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Abstract: Milk and dairy products, especially from cow’s milk, play a major role in the daily human
diet. It is therefore hardly surprising that the subject of milk is being extensively researched and
that many effects of individual milk components have been characterized as a result. With the
wealth of results available today, the influence of milk on the development of various types of cancer
and, in particular, its often protective effects have been shown both in vitro and in vivo and in the
evaluation of large-scale cohort and case-control studies. Various caseins, diverse whey proteins such
as α-lactalbumin (α-LA), bovine α-lactalbumin made lethal to tumor cells (BAMLET), β-lactoglobulin
(β-LG), or bovine serum albumin (BSA), and numerous milk fat components, such as conjugated
linoleic acid (CLA), milk fat globule membrane (MFGM), or butyrate, as well as calcium and other
protein components such as lactoferrin (Lf), lactoferricin (Lfcin), and casomorphines, show antitumor
or cytotoxic effects on cells from different tumor entities. With regard to a balanced and health-
promoting diet, milk consumption plays a major role in a global context. This work provides an
overview of what is known about the antitumoral properties of proteins derived from cow’s milk
and their modes of action.

Keywords: cow’s milk; antitumoral effects; health-promoting diet; cancer; antitumor peptides

1. Introduction

Almost all mammalian individuals including humans usually take up the preform
of the mother’s milk, the so-called colostrum, which is formed by the female mammary
glands after birth. A short time later, ordinary milk is produced and, in the first period,
exclusively nourishes the newborn with its composition adapting to the developmental
stage and growth requirements. At this time, milk serves as the sole source of nutrition
until weaning containing all the ingredients required for development such as proteins,
enzymes, carbohydrates, vitamins, trace elements, and, to ensure a functional immune
response, antibodies as well as defense-promoting enzymes.

Humans began to build up a regulated dairy industry about 10,000 years ago with
the domestication of goats and sheep, especially in Western Asia, and later, 8500 years
ago, in Southern Europe with the keeping of the aurochs. In particular, the evolutionary
advantage for Northern Europeans was the so-called lactase persistence, a strong positive
selection of the lactase allele with no longer occurring lactose intolerance, as a result of the
habituation to dairy cattle farming [1].

In recent years, global cow’s milk production has expanded from a total of
441.97 million tons in 2010 to 524.41 million tons in 2019—an increase of 18.65% over this
period [2,3]. In 2019, the largest producing countries were in the EU (155.2 million tons),
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with the main share of 33.1 million tons in Germany [4], the USA (99.06 million tons), and
India (92 million tons), with particularly strong growth rates in India (+45.3% since 2010
with 50.3 million tons) [2,3]. Per capita milk consumption including milk equivalents of
dairy products without butter has increased on a global average from 78.24 kg in 2000 to
111.6 kg in 2019, which means an increase of 29.9% for this timespan [5,6]. In addition,
all national and international dietary guidelines recommend a regular intake of milk and
dairy products (e.g., yogurt and cheese) as part of a health-promoting eating pattern [7].
The dairy group supplies many nutrients, including calcium, phosphorus, vitamin D,
vitamin A, riboflavin, vitamin B12, protein and essential amino acids, potassium, zinc,
choline, magnesium, and selenium [8].

In 2020, the World Health Organization (WHO) reported a global cancer burden of
18.1 million cases (thereof 9.6 million deaths) for the year 2018 and a probable increase to
29.4 million cases in 2040. Therefore, besides its treatment, the effective primary prevention
of carcinoma development is of paramount importance [9]. The highest incidence for males
was found for lung, prostate, and colorectum cancers, with a proportion of 14.5%, 13.5%,
and 10.9%, respectively. For females, breast, colorectum, and lung were most frequently
affected (24.2%, 9.5%, and 8.4%, respectively).

For these reasons, besides the pure development of new anti-cancer drugs, emphasis
has always been placed on the study of naturally occurring compounds, which often also
show interesting cancer preventive effects. Some nutritional compounds succeeded, e.g.,
in limiting the growth of cancer cells and, at the same time, positively influenced the
body’s own immune system [10–13]. In this context, daily nutrition plays an important role,
which additionally increases the special interest in milk components and their effects. In
addition, evidence from case-control and prospective cohort studies demonstrate an inverse
association between the regular intake of milk and dairy products and the development of
various types of cancer, especially of colorectal cancer [14–17]. However, causality cannot
be inferred from these statistical associations. Observed inverse relations between intake
of dairy products and colorectal cancer development have been largely attributed to their
high calcium content. Other nutrients or bioactive constituents in dairy products, such
as Lf, vitamin D or the short-chain fatty acid butyrate may also impart some protective
functions against cancer, but these require much better elucidation.

2. Composition of Cow’s Milk

Bovine milk constituents are mainly water (86–88%), milk fat (3–6%), protein (3–4%),
lactose (5%), and minerals (0.7%) as shown in Figure 1. The percentage of total solids
is 11–14% [18].
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Figure 1. Approximate composition of cow’s milk. Proteins are divided into insoluble casein proteins
and soluble whey proteins [18].

Cow’s milk protein content consists of two major families of proteins. About 80%
of total protein represent different insoluble caseins (CNs); the remaining 20% represent
soluble whey proteins. The casein phosphoproteins can be further diversified into four
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families according to the homology of their primary amino acid sequences, namely αs1-
(αs1-CN, 12–15 g/L in skim milk), αs2- (αs2-CN, 3–4 g/L), β- (β-CN, 9–11 g/L), and
κ-caseins (κ-CN, 2–4 g/L), each consisting of several different variants due to genetic
heterogeneity (Figure 2) [19].
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The casein proteins occur as macromolecular aggregates known as casein micelles,
with a size from 30 to 300 nm. The whey protein fraction includes α-LA (0.6–1.7 g/L),
β-LG (2–4 g/L), BSA (0.4 g/L), immunoglobulins (predominantly IgG1, 0.3–0.6 g/L), bLF
(0.02–0.1 g/L), lactoperoxidase, and other proteins to a minor proportion (Figure 3) [19].
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3. Milk Proteins and Processed Peptides with Chemopreventive Properties

Milk proteins are components, which have certain physiological functionalities, that
can often be diversified according to their potential to release bioactive peptides after
enzymatic digestion in vitro and in vivo. Large numbers of potentially effective peptides
are “encrypted” in the complete proteins until they are activated by enzymes in the gas-
trointestinal environment. Protein members of the casein and whey fraction with known
antitumor activities are introduced in the following sections, which are additionally sum-
marized in tabular form (Table 1).

Table 1. Effects and potential mechanisms of milk proteins or their processed peptides with known antitumor activities
against different tumor species shown by in vitro and in vivo experiments. Species are marked in brackets, respectively.

Proteins Tumor Species Effects and Potential Mechanism Ref.

C
as

ei
n

pr
ot

ei
ns

CNs

α-, β-, κ-caseins

Breast cancer (human): MCF10A H
Ras (G12V), MDA-MB-231 Decreased cell migration

[24]
Mammary tumor (murine): Met-1

Decreased cell migration, tumor
growth, Metastasis, activation of STAT1
signaling, apoptosis induction (shown

for α-CN)

Lactaptin
(κ-casein fragment) Breast carcinoma (human): MCF-7 Apoptosis induction [25]

PGPIPN
(β-casein fragment) Ovarian cancer (human): SKOV3 BCL2 targeting [26]
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Table 1. Cont.

Proteins Tumor Species Effects and Potential Mechanism Ref.

INKKI
(β-casein fragment) Melanoma (murine): B16F10 Apoptosis induction [27]

CMs

Prostatic cancer (human): LNCaP,
PC-3, DU145 Interaction with opioid receptors [28]

Breast cancer (human): T47D G0/G1 blocking [29]

Promyeloic leukemia (human):
HL-60 Apoptosis induction [30]

CPPs Intestinal tumor (human): HT-29 Interaction with voltage-operated
L-type calcium channels, apoptosis [31]

W
he

y
pr

ot
ei

ns

Lf

Colon carcinoma (murine): Co26Lu
Inhibitory effects on lung metastatic

colony formation in Balb/c mice due to
Tand NK cell activation

[32]

Melanoma (murine): B16-BL6 Inhibition of lung metastasis in
C57BL/6 mice (only apo-Lf)

[33]
Lymphoma (murine): L5178Y-ML25 Inhibition of liver and spleen metastasis

in C57BL/6 mice (only apo-Lf)

Colon carcinoma (murine)
Reduced induction of aberrant crypt

foci (ACF) by azoxymethane
administration in male F344 rats

[34]

Pepsin hydrolysate
f(17–38)

Promyeloic leukemia (human):
HL-60 Apoptosis induction [35]

Pepsin hydrolysate
(mixture)

Oral squamous cell carcinoma
(human): SAS

Apoptosis induction by JNK/SAPK
MAP kinase activation [36]

Basal diet with
0.2% bLf

Hamster buccal pouch (HBP)
carcinoma

Decreased incidence of DMBA-induced
carcinogenesis, decreased levels of
phase I enzymes, modulated lipid

peroxidation, increased antioxidant and
phase II enzyme activities

[37]

Native and iron
saturated bLf Glioblastoma (human): GL-15

Down-regulation of Snail and vimentin
expression, increase in cadherin levels
Inhibition of EMT-like processes and

IL-6/STAT3 axis mainly by the
holo-form

[38]

Liposomal bLf Colorectal cancer (rat): DMF-DSS
induced colorectal

Suppression of inflammation and
tumor cell proliferation [39]

Lfcin
Fibrosarcoma (murine): Meth A

Reduction of tumor growth in CB6
mice

Cytotoxic activity, lysis by pore
formation (SEM) [40]

Melanoma (murine): B16F10 Cytotoxic activity
Colon carcinoma (murine): C26 Cytotoxic activity

α-LA in
complex

with oleic
acid

(BAMLET)

Cervical epithelial carcinoma
(human): HeLa

Accumulation in endolysosomal
compartment, lysosomal membrane

permeabilization inducing
nonapoptotic lysosomal cell death

[41]

Bladder carcinoma (human): J82,
RT4

Prostate carcinoma (human): PC-3
Astrocytoma (human): U118

Breast carcinoma (human): MCF-7
Osteosarcoma (human): U2-OS
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Table 1. Cont.

Proteins Tumor Species Effects and Potential Mechanism Ref.

Lymphocytic leukemia (murine):
L1210

β-LG

Lung adenocarcinoma (human):
A549

Apoptosis induction, upregulation of
Bax and caspase-3, decreased level of
Bcl-2, reduced chemotactic motility,

tumor inhibition in BALB7c mice after
oral administration

[42]
Intestinal tumor (human): HT-29

Hepatoblastoma (human): HepG2
Breast carcinoma (human):

MDA231-LM2

BAMLET: bovine α-lactalbumin made lethal to tumor cells; CM: casomorphin; CN: casein; CPP: casein phosphopeptide; DMBA,
7,12dimethylbenz[a]anthracene; DMF-DSS: 1,2-dimethylhydrazine/dextran sulphate sodium, EMT: epithelial-to-mesenchymal tran-
sition, IL-6: interleukin-6, JNK/SAPK, c-Jun N-terminal kinase/stress-activated protein kinase; Lf: lactoferrin; Lfcin: lactoferricin; SEM,
scanning electron microscope; STAT1/3: signal transducer and activator of transcription 1/3; α-LA: α-lactalbumin; β-LG: β-lactoglobulin.

3.1. Casein Proteins and Processed Peptides
3.1.1. Caseins and Casomorphines

The different casein fractions occur in bovine milk in following proportions: αs1
(39–46% of total caseins), αs2 (8–11%), β (25–35%), κ (8–15%), and γ (3%), which is a
natural degradation product of β-casein (Figure 2) [21,22,43,44]. Depending on cattle
breed, all casein families are additionally present in multiple genetic variants with different
amino acid substitutions [19], which give rise to a multitude of biologically active protein
fragments after hydrolysis during gastrointestinal digestion or food processing like fer-
mentation [20,45,46]. In milk, for example, β-caseins occur in 13 different genetic variants,
of which the most common are A1 and A2 [47]. These two differ from each other only in
a single amino acid substitution at position 67 (histidine in A1 β-casein to proline in A2
β-casein) caused by a single nucleotide exchange, respectively.

In vitro experiments with bovine α-, β-, and κ-casein proteins showed a reduction of
migration ability of murine mammary tumor cells Met-1 and two human breast cancer cell
lines (MCF10A H Ras (G12V) and MDA-MB-231) with α-casein being most potent [24].
Additionally, recombinant α-casein expression in Met-1 cells led to reduced tumor mass and
lung metastasis in athymic nude mice by induced STAT1 signaling. Furthermore, different
proteolytic fragments of κ- and β-casein showed antitumor effects against adenocarcinoma
(MCF-7), ovarian cancer (SKOV3), or murine melanoma (B16F10) [25–27].

Bovine casomorphins are a group of opioid-like peptides derived from limited proteol-
ysis of α- and β-caseins. The first casomorphin identified after an enzymatic casein digest
was the heptapeptide βb-casomorphin-7 (BCM-7; Tyr-Pro-Phe-Pro-Gly-Pro-Ile) and the cor-
responding βb-casomorphins-4, -5, and -6 (BCM-4/-5/-6; peptides with 4, 5, and 6 amino
acid residues) [48]. Opioid peptides derived from bovine α-casein- and κ-casein-digestion
are named αb-casein exorphins (1–7 and 2–7) and casoxins A, B, and C, respectively [49].

In the context of antitumoral activity, different casomorphin peptides were shown
to have antiproliferative effects on human prostatic cancer cell lines LNCaP, PC-3, and
DU 145 through partial interaction with opioid receptors [28]. Other results showed the
in vitro blocking of breast cancer T47D cells in the G0/G1 phase through antiproliferative
action of five investigated casomorphins (αs1-caseins f(90–95) and f(90–96), BCM-7 f(60–66),
BCM-5 f(60–64), and morphiceptin (amide of BCM-4)) [29]. Interaction between the caso-
morphins and the tumor cells takes place via δ- and κ-opioid receptors with exception
of morphiceptin interacting with type II somatostatin receptor. In this case, the CMs
showed different receptor affinities. In another work by Noni et al., BCM-7 is described as a
weak opioid receptor agonist [50]. Furthermore, BCM-7 and the phosphopeptide β-casein
f(1–25)4P have been shown to induce apoptosis of HL-60 cells (promyeloic leukemia) [30].

Nevertheless, it should be mentioned that the proliferation of prostate cancer cell
lines LNCaP and PC3 was described to be increased after treatment with α-casein and
total casein (0.1 or 1 mg/mL, respectively) from bovine milk. Interestingly, growth rates
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of lung cancer cells (A459), stomach cancer cells (SNU484), breast cancer cells (MCF7),
immortalized human embryonic kidney cells (HEK293), and immortalized normal prostate
cells (RWPE1) were not affected [51].

3.1.2. Casein Phosphopeptides

Casein phosphopeptides (CPPs) are released by gastrointestinal trypsin digestion
from αs1-, αs2-, or β-caseins (which differ in their extent of phosphorylation) and function
as carriers for different minerals (like magnesium, iron, and trace elements such as zinc, bar-
ium, chrome, nickel, cobalt, and selenium) by forming complexes (especially with calcium)
modulating their bioavailability [52]. Therefore, the precipitation of calcium phosphate in
the intestines is inhibited and the amount of soluble calcium for absorption is increased [53].
Cytomodulatory effects of CPPs are, e.g., stimulation of interleukin-6 cytokine release in in-
testinal epithelial cells and stimulation of immunoglobulin A production [54,55]. CPPs are
also shown to interact with voltage-operated L-type calcium channels, thereby modulating
proliferation and apoptosis depending on intestinal tumor HT-29 cell differentiation [31].
CPP-induced calcium uptake is also elevated in human intestinal Caco2 cells, but only
upon cell differentiation [56].

3.2. Whey Proteins and Processed Peptides
3.2.1. Lactoferrin

Human and bovine Lf (hLf, bLf) are single chain multifunctional glycoproteins
with non-haem iron-binding properties and belong to the family of transferrin proteins,
which are capable of binding and transferring Fe3+ ions [57]. hLf and bLf consist of
689 and 691 amino acid residues, respectively, with a molecular mass of about 80 kDa [58].
Lf possesses two binding sites for one ferric ion (Fe3+) and one bicarbonate anion each [59].
It is produced by mucosal epithelial cells and also stored in the secondary granules of
polymorphonuclear leukocytes (PMNLs) of miscellaneous mammalian species [60]. It
was first purified in 1939 as unknown “red fraction” from Cow’s milk [61]. Later in 1960,
it was demonstrated to be the main iron binding protein in human milk [62–64]. It ex-
ists as hLf and bLf with a sequence homology of nearly 70% [58]. bLf is also the main
iron-binding protein in cow’s milk [65] and is present in other biological secretory fluids
like saliva, tears, nasal, and bronchial secretions, as well as in semen, urine, vaginal, and
gastrointestinal fluids [66,67]. Lf is fundamentally involved in the regulation of cellular
and systemic iron homeostasis [68–70]. Caseins make up the largest share of the protein
components of milk with Lf having also a large proportion, ranging from a concentration
of about 7 g/L in human colostrum to 1–3 g/L in mature milk [71,72], whereas Cow’s
milk contains lesser Lf, ranging from 0.05 to 0.5 g/L from early-to-mid lactation [19,73,74].
Through its antiviral, bactericidal, and antifungal properties, Lf being part of the innate
immune response plays a functional role among others for the health state of the mammary
gland [75,76]. Various other protective functions for Lf are described, e.g., antianemic,
antioxidant, anti-inflammatory, immunomodulatory, or anticancer properties [33,40,77–83].
Gram-negative bacteria with negatively charged lipopolysaccharides anchored in the
outer membrane, can be complexed with the highly positively charged lactoferrin, which
then forms holes, through which milk lysozyme can enter and destroy the proteoglycan
matrix [84]. Intact Lf is taken up in significant amounts by a specific Lf receptor (LfR)
occurring in the apical membrane of the small intestine by an endocytotic process [85,86].
It must be taken into account that in infants and newborns, the intragastric pH is higher
and the expression and secretion levels of the digestive enzymes are lower than in the
adult individual with a matured digestive system. Therefore, non-absorbed unhydrolyzed
hLf can be detected in the faecal extracts of breast-fed babies [87]. Moreover, different
tissues like liver, bone, or brain and cell types like lymphocytes or fibroblasts express
further LfRs [76]. Eventually, Lf is acting as a transcription factor inside the nucleus af-
fecting immunomodulation by cytokine expression (e.g., interleukin-1β and transforming
growth factor-β) or epithelial growth and differentiation [88]. Due to the high sequence



Nutrients 2021, 13, 1974 8 of 18

homology of bLf, it was postulated to be broadly bioequivalent to hLf and was recently
used in several in vivo and also clinical studies mainly to investigate its anti-inflammatory
potential in oral or even aerolized form [89–91]. In a mouse model, orally administered
bLf showed inhibitory effects on lung metastatic colony formation after subcutaneous
injection of colon carcinoma Co26Lu cells [32]. Furthermore, the tumor growth and lung
metastasis of murine melanoma B16 and lymphoma L5178Y-ML25 cells could be inhibited
by bLf in another mouse model, interestingly mainly apo-Lf [33,92]. Moreover, Cutone and
colleagues showed that native and iron-saturated bLf differently inhibited cell migration in
a human glioblastoma model via the reversal of epithelial-to-mesenchymal transition-like
process and inhibition of the IL-6/STAT3 pathway, with the holo-form being the more
effective form [38]. These observations highlight the importance of iron saturation state
of Lf when conducting in vitro and in vivo studies [68]. Additionally, Lf has been sug-
gested to affect tumor cell growth through natural killer (NK) and lymphokine-activated
killer (LAK) cell activation [92,93]. After bLf treatment, an inhibition of colon carcinoma
development caused by azoxymethane administration has been observed in rats [34]. In
another mouse model, elevated levels of IL-18 produced by intestinal mucosa were de-
tectable after bLf treatment, further caspase-1 activity and interferon-γ (IFN-γ) levels were
increased [94]. The proinflammatory cytokine IL-18 is an important factor in mucosal im-
munity by generating CD4+ and CD8+ T cells and the activation of T and NK cells followed
by IFN-γ production [95,96]. Caspase-1 is necessary to process the mature active form
of IL-18 and is itself activated by enzymatical cleavage of its procaspase-1 precursor [97].
Other experiments with oral bLf showed the additionally increased expression of IFN-α
and IFN-β in mouse Peyer´s patches (PP) and mesenteric lymph nodes (MLN) stimu-
lating intestine-associated immune functions [98]. hLf, with its high similarity to bLf
(about 70% sequence homology and similar 3-dimensional structure) [99], was able to in-
hibit the cell proliferation of MDA-MB-231 breast carcinoma cells at G1 to S transition of the
cell cycle by decreasing the activity of cyclin-dependent kinases [100]. Experiments with
hLf demonstrated the further downregulation of 3-phosphoinositide-dependent protein
kinase 1 (PDK1) transcription via mitogen-activated protein kinase/c-Jun pathway follow-
ing deactivation of AKT signaling leading to inhibition of nasopharyngeal carcinoma (NPC)
tumorigenesis [101]. Moreover, pepsin hydrolysates of bLf showed apoptosis induction
in human myeloid leukemia cells (HL-60) and human oral squamous cell carcinoma cells
SAS, demonstrating the activity of bLf inherent peptides [35,36]. In an in vivo experimental
setting with hamsters, the incidence of 7,12 dimethylbenz[a]anthracene (DMBA)-induced
hamster buccal pouch (HBP) carcinogenesis could be decreased by feeding a basal diet
containing 0.2% bLf. In this case, levels of phase I enzymes were decreased, lipid peroxida-
tion was modulated, and antioxidant and phase II enzyme activities increased [37]. In a
rat hepatocellular cancer model, Lf showed chemopreventive effects by regulating protein
kinase B pathway [102] and liposomal bLf was described to suppress inflammation and
tumor cell proliferation in a 1,2-dimethylhydrazine/dextran sulphate sodium (DMH-DSS)-
induced colorectal cancer rat model [39]. Notably, no adverse effects were described after
applying 1.5–9 g recombinant hLf in a phase I trial to treat refractory solid tumors [103].

3.2.2. Lactoferricin

In adulthood, bLf ingested orally by drinking Cow’s milk is largely enzymatically
cleaved into smaller peptides by gastric pepsin in the stomach with a low pH of 1.0–2.5 [104],
followed by losing some of its abilities like binding iron or a comparably lower anti-viral
activity. Nonetheless, degradation products such as bovine lactoferricin (LfcinB, 25 amino
acid residues 17–41 of bLf) or lactoferrampin (20 amino acid residues 265–284 of bLf) are am-
phipathic peptides with the more hydrophobic residues lying on one side, more positively
charged residues on the other [105], and possess antimicrobial activity. Lactoferrampin
differs by showing more antimicrobial properties, whereas Lfcin additionally exhibits
anti-inflammatory and anticancer activities [105]. The antitumor effects of LfcinB are de-
scribed against a variety of tumor entities, like murine leukemia, fibrosarcoma (Meth A),
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melanoma (B16F10), or coloncarcinoma (C26) [40]. Lfcin disrupts the cell membrane and
triggers apoptosis through an oxidant-dependent pathway. The amphipathic structure is
necessary to enter the cell by targeting the peptide to the relatively negative charged cell
surface because of more abundantly present phosphatidylserine molecules [106] followed
by the insertion of the hydrophobic residues into the membrane disrupting cell integrity
by pore formation [40].

3.2.3. α-Lactalbumin and Bovine α-Lactalbumin Made Lethal to Tumor Cells (BAMLET)

α-LA is the second most common whey protein following β-LG in human and bovine
milk and has a molecular weight of 14.2 kDa (123 amino acid residues). It is produced
in the lactating mammary gland of almost all mammals and is required for the synthesis
of lactose [107]. Human and bovine α-LA share 71% sequence homology and similar
Ca2+-binding sites [108].

Back in 1995, the human equivalent of BAMLET called human α-lactalbumin made
lethal to tumor cells (HAMLET) was discovered to kill a variety of transformed, embryonic,
and lymphoid cells sparing mature epithelial cells [109]. Later, it was shown that the fatty
acid oleic acid (C18:1) was necessary as cofactor to form an effective complex with α-LA
to induce apoptosis [110]. Hereby, the folding and stability of α-LA is affected by pH
and Ca2+ ions and play a crucial role in forming BAMLET. α-LA must be present in the
partially unfolded apo-state (devoid of Ca2+) before complex formation [110]. The observed
cytotoxicity against tumor cells by inducing cell death works via lysosomal membrane
permeabilization and was demonstrated by experiments from Rammer and colleagues.
According to their results, this is due to the specific accumulation of BAMLET in the
endolysosomal compartment of tumor cells, followed by the release of cathepsins and
other lysosomal hydrolases into the cytosol, which activates proapoptotic Bax protein [41].
Thereby, cytotoxicity against a variety of human (HeLa, J82, RT4, PC-3, U118, MCF-7,
and U2-OS) and murine (L1210) tumor cells was demonstrated, likewise low cytotoxicity
against healthy murine embryonic fibroblasts (NIH-3T3). However, the results of various
groups that also show the cytotoxicity of BAMLET to primary cells should not be ignored.
Brinkmann et al. showed that peripheral blood mononuclear cells (LC50 of 20 µg/mL BAM-
LET) were quite sensitive against BAMLET treatment compared with primary endothelial
cells (LC50 of 1.37 mg/mL), in addition to be cytotoxic against different carcinoma cell lines
(e.g., HL-60 (human promyeloic leukemia), Skov-3 (human ovarian adenocarcinoma), and
B16F0 (murine melanoma) [111]. In these experiments, α-LA alone was shown to be not
toxic, otherwise oleic acid treatment of Jurkat (acute T cell leukemia) and THP1 cells (acute
monocytic leukemia) alone led to cell death resembling apoptosis and necrosis.

3.2.4. β-Lactoglobulin

β-LG is the most abundant non-casein protein in bovine milk, with a share of about
50% of the whey protein fraction, and is not present in human milk. Its molecular weight
is 18.3 kDa (162 amino acid residues) and it exists as a dimer of two main genetic vari-
ants A and B, which differ by two-point mutations under physiological pH and ambient
temperature [23]. Below pH 3, β-LG dissociates into monomers [112]. The protein is
thought to act as whey carrier protein for a variety of hydrophobic molecules, like retinoids
(e.g., vitamin A), lipids, and polyphenols protecting them against oxidative damage or
increasing their solubility [113]. For ligand binding, pH is important influencing the ac-
cess to and release from the hydrophobic binding pocket [114]. β-LG is quite resistant to
peptic and chymotryptic digestion, because of its structural and conformational properties
where the cleavage sites are not easily accessible [115]. Therefore, β-LG could eventually
survive the gastrointestinal passage unharmed and increase intestinal absorption of pro-
tected bound molecules. Anti-tumor effects have been seen in vitro within a study with
different human tumor models (lung tumor cell line A549, intestinal epithelial tumor cell
line HT-29, hepatocellular cell line HepG2, and breast cancer cell line MDA231-LM2) and
further in vivo in a xenograft model with BALB/c nude mice with orally administered
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protein [42]. Thereby, tumor growth and development were reduced through induction
of mitochondria-dependent apoptosis by upregulation of Bax and Caspase-3 levels and
decreasing Bcl-2 level. Furthermore, β-LG was used as nanocarrier for hydrophobic acid
labile drugs for oral administration like irinotecan, a potent agent in colorectal cancer
treatment, which showed more cytotoxic effectivity against human gastric carcinoma AGS
cells and colon carcinoma HT-29 cells than the free drug [116]. Interestingly, β-LG was
shown to form cytotoxic complexes by binding sodium oleate analogously to the HAM-
LET/BAMLET complexes of α-LA with oleic acid [117]. Results with human monocytic
cells U937 (myeloid leukemia) suggested an apoptotic pathway, whereas healthy cells
were less affected, as demonstrated with rat adrenal pheochromocytoma cells PC12, which
exhibit phenotypic features of mature normal cells in the differentiated state.

3.3. Milk Fat Globule Membrane

Milk fat globules have a unique colloidal assembly structure to pack and release tria-
cylglycerols and other bioactive molecules in the form of droplets in milk. The functional
milk fat-encapsulating membrane called milk fat globule membrane (MFGM) consists
of a phospholipid trilayer. The lipid core is covered with a monolayer surface coat of
proteins and polar lipids after being released from the endoplasmic reticulum into the
cytosol. These microlipid droplets (MLDs) fuse together intracellularly to form larger
cytoplasmatic lipid droplets (CLDs, average 3–4 µm in diameter) and are probably gradu-
ally coated with plasma bilayer membrane during release into the alveolar lumen of the
mammary gland [118]. This ensures the dispensation of the droplets in milk serum without
aggregation with others. Proteome analysis of bovine MFGM revealed a composition of
69–73% lipid and 22–24% protein [119]. Major proteins are, e.g., periodic acid Schiff 6/7
(PAS6/7, the bovine homologue of human lactadherin), butyrophilin (BTN), or mucin-1
(MUC1) and play a role in the fight against bacteria and viruses [120]. Among the mul-
tiple proteins identified, almost half of them exert membrane/protein trafficking or cell
signaling functions [121]. In vitro experiments with MFGM isolates in a colon cancer cell
model with human HT-29 cells revealed varying antiproliferative capacities of differently
processed samples. Both thermal denaturation and hydrolysis using trypsin or phospholi-
pase A2, affecting the protein and phospholipid fraction, respectively, led to a reduction
of MFGM-mediated antiproliferative activity, suggesting the responsibility of not only
the components, but also the structure of MFGM [122]. One possible mechanism among
others could be the degradation of xanthine oxidoreductase (XO), a superoxide- (O2

−) and
H2O2-producing molybdenum flavoprotein with low specificity, which is also one of the
main components of the MFGM [123].

4. Conclusions

The steadily increasing knowledge about bioactive peptides that originate from differ-
ent food sources is a research topic that can provide lead structures or identify compounds
that are suitable for the prevention or even treatment of numerous diseases. In recent years,
milk has gained growing interest due to its potential health-promoting effects, which is
illustrated by elevated numbers of publications highlighting anticancer activities of its
compounds. In addition, there is evidence from observational studies demonstrating an
inverse association between the regular intake of dairy products and colorectal cancer.
Together with other well-known milk ingredients (e.g., milk lipids), the role of caseins,
whey proteins, and their derivatives in the field of regulation of immunity, prevention of in-
fection, antioxidant and anti-inflammatory effects, and anticarcinogenic action is becoming
more and more evident.

Nonetheless, there are also studies that show an increase in cancer risk from milk. For
prostate and breast cancer in particular, there are in vitro data as well as results from cohort
studies that show the inductive effects of milk on the development of cancer [124,125].
Especially in the case of prostate cancer induction, data diverge widely between increased
consumption of reduced-fat milk and whole milk [126,127]. In vitro digested Cow’s milk
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was also shown to particularly stimulate growth of prostate cancer cells among other in-
vestigated cells of different tumor entities in culture [128]. Further experiments concerning
the effects of whole milk on the prostate carcinogenesis in rats revealed an increased tumor
incidence [129]. Some studies indicate an inductive effect of milk consumption on the
risk of developing breast cancer, although in turn the data situation is less clear in other
studies [130–132]. In the case of individuals with lactose intolerance characterized by low
consumption of milk and other dairy products, a decreased risk of developing lung, breast,
and ovarian cancer was determined [133]. In this context, an increased incidence may be
possibly suspected in hormone-associated tumors.

On the other side, many of the milk ingredients discussed in this work show promis-
ing anticancer properties, and hence, these results could play an important role in the
development of chemopreventive peptide-based drugs, which are not genotoxic, have high
selectivity, and are well tolerated. Nevertheless, it should always be considered whether
orally administered milk proteins “survive” the gastrointestinal digestion pathway as a
whole or are hydrolyzed to form smaller peptides with changed properties and special
degradation patterns. This depends on their three-dimensional structure with differently
accessible cleavage sites for the digestive enzymes, the gastric emptying time, or intragas-
tric pH, which is different in the fasting state (in adults pH 5.0–6.0) and takes up to 100 min
to reach the pH optimum for pepsin digestion of 1.5–2.0 [134]. The digestion rate there-
fore also depends on the individuals age, the fasting/feeding state, the enzyme:substrate
ratio, and the form of administration. Hence, liquid food has a faster gastric emptying
time compared to solid products. Furthermore, milk is subjected to industrial processing
steps like homogenization or heating and cooling during pasteurization and ultra-high
temperature treatment for sterilization, which influences protein digestibility in advance
prior to consumption. To ensure gastrointestinal passage for sensitive proteins methods
like microencapsulation, the covalent attachment of polyethylene glycol (PEG), named
PEGylation, or saturation of ion binding sites to reduce or prevent proteolysis can be used.

There are also differences between organic and conventionally produced milk, mainly
depending on feeding patterns (e.g., year-round pasture grazing) [135]. However, the
majority of studies focused on fatty acid distribution with increased levels of beneficial
polyunsaturated fatty acids, such as conjugated linoleic acid in organic milk [136], with a
pasture-based diet identified as a main contributor to these effects [137]. On the other hand,
pasture feeding is not exclusive for organic produced milk and the differences in milk
composition are diminished if this type of feeding is also used in the case of conventionally
produced milk [135]. A study that compared both organic and conventional farming
with year-round pasture grazing showed that other factors, such as the clover content
of the pasture, can have a greater influence on milk composition than farming systems
themselves [135]. Another study evaluated differences of protein content between cow’s
milk from late pasture and early indoor feeding season. The authors found significant
differences between organic and conventionally manufactured milk in the late pasture
season regarding the beneficial proteins Lf (334.99 and 188.02 mg/L), β-LG (4.12 and
2.68 g/L), and lysozyme (15.68 and 12.56 µg/L), whereas the situation was largely different
in early indoor feeding season with lower concentrations of BSA, bLf, and lysozyme
in organically manufactured milk [138]. These findings highlight the complexity of the
comparative effects on milk composition between organic and conventional farming, due
to multiple parameters such as feed composition, seasonal effects, cow breed, or the
possibility of free-range farming. In addition to identifying the possible health-promoting
and anticarcinogenic properties of individual milk proteins, their quantification in milk of
different species is also gaining importance. For example, goat milk contains far more Lf
than cow milk, while the Lf content of human and sheep milk is also on a high level [139].

A similar trend can be seen in the evaluation of the milk protein content of different
dairy products, such as yogurt, cheese, and further fermented dairy products. Among
these, cheese, e.g., is characterized by a particularly high antioxidative potential, which is
derived, among other things, from the protein fraction of the milk, and in particular, the
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caseins, but is also co-determined by conjugated linoleic acid, coenzyme Q, and various
vitamins. Moreover, fermentation by proteolytic cleavage by probiotics seems to increase
the release of antioxidant peptide fragments [140]. For instance, Lfcin is hydrolyzed by
lactic acid bacteria [141]. In some studies, bLf contents of liquid milk and yogurt were
found to be at a comparable level and enriched in whole milk powder [142], whereas Lf
content of certain yogurts was relatively low in another study [143]. This also opens up
important new research areas, for example identifying yogurt cultures that metabolize
the desired milk proteins only to a small extent. Similarly, the opportunity of enriching
certain components in certain modified dairy products is also an interesting approach for
the production of functional food.

According to the multiple possible interactions on different levels of cell biology and
to determine exactly which milk ingredients have which influence on cancer development,
there is still a lot of research that has to be done on this promising research area—on the
molecular level in vitro as well as within studies of the whole organism in vivo.
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Abbreviations

BAMLET bovine α-lactalbumin made lethal to tumor cells
BCM βb-casomorphin
bLf bovine lactoferrin
BSA bovine serum albumin
BTN butyrophilin
CLA conjugated linoleic acid
CLD cytoplasmatic lipid droplet
CN casein
CPP caseinphosphopeptide
DMBA 7,12 dimethylbenz[a]anthracene
DMH-DSS 1,2-dimethylhydrazine/dextran sulphate sodium
FAO Food and Agriculture Organization of the United Nations
FAS Foreign Agricultural Service
HAMLET human α-lactalbumin made lethal to tumor cells
HBP hamster buccal pouch
hLf human lactoferrin
LAK lymphokine-activated killer
Lf lactoferrin
Lfcin lactoferricin
LfcinB bovine lactoferricin
LfR Lf receptor
MFGM milk fat globule membrane
MLD microlipid droplet
MLN mesenteric lymph nodes
MUC1 mucin-1
NK natural killer
PAS6/7 periodic acid Schiff 6/7
NPC nasopharyngeal carcinoma
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PDK1 3-phosphoinositide-dependent protein kinase 1
PEG polyethylene glycol
PMNL polymorphonuclear leukocyte
PP Peyer´s patches
USDA United States Department of Agriculture
WHO World Health Organization
XO xanthine oxidoreductase
α-LA α-lactalbumin
β-LG β-lactoglobulin
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