path will be an

element of the full prefix set for the full-length sequence x. The fol-

lowing theorem shows how to do this:

THEOREM 1. Suppose S is a full prefix set for x½0; lÞ; S0 a set of prefixes of

length lþ 1, and let smin ¼ minp2SsðpÞ and s0min ¼ minp2S0 sðpÞ. Then S0 is

a full prefix set for x½0; l þ 1Þ if the following conditions hold:

a. a For all p 2 S and all a 2 f0; 1g so that pa is an extension and

sðpaÞ < s0min þ q we have pa 2 S0; and

b. b If there is no p 2 S so that sðpÞ ¼ smin and px½l� is an extension,

then S0 contains a path of the form pRx½l� with sðpÞ ¼ smin.

In other words, certain extensions are not required to be in S0:

extensions pa whose score exceed the minimum plus q can be left

out (since a recombination from the minimum-scoring prefix would

give a path that is at least as good), and recombinations can be

ignored altogether as long as any current lowest-scoring path has a

matching extension (since otherwise postponing the recombination

would again be at least as good) – and if not, only a single recombin-

ation from a lowest-scoring path needs to be considered.

Algorithm 4 implements these ideas. It does not actually con-

struct prefix sets of paths, but sets of states of paths in prefix sets.

This is sufficient since the state determines how paths can be

extended. By using the PBWT, these states can be represented effi-

ciently, using just the score and a pair of indices into the PBWT that

correspond to a set of subsequence matches to sequences in X, simi-

lar to how the variables s and e in Algorithm 3 represent the interval

½s; eÞ corresponding to a set of subsequence matches. Another differ-

ence with the description above is that the algorithm scans the se-

quence back-to-front, extending partial matches leftward, so that

the invariant refers to the full suffix set, rather than the full prefix

set.

The algorithm computes gm ¼ smin, and keeps a running min-

imum score gm0 that bounds s0min, ignoring states whose new score

are not less than gm0 þ q. At the end of an iteration, states whose

score are not lower than the now updated gm0 plus q are not imme-

diately removed, but are instead ignored in the next iteration. The

algorithm implicitly considers both score bounds implied by gm and

gm0, but in each situation uses only the tighter bound of the two to

decide which states to ignore.

It is possible for different paths to result in overlapping or identi-

cal states, resulting in duplicate or otherwise redundant entries in

the st array. Although redundant entries do not impact the correct-

ness of the algorithm, they can dramatically reduce efficiency. A

practical implementation therefore includes a step that occasionally

removes redundant states.

The algorithm can be generalized a little by allowing the muta-

tion score l � 0 to depend on the position. The path score is then
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defined as sðpÞ ¼ mqþ
P

i:x½i�6¼p½i� li. Theorem 1 continues to hold,

and so does Algorithm 4, with the obvious changes. The current ap-

proach does not lend itself easily to generalize to a position-

dependent recombination probability, as the proof of Theorem 1

relies on delaying the recombination without changing the score,

which is only possible if q is constant along the sequence.

Note that the algorithm can be simplified when li � 2q, because

a mismatch can always be circumvented by two recombinations (be-

fore and after the offending locus), so that only exact matches need

to be considered. In human genetics polymorphisms are sparse, and

recombinations can only be localized to within hundreds or thou-

sands of positions. Even when a maximum likelihood path is sought

it is natural to marginalize over these positions, and this makes the

probability of a recombination between two polymorphic sites at

least an order of magnitude higher than the probability of a muta-

tion, so that l� q. However, in the presence of phasing errors the

probability of a mismatch can be much higher than that of a muta-

tion, so that the regime l < 2q is of practical importance.

Algorithm 4 only computes the optimal score, and to obtain an

optimal-scoring path p itself a backtracking step is needed

(Algorithm 5). Here it is useful that Algorithm 4 works in the back-

ward direction, so that the result of the backtracking is oriented in

the natural direction. To track an optimal path along a sequence,

the PBWT index corresponding to that sequence can be tracked

using the ‘first-to-last’ mapping, inverting the steps in lines 6 and 12

in Algorithm 4, and the minimum score of the remaining suffix is

updated whenever a difference between this sequence and x is found.

Recombinations are followed greedily, as it is always correct to fol-

low a feasible recombination, and it is never clear whether a particu-

lar recombination is the last feasible one for a particular sequence.

Algorithm 4 collects information about recombinations in the trace-

back list, and when a recombination and score is identified that

forms a feasible suffix to the path so far, it is followed.

The naive implementation of Algorithm 5 is somewhat slower

than the haploid Li and Stephens algorithm itself, due to the FL

function which takes Oðlog HÞ time in the implementation shown.

In practice the PBWT will be stored in compressed form using run-

length encoding, which allows a faster implementation of FL.

3.4 Diploid Li and Stephens
Where the haploid Li and Stephens algorithm computes a single

haplotype path maximizing the probability of a given haploid se-

quence, the diploid Li and Stephens algorithm aims to find a pair of

haplotype paths that maximizes the probability of a sequence of dip-

loid genotypes under the same model. The approach used to derive

the haploid algorithm also works in this case, but the details are

more involved.

Let x be a sequence of genotypes, encoded as values 0, 1 or 2 at

each position representing homozygous ancestral, heterozygous and

homozygous derived genotypes. The aim is to compute a pair of

paths a, b that minimizes a score. As before this score contains terms

for recombinations and mismatches, but the mismatch term now

considers genotypes rather than haplotypes. More precisely, the

score associated to the pair fa; bg is defined as

sða;bÞ ¼ qmðaÞ þ qmðbÞ þ lkða;bÞ, where mðaÞ represents the num-

ber of parts of path a, as before, and k ¼
P

i ja½i� þ b½i� � x½i�j counts

the number of mismatches of the paths a and b to the genotype se-

quence x.

The approach of the algorithm is similar to the haploid case,

again sequentially building full prefix sets for ever longer sequence

prefixes until a minimum path pair is found. To describe the

Algorithm 6 Diploid Burrows-Wheeler Li and Stephens

Input: x½0; nÞ 2 f0; 1; 2gn, PBWT of x0; . . . ;xH�1, scores

l � 0, q � 0.

Output: Minimum pair path score under diploid Li and

Stephens model

1: Function consider recomb(c; a1; a2; j):

2: If c¼1: Return ða1 þ a2 ¼ 1Þ
3: Else: Return ðaj ¼ c=2Þ
4: i n; st ½ð0;H; 0;H; 0Þ�; gm 0; lm½ð0;HÞ�  0;

5: traceback ½ðn� 1;�1;�1;�1;�1Þ�
6: While i>0: " st repr. states of path pairs in full suffix set

for x½i; nÞ
7: i i� 1; st0  ½�; gm0  gmþ 2l; lm0  fg;

extended fg
8: double recomb False

9: For ðs1; e1; s2; e2; scoreÞ � ða1; a2Þ in

st � f0;1g � f0;1g:
10: score0  scoreþ lja1 þ a2 � x½i�j
11: s0j  LFðsj; aj; iÞ; e0j  LFðej; aj; iÞ (j¼1, 2)

12: If s01 ¼ e01 or s02 ¼ e02 or ðs1 ¼ s2 and e1 ¼ e2 and

a1 > a2Þ or score � minðlm½ðs1; e1Þ� þ q; lm½ðs2; e2Þ�
þq; gmþ 2qÞ or score0 � minðlm0½ðs01; e

0

1Þ� þ q; lm0

½ðs02; e
0

2Þ�þ q; gm0 þ 2qÞ:
13: continue

14: st0:appendððs01; e
0

1; s
0

2; e
0

2; score0ÞÞ
15: lm0½ðs0j; e

0
jÞ�  minðscore0; lm0½ðs0j; e

0
jÞ�Þ (j¼1, 2)

16: gm0  minðscore0; gm0Þ
17: If consider recombðx½i�; a1; a2; jÞ and

score ¼ lm½ðs3�j; e3�jÞ�:
18: extended:insertððs3�j; e3�j; a3�jÞÞ (j¼1, 2)

19: For ðs1; e1; s2; e2; scoreÞ � ða1; a2; jÞ in

st � f0; 1g � f0; 1g � f1; 2g:
20: ar  aj; ax  a3�j; sx  s3�j; ex  s3�j

21: score0  scoreþ qþ ljar þ ax � x½i�j
22: s0r  LFð0; ar; iÞ; e0r  LFðH; ar; iÞ
23: s0x  LFðsx; ax; iÞ; e0x  LFðex; ax; iÞ
24: If not consider recombðx½i�; a1; a2; jÞ or s0r ¼ e0r or

score > lm½ðsx; exÞ� or ðsx; ex; axÞ 2 extended or

score0 � minðlm0½ðs0x; e
0
xÞ� þ q; lm0½ðs0r; e

0
rÞ� þ q; gm0 þ 2qÞ:

25: continue

26: If s0x < e0x:

27: st0:appendððs0x; e
0

x; s
0

r; e
0

r; score0ÞÞ
28: lm0½ðs0j; e

0

jÞ�  minðscore0; lm0½ðs0j; e
0

jÞ�Þ (j ¼ x; r)

29: gm0  minðscore0; gm0Þ
30: extended:insertððsx; ex; axÞÞ
31: traceback:appendðði; sx; ex; sr; scoreþ qÞÞ " Not

score0!

32: If x½i� 6¼ 1 and x½i� ¼ ar þ ax and not

double recomb and score ¼ gm and

ðsr; er; arÞ 62 extended

33: If scoreþ 2q < lm0½ðs0r; e
0
rÞ� þ q:

34: st0:appendððs0r; e
0
r; s

0
r; e

0
r; scoreþ 2qÞÞ

35: traceback:appendðði; sx;�1; sr; scoreþ 2qÞÞ
36: double recomb True

37: gm gm0; lm lm0; st st0

38: gm idx1; gm idx2 any of fs1; s2jðs1; e1; s2; e2; scoreÞ 2 st

and score ¼ gmg
39: Return gm, gm idx1; gm idx2, traceback
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approach, the definitions of sequence group, state and full prefix set

need to be modified.

The sequence group associated to an unordered pair of paths

fa; bg is defined as Gða; bÞ ¼ ffx; ygjx 2 GðaÞ; y 2 GðbÞg. Similarly,

using the same justification as before, the state of an (unordered)

path pair fa; bg is defined to be the pair ðGða; bÞ; sða; bÞÞ. A full pre-

fix set S for x½0; lÞ is defined as a set of (unordered) pairs of path pre-

fixes such that for any sequence x0 that extends x½0; lÞ, there exists a

path pair fa;bg that achieves the minimum score sx0 ða; bÞ ¼
mina0 ;b0 sx0 ða0; b0Þ and whose prefix pair fa½0; lÞ;b½0; lÞg is in S.

Finally, to formulate the theorem it is handy to introduce the nota-

tion �S to denote the set of ‘haplotype’ paths in S, or formally
�S ¼ fajfa; bg 2 Sg.

THEOREM 2. Suppose S is a full prefix set for x½0; lÞ and S0 is a set of pre-

fixes of length lþ 1. Let sminðaÞ ¼ minb:fa;bg2Ssxða; bÞ, s0minðaÞ ¼
minb:fa;bg2S0 sxða; bÞ and smin ¼ minasminðaÞ; s0min ¼ minas0minðaÞ. Then S0

is a full prefix set for x½0; l þ 1Þ if:

a. For all fa; bg 2 S and a; b 2 f0; 1g, so that aa and bb are both exten-

sions and sxðaa; bbÞ < minðs0min þ 2q; s0minðaaÞ þ q; s0minðbbÞ þ qÞ,
we have faa; bbg 2 S0; and

b. (If x½l� ¼ 1:) For all a 2 �S and a; b 2 f0; 1g with aþ b ¼ 1, so that

there is no b0 satisfying fa; b0g 2 S and sða; b0Þ ¼ sminðaÞ and both aa

and b0b are extensions, S0 contains a path pair of the form faa; bRbg
with fa; bg 2 S and sða; bÞ ¼ sminðaÞ; and

c. (If x½l� ¼ 2b:) For all a 2 �S and a 2 f0; 1g, so that there is no b0 satis-

fying fa; b0g 2 S and sða; b0Þ ¼ sminðaÞ and both aa and b0b are exten-

sions, S0 contains a path pair of the form faa; bRbg with fa; bg 2 S

and sða; bÞ ¼ sminðaÞ; and

d. (If x½l� ¼ 2b:) If there is no pair fa0; b0g for which sða0; b0Þ ¼ smin and

either a0b or b0b is an extension, then S0 contains a path pair of the

form faRb; bRbg with fa; bg 2 S.

Algorithm 6 implements these ideas. The core of the algorithm is

formed by lines 11 and 14 that consider regular extensions with a

pair of characters (a1, a2); lines 22–23 and 27 that consider single

recombinations; and line 34 that considers simultaneous recombina-

tions in both haplotypes. The remainder of the algorithm is con-

cerned with implementing the conditions of Theorem 2 to ensure

that redundant extensions are ignored. The variables gm and gm0

keep track of the current and next global minimum score smin and

s0min, while the associative arrays lm½� and lm0½� keep track of sminðaÞ
and s0minðaÞ respectively. The associative array extended½� keeps track

which paths a have a partner b0 that achieves the minimum score

sminðaÞ, and for which both a and b0 have extensions required in con-

ditions b and c; whether the extension is appropriate is computed by

the function consider recomb. Finally, the variable double recomb

is used to ensure that at most one double recombination is consid-

ered at every iteration.

The traceback algorithm for diploid Li and Stephens is similar to

the haploid algorithm. Again, the traceback list contains records

describing the recombinations that have been considered. These

records now additionally contain a pair sx, ex that represent the

range of PBWT indices corresponding to the sequence that does not

undergo a recombination. As with the haploid algorithm, the trace-

back algorithm follows a recombination only if the path scores

agree, but now also ensures that the index of the non-recombining

path is contained in the range ½sx; exÞ. Double recombinations are

encoded by setting ex ¼ �1, and for such recombinations only the

scores need to agree. A pseudocode implementation is given as

Algorithm 7.

4 Performance

For testing the fastLS algorithms were implemented in Cþþ, with

all tables stored in uncompressed form in memory. To validate the

implementations and to compare runtimes, standard Viterbi

Algorithm 7 Diploid traceback

Input: Sequence x½0; nÞ, PBWT of x0; . . . ;xH�1, scores

l � 0; q � 0, minimum score gm, corresponding indices

gm idx1; gm idx2, traceback list traceback.

Output: Representation of a minimum-scoring diploid path

1: Function FL(k, i): " “First-to-last” mapping

2: lo 0; hi H; a 0 if k < f 0
i else 1

3: While lo < hi: " LFðj; a; iÞ � k 8j < lo and

LFðj; a; iÞ > k 8j � hi

4: mid bðloþ hiÞ=2c
5: If LFðmid; a; iÞ � k: lo mid þ 1

6: Else hi mid

7: Return a; lo� 1

8: i 0; path1 ½ði; ai�1
gm idx1Þ�; path2 ½ði; ai�1

gm idx2Þ�
9: For ðt locus; t start; t end; t idx; t scoreÞ in

reverseðtr0backÞ:
10: While i � t locus:

11: a1; gm idx1 FLðgm idx1; iÞ
12: a2; gm idx2 FLðgm idx2; iÞ
13: gm gm� lja1þ a2� x½i�j; i iþ 1

14: If gm ¼ t score:

15: If t end ¼ �1: " Double recombination

16: gm idx1 t start; gm idx2 t idx

17: path1:appendðði; ai�1
gm idx1ÞÞ;

path2:appendðði; ai�1
gm idx2ÞÞ

18: gm gm� 2q
19: Else If t start � gm idx1 < t end:" Single rec. in

path 2

20: gm idx2 t idx; path2:appendðði; ai�1
gm idx2ÞÞ

21: gm gm� q
22: Else if t start � gm idx2 < t end: " Single rec. in

path 1

23: gm idx1 t idx; path1:appendðði; ai�1
gm idx1ÞÞ

24: gm gm� q
25: Return path1; path2

(a) (b)

Fig. 2. Running time for inferring inheritance patterns under the haploid

(dashes) and diploid Li and Stephens model over a simulated reference set of

n (horizontal axis) haploid sequences, using the Viterbi (red) and fastLS

(green) algorithms, using q=l ¼ 2. Dots represent measurements, curves

show quadratic fits. (a) Results for a simulated reference population of n sam-

ples. (b) Results for a fixed simulated reference population of 100 000, sub-

sampled to n samples
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algorithms for the haploid and diploid LS model were also imple-

mented. Traceback was included in the fastLS algorithms, but was

excluded from the Viterbi implementations because of memory con-

straints. Two sets of simulations were performed. For the first,

30 Mb of sequence in populations of size 100 to 10 000 were simu-

lated by scrm (Staab et al., 2015) using the ‘standard simulation’

model of Li and Durbin (2011) which roughly resembles the demog-

raphy of the European population. For each population I simulated

an additional 50 samples to serve as input sequences. This resulted

in a number of segregating sites ranging from 129 945 for the 150-

sample case, to 436 361 for 10 050 samples. For the second set, I

simulated a single population of 100 000 samples under the same

model (resulting in 621 156 segregating sites) and sub-sampled refer-

ence populations of 100 to 10 000 samples from these (Fig. 2).

The run-times of the Viterbi algorithms show the expected linear

and quadratic dependence on H. The fastLS algorithms show a

weak dependence on H. In the case of the sub-sampled population,

which have a fixed number of loci (not all of which segregate in the

sample), the dependence on H is weakest, and in fact the diploid al-

gorithm becomes faster for larger populations, probably because

longer haplotype matches can be found in larger populations, result-

ing in more efficient pruning of the prefix sets.

A1. Appendix

A1.1 Derivation of Algorithm 3
To derive the PBWT algorithm for sequence matching we first need

to describe the structure of M. From Figure 1 we see that

CðpiÞ ¼ Hi; Cð0Þ ¼ Hn; Cð1Þ ¼ Hnþ F0

where Fa ¼
Pn�1

j¼0 f a
j is the number of symbols a 2 f0; 1g in X, and

f a
i is the (haplotype) frequency of a at position i in x0; . . . ; xH�1. Let

Fa
i :¼

Pi�1
j¼0 f a

j be the cumulative haplotype frequency across posi-

tions up to i – 1, and set Fa ¼ Fa
n. Then RaðiÞ satisfies

R0ðHiÞ ¼ F0
i ; i � n (4)

Rpi ðrÞ ¼ r� Cð0Þ � F0
iþ1; r 2 ½Cð0Þ þ F0

iþ1;Cð0Þ þ F0
iþ2� (5)

Rpi ðrÞ ¼ f 0
iþ1 þ r� Cð1Þ � F1

iþ1; r 2 ½Cð1Þ þ F1
iþ1;Cð1Þ þ F1

iþ2� (6)

I define ra
i ðkÞ so that

RaðHiþ kÞ ¼ Fa
i þ ra

i ðkÞ for k 2 ½0;H� and a 2 f0;1g; (7)

or equivalently, ra
i ðkÞ counts how often a appears in

BWTðXÞ½Hi;Hiþ kÞ. To derive the PBWT sequence matching algo-

rithm, it suffices to track one of the bounding variables, say s, for

two steps through Algorithm 2. Assume that the subsequence

matched so far starts at position i, so that s ¼ Hiþ k; k 2 ½0;H�,
and that the next character to be matched is a 2 f0;1g. The first

step replaces s with

s0 ¼ CðaÞ þRaðsÞ ¼ CðaÞ þ Fa
i þ ra

i ðkÞ

where the second equality follows from (7). The function ra
i ðkÞ

returns the number of occurrences of a before the kth row within

the block starting at row iH in M. This block includes all sequences

that start with pi, so that 0 � ra
i ðkÞ � f a

i for k 2 ½0;H�, and the

conditions for (5) and (6) apply, allowing the result of the second

step to be computed. The sequence now ends with the symbol pi�1,

so that if a¼0, s0 is replaced by

s00 ¼ Cðpi�1Þ þ Rpi�1 ðs0Þ
¼ Hði� 1Þ þ ½Cð0Þ þ F0

i þ r0
i ðkÞ� � Cð0Þ � F0

i

¼ Hði� 1Þ þ r0
i ðkÞ

whereas if a¼1,

s00 ¼ Cðpi�1Þ þ Rpi�1 ðs0Þ
¼ Hði� 1Þ þ ½Cð1Þ þ F1

i þ r1
i ðkÞ� þ f 0

i � Cð1Þ � F1
i

¼ Hði� 1Þ þ f 0
i þ r1

i ðkÞ

Since R0ðrÞ þR1ðrÞ ¼ r for r � Hn, it follows that r0
i ðkÞ þ

r1
i ðkÞ ¼ k for 0 � k � n, so that the last-to-first function mapping

k to the new value k0 satisfying s00 ¼ Hði� 1Þ þ k0 is LFðk; a; iÞ as

defined in (3).

A1.2 Proof of Theorem 1
The key observation is that if S0 contains a path p0 with state ðG0; s0Þ,
then S0 does not need to contain any path p (of the same length) with

state (G, s) if G0 	 G and s0 � s. In this case I say that p0 undercuts

p, or symbolically p0 � p. In addition, if p0R � p I also say that

p0 � p, again because all scores that are achievable with p as prefix

are also achievable with prefix p0.
Since S is a full prefix set for x½0; lÞ, a trivial full prefix set for

x½0; l þ 1Þ is formed by the union of simple extensions

S0x ¼ fpajp 2 S; a 2 f0;1gg, and recombination extensions

S0r ¼ fpRajp 2 S; a 2 f0;1gg. To prove that S0 
 S0r [ S0x is also a full

prefix set, we need to show that any path p 2 S0x [ S0rnS0 is undercut

by some path p0 2 S0. In the proof below I will identify for any such

p a p0 that strictly undercuts p (written as p0 < p)—that is, either

the score is strictly lower or the group is strictly larger—but which is

not necessarily an element of S0. If an element is found that is not in

S0, the process can be repeated, finding a p00 < p0 < p, and so forth.

This process has to stop eventually, with an element in S0, because s

cannot decrease indefinitely and G cannot increase indefinitely.

Proof: First consider an arbitrary element p 2 S0xnS0. Because p 62 S0 we

have sðpÞ � s0min þ q. Consider p0R with p0 2 S0 such that sðp0Þ ¼ s0min,

then sðp0RÞ ¼ s0min þ q and Gðp0RÞ ¼ X � GðpÞ, so that p0R < p, and

therefore p0 < p.

Next, consider an arbitrary element of S0r, say pRa. We may as-

sume that sðpÞ ¼ smin, as otherwise p0Ra with sðp0Þ ¼ smin strictly

undercuts it. We may also assume that a ¼ x½l�, since otherwise let

pc be some extension of p (which must exist), then sðpcRÞ �
sðpÞ þ lþ q ¼ sðpRaÞ and GðpcRÞ ¼ X � GðpRaÞ so that pcR <

pRa and therefore pc < pRa. Finally, if pa exists, then sðpaRÞ ¼
sðpRaÞ and GðpaRÞ � GðpRaÞ so that pa < pRa. This completes

the proof.

A1.3 Proof of Theorem 2
The structure of this proof is identical to the previous one. The

equivalent observation is that a full prefix set S0 does not need to

contain a path pair fa; bg if S0 already contains a path pair fa0; b0g
with sða0;b0Þ � sða; bÞ and Gða0;b0Þ 	 Gða; bÞ; in this case I say that

the path pair fa0;b0g undercuts fa;bg, or symbolically

fa0;b0g � fa; bg. I also write fa0;b0g � fa; bg if any one of

fa0R; b0g � fa;bg, fa0; b0Rg � fa; bg or fa0R;b0Rg � fa; bg is

true.

A trivial full prefix set for x½0; l þ 1Þ is formed by the union

S0x [ S0r [ S0rr, where Sx ¼ ffaa; bbgjfa; bg 2 S; a; b 2 f0; 1gg, Sr ¼
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ffaa; bRbgjfa; bg 2 S; a;b 2 f0;1gg and Srr ¼ ffaRa; bRbgjfa; bg 2
S; a; b 2 f0; 1gg. The task is to prove that any path pair in S0x; S0 r or

S0rr but not in S0 is undercut by some element of S0, and again I do

this by identifying for any p 2 S0x [ S0r [ S0rrnS0 a p0 that strictly

undercuts p.

Proof: Consider an arbitrary faa; bbg 2 S0x not in S0, so that

sðaa; bbÞ � minðs0min þ 2q; s0minðaaÞ þ q; s0minðbbÞ þ qÞ. Suppose first that

sðaa; bbÞ � s0min þ 2q, and let a0a0 and b0b0 be such that sða0a0; b0b0Þ ¼ s0min,

then Gða0a0R; b0b0RÞ � Gðaa;bbÞ and sða0a0R; b0b0RÞ ¼ s0min þ 2q �
sðaa; bbÞ, so fa0a0R; b0b0Rg < faa; bbg, and so fa0a0; b0b0g < faa; bbg.
Alternatively, suppose that sðaa; bbÞ � s0minðaaÞ þ q, and let b0b0 be a path

so that fa; b0g 2 S and sðaa; b0b0Þ ¼ s0minðaaÞ, then Gðaa; b0b0RÞ �
Gðaa;bbÞ and sðaa; b0b0RÞ ¼ s0minðaaÞ þ q � sðaa; bbÞ, so that faa;

b0b0Rg < faa; bbg, and so faa; b0b0g < faa; bbg. The case sðaa; bbÞ �
s0minðbbÞ þ q is similar.

Next, consider an arbitrary element faa;bRbg 2 S0r. We may as-

sume that sða; bÞ ¼ sminðaÞ as otherwise it is possible to undercut this

pair by choosing b appropriately. We may also assume that no

fa; b0g exists in S so that sða;b0Þ ¼ sminðaÞ and aa and b0b are exten-

sions, for if such a pair exists, the pair faa; b0bRg undercuts

faa;bRbg as it achieves the same score and has a strictly larger

group. Now suppose x½l� ¼ 1. If aþ b 6¼ 1, for any extension bb0 of

b we have sðaa;bb0RÞ � sða; bÞ þ lþ q ¼ sðaa; bRbÞ and

Gðaa;bb0RÞ � Gðaa; bRbÞ so that faa; bb0Rg < faa; bRbg, as

required. To deal with the case x½l� 6¼ 1, say x½l� ¼ 0, suppose b¼1

and let bb0 be any extension, then sðaa; bb0RÞ � sða; bÞ þ ðaþ
1Þlþ q ¼ sðaa; bR1Þ so that faa; bb0Rg < faa;bR1g, as required.

The case x½l� ¼ 2 is similar.

Finally, consider an arbitrary element faRa; bRbg 2 S0rr. As be-

fore we may assume that sða;bÞ ¼ smin. Let’s first deal with the case

x½l� ¼ 1. If a¼b then let aa0 be an arbitrary extension, then

sðaa0R; bRbÞ � sða; bÞ þ lþ 2q ¼ sðaRa; bRbÞ and Gðaa0R; bRbÞ �
GðaRa; bRbÞ so faa0R; bRbg < faRa;bRbg. If instead a 6¼ b, then

let aa0 and bb0 be arbitrary extensions. If a0 ¼ a then faa0R;bRbg <
faRa;bRbg by a now familiar argument. If b0 ¼ b then faRa; bb0Rg
is the required strictly undercutting path pair. If both a0 6¼ a and

b0 6¼ b then a0 6¼ b0 and faa0R;bb0Rg achieves the same score and a

larger group, and therefore strictly undercuts faRa;bRbg. It remains

to deal with the case x½l� 6¼ 1, say x½l� ¼ 0. If either a¼1 or b¼1 (or

both), say b¼1, then let bb0 be an arbitrary extension, then

sðaRa; bb0RÞ � ðaþ 1Þlþ 2q ¼ sðaRa; bRbÞ so that faRa;

bb0Rg < faRa; bRbg. So we can assume that a ¼ b ¼ 0. The argu-

ment in the case x½l� ¼ 2 is similar. Finally, suppose there is a pair

fa0;b0g with sða0; b0Þ ¼ smin and either a0b or b0b is an extension, say

b0b is, then fa0Rb;b0bRg � faRb;bRbg as required. This completes

the proof.
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