
sensors

Article

Computer-Aided Sensor Development Focused on
Security Issues

Andrzej Bialas

Institute of Innovative Technologies EMAG, Leopolda 31, Katowice 40-189, Poland; andrzej.bialas@ibemag.pl;
Tel.: +48-606-747-864; Fax: +48-32-2007-701

Academic Editors: Luis Javier Garcia Villalba, Anura P. Jayasumana and Jun Bi
Received: 3 April 2016; Accepted: 19 May 2016; Published: 26 May 2016

Abstract: The paper examines intelligent sensor and sensor system development according to the
Common Criteria methodology, which is the basic security assurance methodology for IT products
and systems. The paper presents how the development process can be supported by software
tools, design patterns and knowledge engineering. The automation of this process brings cost-,
quality-, and time-related advantages, because the most difficult and most laborious activities are
software-supported and the design reusability is growing. The paper includes a short introduction
to the Common Criteria methodology and its sensor-related applications. In the experimental
section the computer-supported and patterns-based IT security development process is presented
using the example of an intelligent methane detection sensor. This process is supported by an
ontology-based tool for security modeling and analyses. The verified and justified models are
transferred straight to the security target specification representing security requirements for the IT
product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for
the sensors development with a view to achieving their IT security assurance. The paper summarizes
the validation experiment focused on this methodology adapted for the sensors system development,
and presents directions of future research.

Keywords: Common Criteria; security assurance; IT security development; intelligent sensor; design
pattern; knowledge engineering; computer-aided security development

1. Introduction

The paper is focused on the security aspects of intelligent sensors. Generally, sensors are devices
for measuring certain physical quantities and converting results into signals readable format for
the observer or instrument. Additionally, intelligent sensors are able to process measured values.
Intelligent sensors include sensor-, processing-, communicating facilities, and sometimes actuators.
They can work autonomously or can be connected forming complex structures like sensor networks or
systems. A sensor system can be a part of a more complex IT system. Apart from intelligent sensors,
there are also smart sensors. To review the topic of how to distinguish intelligent sensors from smart
ones [1], in this paper the author focuses on sensors which have IT product attributes, i.e., the ability to
process, store and transfer information. Such devices are equipped with microcontrollers. For these
specific IT products information security is the key issue.

Sensor and sensor system complexity and maturity have been growing and new sensor
applications are emerging all the time. Intelligent sensors and sensor systems are extremely important
to fulfil social and business objectives, including security- and safety-related objectives in many
application domains, such as patient monitoring [2], the Internet of Things [3], smart cities [4], etc.
Apart from public areas, like health services, services offered by the government, border control,
communal applications, these solutions are crucial for high risk environments in the military sector,

Sensors 2016, 16, 759; doi:10.3390/s16060759 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 759 2 of 34

industry, aviation and other transport systems, traffic management, communications, navigation,
identification, etc.

They are applied where the assessed risk is high or the appreciated information assets’ value is
significant. For these applications high integrity and availability requirements are important.

Sensors and sensor systems should be secured like other information technology (IT) products or
systems, but the sensor-specific limitations dealing with power sources, processing and communication
capabilities should be taken into account.

The responsible sensor applications require dependability (related to the system availability,
reliability, and maintainability) and security assurance. Security assurance is the justified degree of
confidence that the system meets its security requirements. It means that built-in security functions
related to these requirements and representing security measures will counter effectively any threat
when it occurs. The system architecture and its security features as well as the practices and procedures
used should enforce the security policy rules related to these requirements.

The assurance standard [5] describes terminology and provides the basic assurance concepts,
assurance techniques and framework. One of the most known assurance approaches is represented by
the ISO/IEC 15408 Common Criteria (CC) [6–9]. The Common Criteria security assurance methodology
provides rigorous rules for IT product development, independent product evaluation and rules for
secure operation. This paper discusses the application of the Common Criteria assurance methodology
to the development of intelligent sensors and is the continuation of the author’s earlier works.

Reference [10] reviews sensors and sensors networks security issues, including commonly known
attacks. It presents the general sensor model and the corresponding security model, specifying
assets, subjects, threats and security measures. The security model was validated on an intelligent
mote-based medical sensor. In [11] the Common Criteria compliant security model for sensors is
refined, introducing semiformal descriptions of the model items considered as the specification means
patterns. These patterns can be used to build security models for different sensors. This methodology
was validated on an intelligent sensor for early detection of methane. The further formalization of the
Common Criteria compliant security model was performed by applying the knowledge engineering
methodology [12]. The IT Security Development Ontology (ITSDO), encompassing security patterns
for sensors, has been elaborated according to the basic knowledge engineering rules [13] and with
the use of the Protégé Ontology Editor and Knowledge Acquisition System developed at Stanford
University [14].

ITSDO encompasses security models only. These models are included in the security target (ST)
or protection profile (PP) specifications (see a short CC primer in Section 1.1) according to the Common
Criteria methodology. The ST specification is important, but it is only a part of the evidences that ought
to be delivered for the evaluation. The finalized Common Criteria compliant, Modular, Open IT security
Development Environment (CCMODE) R&D project [15] provides patterns for all evaluation evidences
and computer support for the patterns-based development processes. CCMODE, co-financed by the
EU within the European Fund of Regional Development, was performed by the author’s organization
under the author’s leadership. The CCMODE project resulted in the following products:

‚ Patterns (including specification means, all evidences, documentation, procedures, etc.);
‚ Methodology and tools used to create and manage IT security development environments by

different business organizations;
‚ Knowledge-related CC development and evaluation (a knowledgebase).

The results of the R&D on ITSDO [12] were used as the input to the CCMODE project, especially
to elaborate knowledge engines for the IT security development process (see the short CC primer in
Section 1.1), evaluation evidences patterns, security models and other supporting tools.

The CCMODE IT security development environments can be applied for different IT products
according to the Common Criteria methodology. The objective of the research presented in the paper

Sensors 2016, 16, 759 3 of 34

is to adapt and validate this general-purpose methodology and the supporting tools with a view to
using them in the intelligent sensors and sensors networks domain.

The number of CC certified products in this domain is relatively low due to the existing barriers
(complex character of the methodology, lack of knowledge, poor support for developers, high cost,
etc.). The auxiliary objective is to help to overcome these barriers by disseminating domain knowledge
and by providing a methodology and tools for the developers of secure products.

The significance of the research presented in the paper lies in increasing the assurance of the
developed sensors and sensors systems by applying the Common Criteria methodology and spreading
it among the sensors technology developers. Please note that sensors and sensors systems are
considered a specific class of IT products. Thanks to the CC methodology these products should be
designed more rigorously, i.e., better analyzed with respect to security, better tested, documented,
managed, etc. Better controlled and more rigorous design will raise the sensors quality and security
assurance, in the similar way as for any other IT products. The research is focused on two issues, a
general one related to the CC methodology as a whole, and a specific one related to the use of this
methodology in the intelligent sensors and sensors systems development.

1.1. Basic Common Criteria Methodology Terms Used in the Article

The Common Criteria methodology uses specific terms. An IT product is called a target of
evaluation (TOE). It can be a hardware, software or IT system.

The second part of [6] contains components representing elementary security functional
requirements (SFRs). They are used to express the behaviour of the TOE security functions, which
represent countermeasures. The third part of [6] includes components expressing elementary security
assurance requirements (SARs) for these security functions. Both sets of components, grouped by
families, and families by classes, constitute a semiformal “language” to uniformly express security
requirements for IT products.

Assurance is measured with the use of evaluation assurance levels (in the range EAL1 to EAL7).
The assurance depends on the rigour applied to the security development process. The more rigorous
is this process, the more precise are the applied engineering good practices (security analyses, testing,
documentation), and the better is the organization of the development/production/maintenance
environment—the more assurance has the IT product (the CC assurance paradigm). The given
EAL represents the coherent package of security assurance requirements. The Common Criteria
methodology [6] comprises three basic processes:

‚ The IT security development process, focused on the security analyses; the document called ST
(security target) for the given TOE is worked out; the ST contains:

TOE overview and description sections;
Security problem definition (SPD), which specifies: the protected assets, subjects, threats,

organizational security policies (OSPs), and security assumptions for the TOE;
Security objectives (SO) presenting how the security problem specified by the SPD is

solved; the SO expresses generally the proposed security measures;
Security requirements (SFRs and SARs) present these solutions using the semiformal

CC components;
TOE security functions for ST (TSF); they are the SFR implementation on the claimed

EAL level;

‚ The TOE development process, focused on the elaboration of the CC-specific IT product
documentation, embracing:

TOE architecture, its functional specification, design, security policy, implementation;

Sensors 2016, 16, 759 4 of 34

Live cycle definition, configuration management, product delivery, development process
security, used tools and their options;

Tests specification, test depth and coverage;
Product manuals and procedures;
Vulnerability assessment of the TOE and its development site;

‚ The IT security evaluation process; it is performed by an independent, accredited security lab
and finalized by certification; during this process the TOE and its evidences, i.e., ST and the TOE
documentation, are evaluated according to the CC methodology against the claimed EAL.

A protection profile (PP) can be considered a generic form of a security target. It provides an
implementation independent specification of information assurance security requirements. Its content
is similar to that of ST (SPD, SO, SFRs/SARs, no TSF), but more general. PPs are evaluated and
registered. Security targets are developed on their basis.

1.2. Current State of the Research Field

The review is focused on three basic issues related to the paper:

‚ Common Criteria application in sensors and sensors systems development;
‚ Patterns in security development;
‚ Computer support of the Common Criteria methodology.

During the review the author identified papers and reports related to the Common Criteria
methodology used in the sensors and sensors networks development and a certain number of examples.
The most relevant of them concern:

‚ General sensors network security aspects;
‚ Healthcare systems;
‚ Aircraft health monitoring systems;
‚ Safety-critical assets distribution systems;
‚ Transport, including motion sensors of digital tachographs;
‚ Products related to SCADA (Supervisory Control And Data Acquisition);
‚ Specialized firewalls used in control and automation systems, co-operating with sensors networks.

Reference [16] concerns the analysis of wireless sensor network (WSN) security, based on the
regulations intended for wireless communication devices, like EN 50150 and MIL STD-188-220. It
discusses WSN attacks, security measures countering these attacks, and provides a security evaluation
and classification methodology for WSN protocols. The Common Criteria methodology is proposed
as the validation methodology of security countermeasures in WSN systems. The countermeasures
sufficiency (SFRs-based) and correctness (SARs-based) are evaluated. The countermeasures, identified
as security objectives, are expressed with the use of the selected SFRs, e.g., “Source and destination
identifier in each message” countermeasure is represented by the component of the CC families:
FCO_NRO (Non-repudiation of origin), and “Membership control-bus guardian” by FIA_UID
(User identification).

A book chapter [17] is focused on the security and privacy issue in healthcare systems, including
sensors and wireless sensors networks. The security and privacy threats are mapped to the commonly
used countermeasures. The countermeasures are discussed with respect to the limitation of the sensors
networks, for which it is difficult to apply advanced cryptographic techniques. It was remarked
that assurance relies on engineering practices, development processes, operational issues, and can be
evaluated according to the Common Criteria methodology.

The first group of examples deals with e-Enabled aircraft [18]. The e-Enabled approach concerns
the latest generation of airplanes and is applied to improve the safety and efficiency of air travel.

Sensors 2016, 16, 759 5 of 34

Thanks to the advanced communication capabilities, including sensors systems based on a wireless
network, e-Enabled aircraft can participate as intelligent nodes in the global information network. This
network is the foundation of the following applications:

‚ Electronic Distribution of Software (EDS);
‚ Airplane Assets Distribution System (AADS);
‚ Air Health Monitoring and Management System (AHMMS);
‚ Air Traffic Control (ATC).

Common Criteria is used for the security analysis of an EDS system, identifying threats, deriving
security objectives, requirements and security functions. This way the electronic distribution of
software, cryptographic key and data between airplane and ground systems is secured. The system is
based on the Public Key Infrastructure (PKI) services and digital signatures.

The paper [19] focuses on the use of wireless sensor networks (WSNs) for AHMMS. AHMMS
is used:

‚ To monitor the health of airplane structures and board systems, which use embedded sensors;
‚ To give timely feedback to the flight control computer working on the board and to the airline

ground server for health assessment.

The paper [20] concerns the Airplane Assets Distribution System (AADS). Assets encompass
an authorized software (e.g., safety standards compliant software, firmware for intelligent sensors)
and contents (data, security related data, unique identifiers, cryptographic keys, etc.) exchanged
between airplanes and manufacturers, owners and servicers. Common Criteria is used for the security
analysis of the communication channel between airplanes systems and between the airplane and the
ground system.

Similar communication channels are used in the automotive industry to load assets, i.e., software
or contents, to different embedded electronic control units in vehicles [21], tachographs, their motion
sensors [22], etc.

The Common Criteria methodology can help to solve some difficult problems identified during
research [21], like: building of the specialized high-assurance PKI, the use of formal methods for an
end-to-end analysis of assets distribution systems, removing vulnerabilities and analyzing the impact
of security on safety.

The digital tachograph system [22,23] consists of a vehicle unit, motion sensor and a smart card
used to log in to this unit. The Common Criteria standard is used to evaluate the security of tachograph
systems [24–26].

The presentation [27] concerns protection against mileage frauds in cars and features a concept
how to solve this problem. The Common Criteria methodology will be used to secure a communication
channel from the ABS sensor to the car cockpit. The protection profile for an odometer is planned.

The paper [28] discusses a new generation of SCADA systems used to control virtual utilities,
aggregating distributed resources, like microgrids, wind farms, fuel cells, etc. into single, centralized
energy systems. Intelligent sensors can be used in control systems (field controllers) cooperating with
SCADA. The author suggests that SCADA products should be evaluated with the use of the Common
Criteria standard to avoid compromising the security or safety by these products. Security problems of
SCADA are growing because SCADA products are often parts of critical information infrastructures.

The National Institute of Standards and Technology (NIST), in coordination with the Process
Control Security Requirements Forum (PCSRF), initiated a research programme aimed at the risk
reduction in industrial control systems based on the Common Criteria methodology [29]. The research
results were IT security specifications for process control systems in the shape of a protection profile
“System Protection Profile—Industrial Control Systems Version 1.0” [30].

The Common Criteria methodology is used in motion sensors [22]. For the above mentioned
examples Common Criteria is used to secure systems co-operating with sensors systems.

Sensors 2016, 16, 759 6 of 34

The Common Criteria methodology is rarely used in the sensor and sensor system certification
process directly. Among many certified IT products (more than 2000) and registered protection profiles
(more than 300) only few concern directly sensors and sensors systems, i.e., motion sensors for digital
tachographs and industrial control systems including sensors. There are also IT products indirectly
related to sensors (the TOE does not comprise sensors), e.g., sensors systems supporting an IT product
or working in its environment. Apart from these, the Common Criteria methodology is used for
non-commercial purposes, but they are not well documented.

The Common Criteria methodology is used as a development and evaluation methodology of
sensors-related IT solutions, including very responsible products. Relevant examples were shown
above. This situation is enforced by the current stage of the market development and is typical of the
emerging domains of application of the Common Criteria methodology. The above mentioned papers
present a need to use Common Criteria in the sensors systems development process. None of them
presents the complete, CC-based development process. They do not mention evidence patterns or
computer support either.

Design patterns can be understood as reusable, proven solutions to problems with respect to a
specific context in the given domain of application [31]. The patterns include knowledge how to get
this expected solution. The patterns are also used in the information technology, including its security.
They may concern requirements, design and implementation [32]. They are specified in a formalized
way, using different kinds of codes, models, ontologies, formalized descriptors, etc.

In [10,11] the author has defined the term “Common Criteria related security design patterns”, in
compliance with the general patterns definition, but expressing the CC- specific issues, i.e., different
specification items, like CC-defined SFR/SAR components, as well as semiformal enhanced generics
introduced by author. The CCMODE project [15] uses these patterns and introduces new ones, related
to the evaluation evidences (documents) implied by SARs. Such a comprehensive set of patterns was a
novel element, allowing for the automation of the evidences elaboration process.

The paper [33] discusses the extension of the problem frame method to perform the CC-related
security analyses. The supporting tool, based on UML/OCL (Unified Modeling Language/Object
Constraint Language), is used (UML4PF) to perform modelling and analyses. The attacker model
considering different attacker types was introduced. The method is focused on the security problem
definition, and on this basis, the security objectives identification.

Generally, to elaborate security targets, protection profiles and other evidences, developers are
equipped with some guidelines, like: ISO/IEC 15446 [34]—for ST/PP or BSI guide [35]—for evidences
up to EAL5. Some valuable practical hints about the evidence preparation, co-operation with external
experts, work valuations and the certification itself are available in [9]. However, these guidelines have
a general character and do not give any patterns to prepare the evidences.

There are a few software tools which support the development of evidences. The first and
most known is Common Criteria (CC) ToolboxTM [36], supporting the security target and protection
profiles development.

GEST—a similar generator of security target templates is presented in [37]. It is based on the
evaluated and certified security targets.

Trusted Labs Security Editing Tool (TL SET) [38] helps the developer in writing and maintaining
the security target and protection profiles according to CC. It also allows one to automatically generate
documents in different formats.

Please note that these tools are focused on the ST and PP preparation only and do not support
the elaboration of other evidence, e.g., dealing with the TOE design, life cycle, guidance, testing,
vulnerability assessment. They are based on text processing and data bases and do not use advanced
modelling or knowledge bases.

The sensors and sensors systems developers do not make sufficient use of the Common Criteria
methodology. The sensors systems development is an emerging CC domain of application. In
the emerging domains there are different barriers, like a lack of knowledge, tools and exemplars,

Sensors 2016, 16, 759 7 of 34

low market demand, etc. Developers need some support. It can be provided by computer-aided
specialized tools.

1.3. Research Motivation and Directions

The research presented in the paper is placed in the mainstream of research focused on the
CC methodology implementation and improvement. This methodology is mature but is still being
improved in the range of raising the design quality, facilitating the development and evaluation
processes, decreasing the development cost and time. The general motivation of the author’s works is:

‚ To improve the IT security development process, thanks to the patterns-based approach;
‚ To minimize the barriers for developers, related to the lack of knowledge, methods and exemplars

of evidences, etc.;

But the works presented in the paper are focused on the secure sensors and sensors systems
development. The research presented in the paper uses three kinds of input:

‚ Theoretical foundation included in the author’s monograph [39], which includes the UML
extension (stereotypes) to specify models of the IT security development framework in a formal
way (syntax and semantics defined on mathematical principles), and the security models related
to this framework (data and activity diagrams);

‚ The CCMODE project products [15]: methodology, tool and knowledge, to adapt them for the
sensors systems domain of application;

‚ The research results from [10–12], to elaborate a library of predefined semiformal specification
means for this domain.

The developed patterns-based, computer-aided methodology for sensor development is a novelty
of this paper. The first kind of patterns encompasses evidences required by particular security
assurance components on different EAL levels. The patterns are structured documents with predefined
fields ready to be filled in with content related to the IT product and required by the Common Criteria
standard. The developer is guided in elaborating evidence on the pattern basis. The second kind of
patterns embraces predefined specification items—semiformal Common Criteria language—including
not only components for the security requirements specification stage, but also enhanced generics
defined by the author for other development stages. Thanks to the patterns, the evidence elaboration
is easier and the evidence quality rises. Additional advantages are obtained by the automation of
the evidence elaboration. The evidence content is introduced by the developer or is generated by
the specialized document generator, which uses data from analytic/design aiding tools, knowledge
base and the CC-related project management software. The software tool accelerates the evidence
development and ensures the content reusability.

The paper contributes to the sensors systems development by providing specialized, means
and tools which comply with Common Criteria and rise quality and security assurance in this
domain, particularly:

‚ Patterns and tools to implement this methodology, adapted to the sensors development domain;
‚ Knowledge concerning the Common Criteria assurance methodology and the sensors security.

The paper contains four sections: Section 1, above, discusses the Common Criteria basic issues,
state of the art in the research domain, existing gaps and motivation for research. Section 2—the
experimental section of the paper—presents the context and course of the validation experiment.
Section 3 summarizes the achieved research results. Section 4 contains the conclusions of the paper.

Sensors 2016, 16, 759 8 of 34

2. Experimental Section

The experimental section provides a short introduction to the validation experiment, presenting
shortly CCMODE Tools, implemented evaluation documents patterns and specification means patterns,
the adaptation of the tool to sensor domain of application, and the validation plan. The validation
experiment encompasses the tool setup according to the sensor project needs and the computer-aided
ST development. The section concludes next steps to obtain a full design of the intelligent sensor. The
validation experiment refers to the MEDIS sensor project described in [11].

2.1. General Features of CCMODE Tools

CCMODE Tools is a specialized Computer-Aided Engineering (CAE) system focused on the
Common Criteria-based IT product development. It supports even the most laborious and difficult
operations in the IT product development process. Figure 1 shows the basic modules of CCMODE
Tools [15].Sensors 2016, 16, 759 8 of 33

Figure 1. Block scheme of the CCMODE Tools suite.

“Environment Management Tool” (EMT) is the main module and the central entry point to
CCMODE Tools. This is a specialized project manager focused on the Common Criteria related
projects. It is responsible for the initialization/configuring of projects and their management in the
life cycle. The project configuration complies with the chosen EAL package. The right evaluation
evidence patterns (considering the additional or substituted SARs) are attached and the needed
external tools are connected. Based on the Lightweight (Directory Access Protocol/Active Directory
DAP/AD) EMT manages roles and users. For each project the life cycle, its phases, and processes are
defined with the use of the predefined templates. EMT manages different project data, elaborated
evidences, and different artefacts, e.g., implementation representation (code, electronic schemes),
documentation, regulations, subcontractors, etc. This is also the entry point to other components
shown in Figure 1. Using the D2RQ [40] technology, EMT integrates logically all CCMODE Tools
components.

The “Knowledge base” module manages the project knowledge and the CC-related knowledge.
It includes the Common Criteria contents stored in the structured way, systems dictionaries,
predefined patterns, security models, predefined life cycle models, and project-related data. It
provides a context-sensitive help.

The “GenDoc—Evidences generation” (Microsoft Word®-based) module is designed to work
out evidences on the basis of predefined patterns. The patterns are implemented as MS Word
templates supported by software. GenDoc is the basic developer’s application. The developer,
guided by the system, uses it directly and introduces basic contents to the given pattern to produce
the corresponding evidence. A very helpful feature is that the contents can be loaded from the
knowledge base and/or external systems (predefined values, analyses results). GenDoc allows to
print the elaborated evidences or to generate empty patterns in the Microsoft Word® format, which
can be used outside GenDoc.

The “Security analysis/modelling” module is based on a plugin developed for Sparx Systems
Enterprise Architect® (EA). EA is a broadly used UML tool. The EA-plugin is used for security
analyses and security modelling. The results are injected to the elaborated security targets or
protection profiles. In addition, the EA-plugin provides input to evidences related to the
decomposition, interfaces and tests of the IT product.

The “Artefact versioning” module is based on the Subversion/SVN software [41]. It is
responsible for versioning the project artefacts (including evidences). It supports configuration
management according to the given EAL.

Figure 1. Block scheme of the CCMODE Tools suite.

“Environment Management Tool” (EMT) is the main module and the central entry point to
CCMODE Tools. This is a specialized project manager focused on the Common Criteria related
projects. It is responsible for the initialization/configuring of projects and their management in the life
cycle. The project configuration complies with the chosen EAL package. The right evaluation evidence
patterns (considering the additional or substituted SARs) are attached and the needed external tools
are connected. Based on the Lightweight (Directory Access Protocol/Active Directory DAP/AD) EMT
manages roles and users. For each project the life cycle, its phases, and processes are defined with
the use of the predefined templates. EMT manages different project data, elaborated evidences, and
different artefacts, e.g., implementation representation (code, electronic schemes), documentation,
regulations, subcontractors, etc. This is also the entry point to other components shown in Figure 1.
Using the D2RQ [40] technology, EMT integrates logically all CCMODE Tools components.

The “Knowledge base” module manages the project knowledge and the CC-related knowledge. It
includes the Common Criteria contents stored in the structured way, systems dictionaries, predefined
patterns, security models, predefined life cycle models, and project-related data. It provides a
context-sensitive help.

Sensors 2016, 16, 759 9 of 34

The “GenDoc—Evidences generation” (Microsoft Word®-based) module is designed to work out
evidences on the basis of predefined patterns. The patterns are implemented as MS Word templates
supported by software. GenDoc is the basic developer’s application. The developer, guided by the
system, uses it directly and introduces basic contents to the given pattern to produce the corresponding
evidence. A very helpful feature is that the contents can be loaded from the knowledge base and/or
external systems (predefined values, analyses results). GenDoc allows to print the elaborated evidences
or to generate empty patterns in the Microsoft Word® format, which can be used outside GenDoc.

The “Security analysis/modelling” module is based on a plugin developed for Sparx Systems
Enterprise Architect® (EA). EA is a broadly used UML tool. The EA-plugin is used for security analyses
and security modelling. The results are injected to the elaborated security targets or protection profiles.
In addition, the EA-plugin provides input to evidences related to the decomposition, interfaces and
tests of the IT product.

The “Artefact versioning” module is based on the Subversion/SVN software [41]. It is responsible
for versioning the project artefacts (including evidences). It supports configuration management
according to the given EAL.

The “Bug tracking/Flaw remediation” module is based on the Redmine software [42]. It is used
for bug tracking during the project progress and for flaws remediation according to Common Criteria
(implementation of the ALC_FLR family requirements) after certification.

The “Test management” module is based on the Testlink software [43]. It is used for the tests
development and management. It contains test plans and scenarios. It helps to specify functional tests
and evidences related to the test depth and coverage.

The “Self-Assessment” module includes full implementation of the Common Criteria Evaluation
Methodology (CEM). It can be used as a self-assessment, auxiliary tool by developers or it can be used
separately by evaluators. It also contains auditing facilities which allow to assess conformance of the
development environments with different standards, including CC.

CCMODE Tools supports traditional CC-related projects as well as site certification [44] projects.

2.2. Evaluation Evidences Patterns Implemented in CCMODE Tools

Developers should submit an IT product (TOE) and a set of evidences to an independent
evaluation lab supervised by one of the Common Criteria certification bodies, which operates according
to the Common Criteria Recognition Arrangement (CCRA) [7].

Evaluation evidences embrace:

‚ Documentation, e.g., configuration management plan;
‚ Documented results of independent investigations or observations conducted by the evaluators,

e.g., a TOE vulnerability analysis report;
‚ Described behaviour or activities of people according to their roles in the TOE life cycle.

CCMODE Tools is equipped with a set of evaluation evidences patterns for all assurance
components. Table 1 lists patterns related to the IT security development process. The most important
is the Security Target pattern. It will be used as the basis for any sensor/sensors system project.

Table 1. Security target/protection profile patterns.

Pattern Acronym Pattern Name Description

STp Security Target pattern Structure and contents of the security target (ST).

laSTp low assurance Security Target pattern Structure and contents of the low assurance security
target used for EAL1

PPp Protection Profile pattern Structure and contents of the protection profile (PP)

laPPp low assurance Protection
Profile pattern

Structure and contents of the low assurance
protection profile used for EAL1

SSTp Site Security Target pattern Structure and contents of the site security target (SST).

Sensors 2016, 16, 759 10 of 34

The TOE development process is based on two groups of patterns: those related to the
environment (Table 2) where the IT product is developed and those related to the IT product itself
(Table 3). Please note that Tables 2 and 3 specify pattern families only, each SAR component has a
dedicated pattern and the pattern names comply with assurance family names [6].

Table 2. Evaluation evidence patterns related to the development environment (site).

Pattern Family Name Description

ALC_LCDp Life-cycle model definition patterns
Presents high-level description of the TOE life-cycle
and provides a framework for the entire
development environment.

ALC_DVSp Development security patterns
Specifies physical, procedural, personnel, and other
security measures to be used in the development
environment to protect the TOE and its parts.

ALC_CMCp Configuration management (CM)
capabilities patterns

Describes in detail the management of configuration
items and enforces discipline and control in the
processes of refinement and modification of the TOE
and the related information.

ALC_CMSp Configuration management
scope pattern

Shows how to specify items to be included as
configuration items and hence controlled by the
above CM capabilities.

ALC_TATp Tools and techniques patterns

Is responsible for control tools, their options and
techniques used in the development environment
(programming languages, documentation,
implementation standards, runtime libraries,
different equipment, etc.).

ALC_DELp Delivery patterns
Describes the secure transfer of the finished TOE
from the development environment into the
responsibility of the user.

ALC_FLRp Flaw remediation patterns Concerns the detected security flaws that should be
traced and corrected by the developer.

Table 3. Evaluation evidence patterns related to the IT product.

Pattern Family Name Description

ADV_ARCp Security Architecture patterns

Describes the security architecture of the TOE
security functions to show if they achieve desired
properties (how to use architectural properties to
better protect security functions).

ADV_FSPp Functional specification patterns

Describes the TOE security functions (TSFs)
interfaces (TSFIs) which contain the means for users
to invoke a service from the TSF (by supplying data
that are processed by the TSF) and the corresponding
responses to those services invocations.

ADV_TDSp TOE design patterns

Provides context for the TSFs description and
describes the TSFs. The TOE decomposition is
specified on different levels of detail (subsystems,
modules) with respect to the applied rigour (EAL).

ADV_IMPp Implementation
representation patterns

Expresses how the TSFs are implemented
(software/firmware/hardware design language
source code, hardware/IC diagrams, layouts).

ADV_INTp TSF internals patterns
Addresses the assessment of the TSFs internal
structure. Well-structured TSFs are easier to
implement and have fewer flaws and vulnerabilities.

ADV_SPMp Security policy modelling patterns

Provides additional assurance from the development
of a formal security policy model of the TSF and
helps to gain correspondence between the functional
specification and this security policy model.

AGD_PREp Preparative procedures patterns Presents how the TOE has been received and installed
in a secure manner as intended by the developer.

Sensors 2016, 16, 759 11 of 34

Table 3. Cont.

Pattern Family Name Description

AGD_OPEp Operational user guidance patterns
Shows how to prepare written material intended for
all types of users of the TOE in its
evaluated configuration.

ATE_FUNp Functional tests patterns Enforces the right specification, execution and
documentation of tests.

ATE_COVp Test Coverage patterns Helps to demonstrate that the above mentioned TSFIs
are properly covered by tests.

ATE_DPTp Test Depth patterns
Helps to demonstrate that the specified TOE design
elements (subsystems, modules) are properly covered
by tests.

ATE_INDp Independent testing patterns

The ATE_IND evidences are elaborated by evaluators.
This evidence is used to perform the tests provided
by the developer and to perform additional tests
defined by evaluator.

The items specified in Tables 2 and 3 can be considered a short review of issues embraced by the
Common Criteria standard.

Some of these patterns will be exemplified during validation.

2.3. Specification Means Patterns Implemented in CCMODE Tools

The above patterns specify structured documents whose elaboration is guided by the tool. Most
of these patterns are filled in with a text with tables and graphics, however patterns shown in Table 1
need, additionally, semiformal specification means, i.e., SFRs and SARs from CC and other descriptors
defined by users and called “generics”. The author proposes [39] “enhanced generics”. They are
defined as mnemonic names expressing common features, behaviours or actions related to IT security
issues, like: subjects, objects, threats, assumptions, security policies, security objectives, and functions.
They are “enhanced” since they are semiformal and have features comparable to CC components,
allowing such operations as: parameterization, derivation, iteration, and refinement.

An enhanced generic consists of four textual fields separated by dots, and the fourth field
Refinement is optional:

Family.Mnemonic.Description.Refinement

The Family field expresses the generics taxonomy. The following groups are distinguished:

‚ Assets representing passive entities within the considered system, divided into subcategories:

— TOE related assets—marked DTO,
— Assets within the TOE operational environment (DEO),

‚ Subjects, representing active entities related to the TOE or its operational environment, including:

— Authorized subjects (SAU), e.g., user, administrator, process,
— Unauthorized entity (SNA), e.g., intruder,
— Non-human malicious entity (SNH), e.g., force majeure, failure,

‚ Threats, including:

— Direct attacks against the TOE (TDA),
— Attacks against the TOE operational environment (TEO),

‚ Assumptions, addressed to the TOE operational environment:

— Connectivity aspects (ACN),

Sensors 2016, 16, 759 12 of 34

— Personnel/organizational aspects (APR),
— Physical aspects (APH),

‚ Organizational security policies (OSPs) and security objectives have similar
subcategories assigned:

— Control and information flow control (policy: PACC, objective: OACC),
— Identification and authentication (PIDA, OIDA),
— Accountability and security audit (PADT, OADT),
— Integrity (PINT, OINT),
— Availability (PAVB, OAVB),
— Privacy (PPRV, OPRV),
— Data exchange (PDEX, ODEX),
— Confidentiality (PCON, OCON),
— IT aspects of the TOE operational environment (PEIT, OEIT),
— Technical/physical aspects of the TOE operational environment (PEPH, OEPH),
— Security maintenance/management (PSMN, OSMN).

This version is marked “Enhanced generics rev.3.1”. When compared with the rev.3.0 [11], the new
version has the generics related to the development site and security functions removed.

The Mnemonic field expresses very briefly, in a few letters, the generic meaning.
The Description field contains one or a few sentences about the generic meaning, i.e., the security

features, behaviours or actions. Description can be supplemented by the optional Refinement field, e.g.,
DTO.SensorID.Unique identification number of an intelligent sensor.Identifier stored in a

distinguished register written during the manufacturing process.
Please note that the fields are separated by dots.
The Description field may have parameters in square brackets which represent any asset [Dparam]

or any subject [Sparam]. The parameters may be left empty (meaning: “any possible”) or substituted
(symbol: “<=”) by an appropriate asset or subject generic. Such parameterization enables iteratation
of the enhanced generics. Here the given generics can be placed many times into the specifications
with different parameters substituted which present different aspects of the same security issue. For
example, a threat item with different-potential intruders attacking the same asset, or a threat with one
intruder who attacks different assets, each one differently. Particular instances of the iterated enhanced
generic are numbered with consecutive numbers placed in brackets.

The paper [10] was focused on the identification of security issues for different kinds of sensors and
sensors systems, according to the needs of the Common Criteria methodology. These issues encompass:

‚ Different kinds of protected assets:

— Basic assets, i.e., sampled, processed, stored and transmitted data, and provided services,
— Assets whose availability allows the right operation of sensors (please note the restricted

resources: energy, processing- and transmission capability),
— Security-related data, e.g., cryptographic keys, passwords, credentials, secrets,
— Assets placed within the TOE operational environment, encompassing all co-operating

and mutually related IT entities, e.g., network gateways, monitoring central unit, common
data base,

‚ Active entities (subjects):

— Legal users of a sensor or sensor system, user, admin, process,
— Legal actors participating in the life cycle processes performed within the site,

service personnel,

Sensors 2016, 16, 759 13 of 34

— Intruders of different attack potential, force majeure, failure,

‚ Commonly known attacks against sensors and sensors systems—threats:

— Related to the data sampled/measured by the intelligent sensor, e.g., input
data manipulation,

— Related to the data stored, processed and transferred by the intelligent sensor, e.g., illegal
access, data manipulation,

— Exploiting vulnerabilities concerning sensors restricted resources, like power, transmission
capability, etc.,

— Aimed at the sensor identity, e.g., cloning, replacing, sybil attack, node fabrication,
— Trying to breach the security-related data,
— Aiming at the sensor physical integrity, like tampering, chemical, thermal, electromagnetic

and similar attacks,
— Related to different cases of unforeseen natural catastrophes, emergencies and failures,
— Against sensor network and transmission ability (TOE operational environment), like

routing misuse, malware, uncontrolled network area accessible to potential intruders, etc.,
— Attacks causing safety problems—safety-critical faults in the safety-critical equipment,

‚ Organizational Security Policies (OSPs):

— Information flow rules,
— Access to asset rules,
— Intrinsic safety,
— Compliance with standards,

‚ Assumptions related to the TOE operational environment, like trustiness of administration and
intended use of an IT product;

‚ Security objectives for the TOE and for the TOE operational environment, representing different
kinds of security measures, which counter threats, enforce OSPs or uphold assumptions.

All identified elementary issues were expressed by the enhanced generics, which play a role of
specification items (in a form of a library) for sensor development, considered one of the CC application
domains. The developers choose the right, project-relevant subset of the enhanced generics, refine
them by substituting values with parameters values and by adding additional explanations related to
the project context.

The paper presents one of possible examples of the sensors-related generics, selected for a concrete
IT product (MethSens). The example is based on the existing design presented in the paper [11]. Please
note that only project-relevant items were used.

Examples of enhanced generics can be found in [10–12], and their ontological representations in
the [12,25]. Enhanced generics defined for the intelligent sensors domain [11] will be implemented in
the CCMODE Tools adaptation.

2.4. Adaptation of CCMODE Tools to Sensors and Sensors Systems Domain of Applications

The Common Criteria standard and CCMODE Tools can be used for a broad range of IT
products. With respect to evidences, no adaptation is required—the configuration according to
the EAL requirements and the used external tools are enough. It was assumed that for the validation
purpose the Redmine and Testlink tools will not be connected.

The adaptation is focused on the elaboration of the set of enhanced generics dedicated to intelligent
sensors. Most of them were defined in the paper [11,12] (the author encourages reading these papers
and taking into consideration the proposed taxonomy and nomenclature of the enhanced generics)
and these will be the basis for the CCMODE Tools implementation. In CCMODE Tools generics are

Sensors 2016, 16, 759 14 of 34

included in the knowledge base and the EA-plugin is used to operate on them. EA-plugin is based on
ITSDO [12], but uses the Simple Knowledge Organization System (SKOS) [45] technology allowing
decision support during the IT security development process, e.g., to propose the most adequate
countermeasures to cover the given threat. It will be exemplified during the validation experiment.

2.5. Range of the Validation Experiment

The validation concerns the MethSens sensor which refers to the Methane Early Detection
Intelligent Sensor (MEDIS) presented in [11]. The validation is focused on the key issues related
to the IT security development of the MethSens:

‚ CCMODE Tools configuration for the MethSens project;
‚ IT security modeling of the MethSens with the use of EA-plugin;
‚ Injecting this model to the MethSens Security Target using GenDoc application.

2.6. CCMODE Tools Configuration for the MethSens Project

To start security analyses and the elaboration of evidences, CCMODE Tools should be configured
(setup) according to the project needs. The MethSens project setup encompasses the following actions:

‚ Introducing basic information about the project, like: project type, TOE name and acronym,
involved organizations, project roles and actors, subcontractors, etc.;

‚ Configuring connections and working parameters of external modules, like SVN, EA, MS Word,
Redmine, Testlink; some tools are optional;

‚ Selecting the right evaluation assurance level (EAL) for the TOE; components of the EAL are
automatically joined to the project; it is possible to perform substitution (replacing one or more
components of the given EAL by more rigorous ones) and augmentation (adding one or more
component to these implied by the EAL); these two cases are distinguished by “+”, e.g.,: EAL2+;
developers can define their own components;

‚ Defining the IT product life cycle and its phases, processes, actors; some life cycles are predefined
in the tool; for MethSens a standard life cycle (with phases: Development, Manufacturing,
Operation and maintenance, End of life) was applied;

‚ Specifying software tools and hardware tools, especially those whose configuration parameters
influence the IT product; concerns the “ALC_TAT—Tools and techniques” family requirements [6];

‚ Specifying tools related to the TOE configuration management; concerns the ALC_CMC,
ALC_CMS families [6];

‚ Setting repository paths pointing at different project artefacts, e.g.,: source files, configuration lists
and their items, regulations, etc.

Figure 2 shows screenshots examples of the MethSens project configuration using the tool.
Please note the horizontal menu on the left and the vertical ones—both presenting different project
operations. For the MethSens TOE, EAL2 is applied. The listed EAL2 SARs can be augmented and/or
substituted. On the second, red-framed window, evidences for MethSens/EAL2 are listed along with
CC components corresponding to them. During the project these evidences will be worked out, i.e.,
filled in with the contents elaborated by the user or by supporting tools, like EA, EMT. The paper is
focused on the security target elaboration (the last position on the evidences list).

The security target elaboration in GenDoc is preceded by the MethSens security model building,
verification and justification with the use of the EA-plugin.

Sensors 2016, 16, 759 15 of 34

Sensors 2016, 16, 759 14 of 33

 Specifying software tools and hardware tools, especially those whose configuration parameters
influence the IT product; concerns the “ALC_TAT—Tools and techniques” family requirements
[6];

 Specifying tools related to the TOE configuration management; concerns the ALC_CMC,
ALC_CMS families [6];

 Setting repository paths pointing at different project artefacts, e.g.,: source files, configuration
lists and their items, regulations, etc.

Figure 2 shows screenshots examples of the MethSens project configuration using the tool.
Please note the horizontal menu on the left and the vertical ones—both presenting different project
operations. For the MethSens TOE, EAL2 is applied. The listed EAL2 SARs can be augmented and/or
substituted. On the second, red-framed window, evidences for MethSens/EAL2 are listed along with
CC components corresponding to them. During the project these evidences will be worked out, i.e.,
filled in with the contents elaborated by the user or by supporting tools, like EA, EMT. The paper is
focused on the security target elaboration (the last position on the evidences list).

Figure 2. Configuring the MethSens project—EAL2 and its evidences.

The security target elaboration in GenDoc is preceded by the MethSens security model
building, verification and justification with the use of the EA-plugin.

2.7. Security Model of the MethSens Device

The security model, after development, justification and verification will be injected into the
security target document. The model includes the basic artefacts created during the IT security
development: security problem definition (SPD), security objectives (SO), security functional
requirements (SFR) and TOE security functions (TSF).

The paper shows how the MethSens security model development is supported by the
EA-plugin. Enterprise Architect is a well-known UML modelling tool. The CCMODE EA-plugin
extends its functionality:

 To perform CC-related security analyses and modelling for ST (ASE_SPD, ASE_OBJ, ASE_REQ,
ASE_TSS families);

Figure 2. Configuring the MethSens project—EAL2 and its evidences.

2.7. Security Model of the MethSens Device

The security model, after development, justification and verification will be injected into the
security target document. The model includes the basic artefacts created during the IT security
development: security problem definition (SPD), security objectives (SO), security functional
requirements (SFR) and TOE security functions (TSF).

The paper shows how the MethSens security model development is supported by the EA-plugin.
Enterprise Architect is a well-known UML modelling tool. The CCMODE EA-plugin extends
its functionality:

‚ To perform CC-related security analyses and modelling for ST (ASE_SPD, ASE_OBJ, ASE_REQ,
ASE_TSS families);

‚ To support the development of evidences dealing with the TOE decomposition (ADV_TDS),
interfaces (ADV_FSP), and tests (ATE_FUN, ATE_DPT, ATE_COV) [6].

2.7.1. Security Problem Definition (SPD)—Threats, Organizational Security Policies and Assumptions

The security problem definition encompasses identification of threats impacting the TOE,
organizational security policies (OSPs) which the TOE should comply with to be secure, and
assumptions for the TOE operational environment. It is preceded by the identification of assets
protected by the TOE and different subjects operating on the TOE and its operational environment. To
build the security model, the enhanced generics and the relationships between them (like: threatens,
counters, covers, upheld, etc.) will be used, defined in according to Common Criteria [11,12].

The general view of the elaborated security model is shown in the middle of Figure 3, more
precisely, only a part of the security problem definition is presented (SPD_MethSensorST diagram). The
parts of the security target, like security objectives, security requirements and TOE security functions
are placed on other, logically connected diagrams (SO_MethSensorST, SFR-TSF_MethSensorST). On
the left part of the window, the developer’s toolbox is shown. It includes the UML class stereotypes
(rectangles) and relationships (arrows) predefined for the Common Criteria development. They can

Sensors 2016, 16, 759 16 of 34

be drag-and-dropped on the diagram and then refined. On the right part of the figure, the MethSens
model artefacts are listed, like diagrams and their elements.

The presented model is rather complicated (seven protected assets marked “D”, six subjects
marked “S”, nine threats “T”, four OSPs, and three assumptions “A”, let alone derived security
objectives, requirements and functions). It is impossible to present the entire project here. The paper
exemplifies the key issue of the security model development only. Please note that to comply with the
version 3.1 of Common Criteria, only the generics related to the operation phase of the sensor life cycle
are considered in the MethSens project (selected from the MEDIS sensor project [11]). The generics
related to the development phase and compliant with the CC ver. 2.x are omitted.

Please note the TOE:MethSensor class on the top and four protected assets belonging
to it: DTO.SensorData, DTO.SensorService, DTO.NodePowerRes, DTO.SensorID (please refer to
their descriptions in the paper [11]). The assets: DTO.CentralUnit, DTO.Co-operatEquip(2),
DTO.Co-operatEquip(2) belong to the ENV:MethSens class representing the TOE environment (not
shown). Each asset class has two optional and auxiliary classes DF and DT representing the assets form
(shared, presented, stored, processed, produced, transmitted) and type (e.g.,: data protected by the
product, user’s private data, hardware, software, user’s identification data, events log of the product,
cryptographic key, and many others). These additional attributes, together with the threats, OSPs, and
assumptions properties, are used to propose adequate security objectives by the knowledge engine.

Two threats related to the TOE will be discussed here on a more detailed level. They represent
elementary security problems, whose resolution will be shown later.

Example 1

The TOE asset DTO.SensorData categorized as DF “processed” and DT “data protected by product”
is threatened by the unauthorized SNH.HighPotIntruder according to the TOE direct attack TDA.Access
threat scenario. Figure 3 presents relations between UML stereotyped classes representing generics
(marked with thick red lines), like st_form, st_threatens and st_has. Figure 4, in turn, shows properties of
these generics. Please note the threat scenario and two risk-related parameters: Likelihood of the threat
and Possible loss when the threat occurs (Figure 4A). Together with Value of protected asset (Figure 4C),
they allow to calculate risk, i.e., and in the consequence they allow to rank the threats by risk. Using
this rank security objectives is more adequate to solve the security problem (will be discussed later).

The DTO.SensorData generic includes detailed description as well—please compare it with [11].
The unauthorized SNH.HighPotIntruder subject (Figure 4B) has a description expressing the role of the
intruder (a threat agent in the CC nomenclature) in the risk scenario, and three parameters Potential,
Knowledge, Motivation characterizing the agent. These issues are important when the TOE vulnerability
is assessed by evaluators (AVA_VAN family [6]).

Example 2

The second example is very similar and concerns an attack against the sensor identifier, which
leads to spoofing. DTO.SensorID categorized as DF “stored” and DT “product identification data” is
also threatened by SNH.HighPotIntruder according to the TDA.ReplaceNode threat scenario. Please
note the relations in Figure 3 (marked with thick green lines) between classes representing generics.
Figure 5 shows properties of these generics.

The above mentioned threat generics were selected from the list of items predefined for sensors.
The EA-plugin allows to create threat generics semi-automatically, based on dialogue forms. The
developer is asked about different features of the threat, threatened asset and threat agent. On this
basis a complete scenario is made and, finally, the generic is placed on a diagram. This option will not
be discussed in this paper.

Sensors 2016, 16, 759 17 of 34Sensors 2016, 16, x 16 of 34

Figure 3. General view of the MethSens security model presented in the CCMODE EA-plugin—Security problem definition diagram.

Figure 3. General view of the MethSens security model presented in the CCMODE EA-plugin—Security problem definition diagram.

Sensors 2016, 16, 759 18 of 34

Sensors 2016, 16, x 17 of 34

The DTO.SensorData generic includes detailed description as well—please compare it with [11].
The unauthorized SNH.HighPotIntruder subject (Figure 4B) has a description expressing the role of
the intruder (a threat agent in the CC nomenclature) in the risk scenario, and three parameters
Potential, Knowledge, Motivation characterizing the agent. These issues are important when the TOE
vulnerability is assessed by evaluators (AVA_VAN family [6]).

Figure 4. Generics expressing an illegal access attack. (A) Threat TDA.Access generic and its property;
(B) Properties of the subject SNH.HighPotIntruder; (C) Data asset DTO.SensorData and its property.

Example 2

The second example is very similar and concerns an attack against the sensor identifier, which
leads to spoofing. DTO.SensorID categorized as DF “stored” and DT “product identification data” is
also threatened by SNH.HighPotIntruder according to the TDA.ReplaceNode threat scenario. Please
note the relations in Figure 3 (marked with thick green lines) between classes representing generics.
Figure 5 shows properties of these generics.

The above mentioned threat generics were selected from the list of items predefined for sensors.
The EA-plugin allows to create threat generics semi-automatically, based on dialogue forms. The
developer is asked about different features of the threat, threatened asset and threat agent. On this
basis a complete scenario is made and, finally, the generic is placed on a diagram. This option will
not be discussed in this paper.

2.7.2. Security Objectives (SO)—Solving the Security Problem

Security objectives express the proposed security measures by means of semiformal
descriptors—enhanced generics. To build the SO specification, one can use ready-made generics
from the library or generics defined semi-automatically on the basis of threats, OSPs, assumptions
(only for the operational environment), subjects and assess their properties. This selection is based
on the CCMODE ontology (SKOS) implemented within EA-plugin.

Figure 4. Generics expressing an illegal access attack. (A) Threat TDA.Access generic and its property;
(B) Properties of the subject SNH.HighPotIntruder; (C) Data asset DTO.SensorData and its property.

Sensors 2016, 16, x 18 of 34

Figure 5. Generics expressing an attack against the sensor identifier. (A) Threat TDA.ReplaceNode
generic and its property; (B) Properties of the subject SNH.HighPotIntruder; (C) Data asset
DTO.SensorID and its property.

Each security objective generic has associated different properties related to its character
(means/ways to solve a security problem, e.g., access control) and properties inherited from the
countered threat, enforced OSP, upheld assumption, related assets (specified by DT, DF) and subjects
(subject_type). Using the set of properties, the SKOS-type ontology proposes a ranked list of security
objectives to be used to solve the given problem. Figure 6 shows the security objective selection
supported by the SKOS ontology implemented in EA-plugin. Please note some propositions, some
more preferable (score = 2), some less (score = 1). Figure 7 shows the SO_MethSensorST diagram
presenting how the security problem is solved by selecting right security objectives for the TOE and
its environment. Generally, the TOE objectives (marked “O”) counter threats and/or cover OSPs. The
TOE environment objectives (marked “OE”), which support the TOE objectives, counter threats
and/or cover OSPs and/or uphold assumptions [6].

Example 3

This example is a continuation of Example 1. The TDA.Access threat is countered by three TOE
objectives:

 OACC.Access. The sensor must control access of connected entities;
 OIDA.ControlID. Using the properly managed unique identifiers of sensors [Dparam<=DTO.SensorID].

Refinement: Calibration keyboards are provided with unique identifiers which can be checked;
 OADT.Audit. The sensor must audit attempts to undermine its security and should trace them to the

associated entities;

and supported by the TOE environment objective:

 OSMN.NetAdmin. Network administration and security policy procedures implementation.

Note: Sometimes the refinement is emphasized by the underlined word “Refinement:”.

Figure 5. Generics expressing an attack against the sensor identifier. (A) Threat TDA.ReplaceNode
generic and its property; (B) Properties of the subject SNH.HighPotIntruder; (C) Data asset DTO.SensorID
and its property.

Sensors 2016, 16, 759 19 of 34

2.7.2. Security Objectives (SO)—Solving the Security Problem

Security objectives express the proposed security measures by means of semiformal
descriptors—enhanced generics. To build the SO specification, one can use ready-made generics
from the library or generics defined semi-automatically on the basis of threats, OSPs, assumptions
(only for the operational environment), subjects and assess their properties. This selection is based on
the CCMODE ontology (SKOS) implemented within EA-plugin.

Each security objective generic has associated different properties related to its character
(means/ways to solve a security problem, e.g., access control) and properties inherited from the
countered threat, enforced OSP, upheld assumption, related assets (specified by DT, DF) and subjects
(subject_type). Using the set of properties, the SKOS-type ontology proposes a ranked list of security
objectives to be used to solve the given problem. Figure 6 shows the security objective selection
supported by the SKOS ontology implemented in EA-plugin. Please note some propositions, some
more preferable (score = 2), some less (score = 1). Figure 7 shows the SO_MethSensorST diagram
presenting how the security problem is solved by selecting right security objectives for the TOE and its
environment. Generally, the TOE objectives (marked “O”) counter threats and/or cover OSPs. The
TOE environment objectives (marked “OE”), which support the TOE objectives, counter threats and/or
cover OSPs and/or uphold assumptions [6].

Example 3

This example is a continuation of Example 1. The TDA.Access threat is countered by three
TOE objectives:

‚ OACC.Access. The sensor must control access of connected entities;
‚ OIDA.ControlID. Using the properly managed unique identifiers of sensors [Dparam<=DTO.SensorID].

Refinement: Calibration keyboards are provided with unique identifiers which can be checked;
‚ OADT.Audit. The sensor must audit attempts to undermine its security and should trace them to the

associated entities;

and supported by the TOE environment objective:

‚ OSMN.NetAdmin. Network administration and security policy procedures implementation.

Note: Sometimes the refinement is emphasized by the underlined word “Refinement:”.
Particular st_counters relations are marked by red dashed arrows. Each of the countering relations

should be justified. The justification is shown in the right bottom part of the window (Figure 7).

Example 4

The TDA.ReplaceNode threat (discussed in the Example 2) is countered in a similar way by
three TOE objectives: OIDA.ControlID, OADT.Audit, OAVB.DataFreshness, supported by the TOE
environment objective OSMN.NetAdmin. Particular st_counters relations are marked by green
dashed arrows.

Example 5

The PSMN.ATEX policy (OSP) is covered by the TOE environment objective OSMN.ATEX. The
relation st_cover (requiring justification as well) is marked by the purple dashed arrow. Please note
other OSPs and assumptions (marked “A”) covered by the TOE environment objectives.

Sensors 2016, 16, 759 20 of 34

Sensors 2016, 16, x 19 of 34

Figure 6. Security objectives selection based on the ontology-produced rank list.
Figure 6. Security objectives selection based on the ontology-produced rank list.

Sensors 2016, 16, 759 21 of 34

Sensors 2016, 16, x 20 of 34

Figure 7. General view of the MethSens security model presented in the CCMODE EA-plugin—a part of the security objectives diagram.

Figure 7. General view of the MethSens security model presented in the CCMODE EA-plugin—a part of the security objectives diagram.

Sensors 2016, 16, 759 22 of 34

2.7.3. Security Functional Requirements (SFR)—Semiformal Representation of the Security Objectives

Security objectives describe the solution of the security problem in an informal developer’s
language, with the use of enhanced generics. Generics are semiformal but they contain informal
descriptors of security measures, which may be subjective, because descriptors are created by particular
developers. To describe any security measure in a non-subjective, unified way, semiformal SFR
components are defined in the Common Criteria standard.

Each security objective should be translated (mapped) to one or more SFR components selected
from Part 2 of the Common Criteria standard [6].

Figure 8 presents the mapping process of security functional requirements to security objectives.
All SFRs are implemented in the CCMODE knowledge base in the form of a hierarchical tree:
classes-families-components, i.e., in the same way as they are placed in the Common Criteria SFRs
catalogue ([6]/Part 2). As it was mentioned earlier, the given security objective has many properties
associated, including means and ways of the security problem solution, e.g., access control, inherited
properties of a countered threat or an enforced OSP, even inherited properties of involved assets and
subjects. Based on these security objectives, security functional components are proposed, selected
from the hierarchical tree.

To the given security objective a right component is assigned with some dependent components
(if they exist and are required in the given circumstances). Please note that for the OACC.Access
objective the FDP_ACC.1 (Subset access control) component is selected. It has a dependent component
FDP_ACF.1 (Security attribute based access control) which requires its own dependent component to
be selected, i.e., FMT_MSA.3 (Static attribute initialization) [6]. This selection is strongly supported by
CCMODE Tools. The developer selects some dependencies for implementation and rejects others as
irrelevant in the given circumstances.

Example 6

Figure 9 shows the SFR-TSF_MethSensorST diagram presenting several security objectives
expressed by SFR components:

‚ OACC.Access expressed by: FDP_ACC.1 (FDP_ACF.1, FMT_MSA.3); explained above;
‚ OIDA.ControlID expressed by: FIA_UID.2, requiring user identification before any action; it has

no dependencies;
‚ OADT.Audit: expressed by: FAU_ARP.1 (Security alarm when security violation occurs); it has

a dependent component FAU_SAA.1 (Potential violation analysis) which, in turn, has another
dependent component FAU_GEN.1 (Audit data generation);

‚ OAVB.DataFreshness expressed by: FPT_ITI.1 (Inter-TSF detection of modification) which has
no dependencies.

When all security objectives have SFRs mapped and their dependencies are solved, the security
functional requirements specification is ready. At this stage the security model needed for the protection
profile is finalized. For the security target the next step is required. The SFRs are grouped and assigned
to the defined TOE security functions (TSFs) to be implemented in the IT product at the claimed EAL
level. This way the TOE summary specification (TSS) is worked out. It is shown on Figure 9 as well.
The particular TSFs are expressed by rectangles embracing their relevant SFRs.

Sensors 2016, 16, 759 23 of 34

Sensors 2016, 16, x 22 of 34

Figure 8. MethSens security model presented in the CCMODE EA-plugin—mapping security functional requirements to security objectives.

Figure 8. MethSens security model presented in the CCMODE EA-plugin—mapping security functional requirements to security objectives.

Sensors 2016, 16, 759 24 of 34

Sensors 2016, 16, x 24 of 34

Sensors 2016, 16, x; doi:10.3390/s16060759 www.mdpi.com/journal/sensors

Figure 9. General view of the MethSens security model presented in the CCMODE EA-plugin—security functional requirements grouped by TOE security functions.

Figure 9. General view of the MethSens security model presented in the CCMODE EA-plugin—security functional requirements grouped by TOE security functions.

Sensors 2016, 16, 759 25 of 34

Example 7

Figure 9 shows the SFR-TSF_MethSensorST diagram presenting the TOE security functions
meeting a particular SFRs group:

‚ TSF1_SensorAccCtrl meeting the requirements included in the SFRs: FDP_ACC.1, FDP_ACF.1
and FMT_MSA.3;

‚ TSF2_SensorIDctr meeting the requirements included in the SFR: FIA_UID.2;
‚ TSF3_AbnormalEventsDet meeting the requirements included in the SFRs: FAU_ARP.1, FAU_SAA.1

and FAU_GEN.1;
‚ TSF7_.DataIntegCtrl meeting the requirements included in the SFR: FPT_ITI.1.

The TSS preparation completes the security model elaboration needed for the security target.

2.8. MethSens Security Target Elaboration

The security model of the sensor can be injected into the right sections of the security target
evidence elaborated on the pattern basis. Figure 10 shows a part of the model representing security
objectives to be injected to the relevant section of the ST. Please note the structure of the pattern (and
the evidence) on the left.

Sensors 2016, 16, x 25 of 33

Figure 10. Security model transferred to the elaborated evidence presented in the CCMODE GenDoc
application.

Figure 11. Part of the security target automatically elaborated on the basis of the security model with
the use of the CCMODE GenDoc application.

Figure 10. Security model transferred to the elaborated evidence presented in the CCMODE
GenDoc application.

Figure 11 presents the security objectives rationale section of the ST. Please note that justifications
provided during the security model elaboration (see Figure 7) were automatically placed in the
ST document. The ST elaboration is an iterative process with the use of the EMT, EA and
GenDoc applications.

Sensors 2016, 16, 759 26 of 34

Sensors 2016, 16, x 25 of 33

Figure 10. Security model transferred to the elaborated evidence presented in the CCMODE GenDoc
application.

Figure 11. Part of the security target automatically elaborated on the basis of the security model with
the use of the CCMODE GenDoc application. Figure 11. Part of the security target automatically elaborated on the basis of the security model with
the use of the CCMODE GenDoc application.

During the evidence elaboration the developer can check how this evidence will be evaluated
in the security testing lab. This checking is called here self-evaluation, CCMODE Tools includes the
full implementation of the Common Evaluation Methodology for Information Technology Security
(CEM) [46].

According to the Common Criteria standard each SAR component includes three kinds
of elements:

‚ Developers’ action elements (marked “D”) expressing what the developers should provide
as evidence;

‚ Contents and presentation elements (marked “C”) showing what kind of requirements the
evidence should meet;

‚ Evaluators’ action elements (marked “E”) showing how the evaluator should verify the
provided evidence.

The evaluation application is presented in Figure 12. On the left side there is a tree with the
assessed work units implied by particular evaluators’ actions elements. Each of 61 work units should
have a verdict assigned with justification. Possible verdicts are: pass, fail, inconclusive. They are
shown on the statistics diagram. The assessed section of the security target is displayed in the central
bottom part. Above, the corresponding work unit (on the left) and the relevant SAR component (on
the right) are shown—precisely, the contents and presentation element. Please note that the evaluator
is equipped with complete information allowing to assign a verdict.

Sensors 2016, 16, 759 27 of 34

Sensors 2016, 16, x 26 of 33

Figure 12. Self-evaluation of the MethSens security target presented by the CCMODE GenDoc
application.

2.9. Other Evaluation Evidences for the MethSens Device

Other required evidences implied by the EAL are elaborated in the same way but this issue is
beyond the scope of the paper. These evidences cover the TOE development process and concern:

 TOE architecture, its functional specification, design, security policy, implementation (ADV
class);

 Life cycle definition, configuration management, product delivery, development process
security, used tools and their options (ALC class);

 Tests specification, test depth and coverage (ATE class);
 Product manuals and procedures (AGD class);

Vulnerability assessment of the TOE and its development site (AVA class).

3. Results and Discussion

The Common Criteria standard presents a renowned and matured security assurance
methodology used for different categories of IT products and systems. The most popular CC
certified products are: smart cards and devices related to them, network devices, multifunction
devices, operating systems, boundary devices, and digital signature devices [7]. The developers
representing these CC application domains are very experienced, and equipped with supporting
methods and tools. There are some specific IT products and systems which are problematic for their
developers, and the number of evaluated/certified solutions is very low. This is due to existing
barriers and generally low experience in the use of Common Criteria by IT product developers.
Simply, the developers find it difficult to transform the specific technical language of the IT product
domain to the specific language of Common Criteria which is used to elaborate the evaluation
evidences as the input in the certification process. The intelligent sensors and sensors systems
domain is an example of such IT products domain (a niche domain) and the use of the CC
methodology in it is very scarce (Section 1.2).

Sensor developers need some help, including the knowledge how to understand the CC
nomenclature and to use it as well as supporting tools and design patterns to overcome most of the

Figure 12. Self-evaluation of the MethSens security target presented by the CCMODE
GenDoc application.

The statistics show progress of the evaluation process. This application is designed for evaluation
labs, although developers can use it optionally.

2.9. Other Evaluation Evidences for the MethSens Device

Other required evidences implied by the EAL are elaborated in the same way but this issue is
beyond the scope of the paper. These evidences cover the TOE development process and concern:

‚ TOE architecture, its functional specification, design, security policy, implementation (ADV class);
‚ Life cycle definition, configuration management, product delivery, development process security,

used tools and their options (ALC class);
‚ Tests specification, test depth and coverage (ATE class);
‚ Product manuals and procedures (AGD class);

Vulnerability assessment of the TOE and its development site (AVA class).

3. Results and Discussion

The Common Criteria standard presents a renowned and matured security assurance
methodology used for different categories of IT products and systems. The most popular CC certified
products are: smart cards and devices related to them, network devices, multifunction devices,
operating systems, boundary devices, and digital signature devices [7]. The developers representing
these CC application domains are very experienced, and equipped with supporting methods and tools.
There are some specific IT products and systems which are problematic for their developers, and the
number of evaluated/certified solutions is very low. This is due to existing barriers and generally low
experience in the use of Common Criteria by IT product developers. Simply, the developers find it
difficult to transform the specific technical language of the IT product domain to the specific language

Sensors 2016, 16, 759 28 of 34

of Common Criteria which is used to elaborate the evaluation evidences as the input in the certification
process. The intelligent sensors and sensors systems domain is an example of such IT products domain
(a niche domain) and the use of the CC methodology in it is very scarce (Section 1.2).

Sensor developers need some help, including the knowledge how to understand the CC
nomenclature and to use it as well as supporting tools and design patterns to overcome most
of the existing difficulties. The CCMODE Tools suite [15] offers such support for typical IT
products or systems. This is a specialized, Common Criteria compliant, patterns- and knowledge
engineering-based, computer-aided engineering system. There is no straightforward answer to the
question whether this suite can be helpful in the sensor domain. To settle it, the validation experiment
was planned and performed. The aim of the validation experiment is to assess:

‚ If it is possible to adapt this suite for the specific sensors application domain in order to support
sensors developers;

‚ Whether the extended customized suite could be useful for intelligent sensors and
systems developers.

3.1. Validation Context

This assessment is performed through the validation experiment, discussed in Section 2. The
main experiment was preceded by a short presentation of the customized tool and the context of the
experiment. The CCMODE Tools suite was configured to enable the following:

‚ The management of a sensors-related project in the assumed life cycle (development,
manufacturing, operation & maintenance, end of life) but the validation was focused on the
development phase;

‚ The EAL2 for the sensors project;
‚ Security analyses and modelling (EA-plugin);
‚ Semi-automatic generation (GenDoc/MS Word) of evaluation evidences; the validation was

focused on the basic evidence, i.e., security target;
‚ Self-assessment of the evidences;
‚ The preparation of a knowledge base;
‚ The establishment of a repository of project artefacts (SVN).

The test manager (Testlink) and the bug tracking tool (Redmine) were not used in the experiment,
but generally there is no obstacle to use it in sensors projects. The validation experiment was based on
the MethSens sensor with well identified project data, based on the MEDIS sensor project described
in [11].

EAL2 was claimed for the MethSens device, as mentioned above. The validation experiment is
focused on the security target (ST) elaboration, as the most important evaluation evidence and the
basis for other TOE-related evidences. The security target is the same (the same ASE class components)
for any of the EAL2-EAL7 levels. From the perspective of the validation experiment, the claimed
EAL is irrelevant, because the EAL does not influence the TSFs shape, but the developed TSFs should
be implemented on the claimed EAL. The claimed EAL influences the TOE-related evidences—not
discussed, only mentioned in the paper. Generally, the EAL selection for the IT product is a much
more complicated issue. Different factors may influence this selection:

‚ Law enforcement—some products, especially for government-like applications, should have the
given EAL (an arbitrary decision);

‚ Market requirements (trade-off based on market-related factors).

When EAL is selected for an IT product which is to be placed on the market, the trade-off between
cost and assurance should be done. A higher EAL means higher rigour is applied (more assurance

Sensors 2016, 16, 759 29 of 34

components which include more rigour), and the higher rigour means a higher cost of development
and evaluation. In addition, the product range and complexity influence this cost. Customers may not
accept such a high price of the product.

On the other hand, the customers may refuse to acquire IT products for responsible applications
(high value of protected assets, high risk) with too low claimed assurance levels. The customers may
not accept such products because they do not meet their needs.

Conclusion 1

The range of the experiment encompassed all typical developers’ activities. The assumed
EAL2 is rather low, though according to the author’s subjective opinion, it is adequate (security
assurance vs. costs) for many sensors applications. Apart from the security target (ASE), it implies
10 evidence documents related to: the sensor architecture (ADV_ARC), decomposition (ADV_TDS),
interfaces (ADV_FSP), configuration management (ALC_CMC, ALC_CMS), delivery procedures
(ALC_DEL), preparative procedures (AGD_PRE), operational user guidance (AGD_OPE), functional
tests (ATE_FUN), test coverage (ATE_COV), which ought to be delivered by the developers. From
the research perspective the most difficult and interesting is the security target, others concern rather
routine and practical issues.

The object of the validation experiment, i.e., MethSens, is representative but not trivial. MethSens
comprises many diversified security issues: diversified architecture, assets, threats, policies, objectives,
requirements and functions. For this reason the validation can be considered comprehensive and
representative for the discussed domain of application.

3.2. Range of Development Suite Customization

Considering the evidences patterns, there is no need to perform any adaptation, because patterns
are implied by assurance components and do not depend on the category of the IT product or system.
The CCMODE offers transparent, domain-independent patterns.

A more complex situation emerges with specification means patterns. There are two groups
of them. The first group encompasses security functional requirements which are defined in the
CC standard and are directly implemented in the CCMODE knowledge base. No adaptation is
needed either.

The second, very diversified group of specification means, depends strongly on the IT product
category. There were no sensors-specific generics implemented in the CCMODE. There was a need
to define and include in the knowledge base the generics specific for intelligent sensors and sensors
systems. Such generics were identified in the author’s previous work [11]. During the validation these
generics were verified, sometimes modified (all changes were marked in violet in Figure 3, Figure 7)
and introduced into the CCMODE knowledge base. This way CCMODE Tools was prepared to be
used in a new domain of application.

Conclusion 2

The adaptation of CCMODE Tools was restricted to the implementation of enhanced generics
specific for sensors. The specialized domain library of generics was implemented.

3.3. Course of Validation Experiment

The paper does not present the elaboration of all EAL2 evidences but only the most important and
difficult elements of the security target. The developers usually have trouble with security analyses,
modelling, rationale, and with the right contents and coherency of evidences. The first issue is solved by
applying the EA-plugin, the second by evidence patterns and GenDoc, supported by other CCMODE
Tools components.

All IT security development process stages were exemplified by means of the EA-plugin. In
addition, it was shown how to specify particular issues using enhanced generics or CC components,

Sensors 2016, 16, 759 30 of 34

how to solve the security problem, how to express the problem solution by security functional
requirements, how to work out security functions, and how to justify particular development stages.

The developed security model was injected into the security target by the GenDoc application.
Each change within the model was also illustrated on line in the elaborated evidence. Each evidence
is implied by its pattern and the pattern is compliant with the corresponding security assurance
requirements. This way the developer, guided by software, is fully focused on the IT product and does
not preoccupy with the composing evidences the scratch. It was shown on the example related to the
security objectives justification.

Conclusion 3

The validation experiment encompasses all activities considered difficult or laborious by
developers. These activities were supported by the software tool which made these activities much
more easier. The data common for all evidences, e.g., different names, identifiers, are managed by
EMT. Project artefacts are versioned and stored by SVN. The analyses/modelling/justifications are
supported by the EA-plugin. The evidences are semi-automatically generated by GenDoc.

3.4. Self-Assessment—Useful Optional Step

The validation experiment pays attention to an optional activity—the developer is able to perform
the evaluation of his/her work in the similar way as it will be done later in the evaluation lab. It is
called here self-assessment and it usually encompasses issues which are difficult and require proper
interpretation. The developer has direct access to the relevant evaluation work units and can see how
the given issue will be assessed by evaluators according to CEM [46]. It was shown on some examples
related to the security objectives rationale.

Conclusion 4

The validation experiment encompasses an optional step related to the self-assessment of the
given issue of the elaborated evidence. This is a general, non-sensor specific functionality of CCMODE
Tools. The validation experiment stimulates the supplementation of CCMODE Tools with elements
allowing its application in the sensor domain. The IT security development and the TOE development
processes are fully supported by this suite.

4. Conclusions

The paper concerns security assurance in the context of intelligent sensors and sensor systems.
Security assurance is understood here according to the paradigm expressed by the Common Criteria
methodology. This methodology is mature, broadly used, but still improving, because some parties
consider it difficult, laborious, costly and generating huge documentation. The discussion seems to
be endless, but in fact, no other methodology is able to replace Common Criteria now, or even to
simplify it. Efforts to enhance it, to support it, to make it more friendly for developers seem to be still
purposeful. This paper follows this statement.

There are about 2089 CC-certified IT products and 173 registered protection profiles now [7] but
their distribution by product categories is irregular. Some application domains can be considered
niche domains. Sensors are one of them. The answer to the question “why?” may be complicated. The
causes may be: low market demand, no strong requirements implied by laws, difficulties in applying
the CC methodology in this specific domain of application, low security awareness, low CC-related
knowledge among the sensors developers, etc.

Additionally, the review of the research field (Section 1.2) shows that the Common Criteria
applications for sensors and sensors networks are scarce but they embrace very important cases, like:
healthcare systems, aircraft health monitoring systems, safety-critical assets distribution systems,
transport, including motion sensors of digital tachographs, and SCADA-related products.

Sensors 2016, 16, 759 31 of 34

This shows that the sensors systems development is an emerging CC domain of application. There
exist different barriers in such emerging domains. To overcome them, it is necessary to disseminate
knowledge about Common Criteria in the sensor developer community, provide the developers with
dedicated methods, design patterns and tools.

At the beginning of the research the author assumed that it is possible to design a Common Criteria
compliant security assurance suite dedicated to the development of intelligent sensors and sensors
systems. The author’s motivation was to help the sensors systems developers in the implementation
of the Common Criteria methodology.

The objectives of the research presented in the paper were:

‚ To adapt the general-purpose CCMODE methodology and its supporting tools to the needs of the
intelligent sensors and sensors networks domain;

‚ To disseminate CC-related knowledge in this domain.

4.1. Research Findings and Implications

To assess the feasibility of the above mentioned concept the validation experiment was performed.
It was assumed that:

‚ The development suite dedicated for sensors will be based on the general purpose, ready-made
platform—CCMODE Tools;

‚ The feasibility study will be based on the representative sensor MethSens/EAL2.

The validation experiment embraces three basic Common Criteria processes, though only some
essential issues were exemplified in the paper.

For the IT security development process, the most important and difficult activities were
performed to assess the concept feasibility:

‚ The security modelling and rationale—supported by the EA-plugin;
‚ The patterns- and tools-based semi-automatic generation of evidences (replacing the old

laborious, manual elaboration of evidences)—the MethSens security target generated by the
GenDoc application;

‚ The sensors-specific security specification work out—a set of enhanced generics was predefined
in the CCMODE knowledge base and some of them were used to specify the MethSens
security model.

The TOE development process embraces the elaboration of different evidences documents. They
were generated as empty documents on the basis of patterns of the EMT application according to EAL2
(Figure 2). The TOE development process evidences were not fully exemplified because they are less
complicated than the above discussed security target.

The TOE evaluation process is performed in accredited evaluation labs. CCMODE Tools includes
the CEM implementation which is able to perform similar evaluation, but understood as self-evaluation.
The developers can check optionally how certain evidences or their parts will be evaluated with the
use of CEM work units.

The conclusion is that CCMODE Tools can be adapted to the sensor domain of application mainly
by the extensions of the specification means library (sensor-specific enhanced generics). The adapted
suite can support sensor developers in all development activities. The knowledge acquired during the
validation experiments can be used by sensor developers in their projects.

4.2. Paper Contribution and Future Research

The paper contribution embraces the adapted patterns-based computer-aided methodology for
the sensors development. This methodology has an innovative character and goes beyond the sensors

Sensors 2016, 16, 759 32 of 34

domain. It concerns any IT product development, improves the product quality and security assurance.
It is achieved by:

‚ Better project management—thanks to the Common Criteria compliant, IT security development
framework equipped with the domain knowledge base, design patterns, defined development
processes, life cycle models, supporting tools, and communication facilities;

‚ Automation of IT product development process—complex and laborious activities are supported
by software tools; this way it is possible to achieve the project reusability and other advantages
similar to those gained in the CAE systems.

The CCMODE Tools suite was used for several kinds of IT products, like: data diodes [47],
different sensors, RFID devices. The CCMODE Tools suite is very useful in the development processes,
though it needs more validation in different application domains. The CCMODE Tools methodology
is still enhanced based on the feedback from running projects and validations.

The author is involved in research going beyond the Common Criteria methodology, especially
research on new security assurance paradigms, including the Trustless Computing initiative [48]. It is “a
global initiative for the creation, from existing open components, of the World’s most user trustworthy
general-purpose end-2-end computing service platform, lifecycle, open ecosystem and international
certification body, aggregating world class partners and advisors.” The author’s research objective is
to consider how to extend the CCMODE methodology by new security assurance paradigms.

Acknowledgments: The author thanks his Colleagues from the CCMODE project for reviewing this paper and
discussing the presented concept.

Conflicts of Interest: The author declares no conflict of interest. CCMODE Tools is owned by the Institute of
Innovative Technologies EMAG.

References

1. Yurish, S.Y. Sensors: Smart vs. Intelligent. Sens. Transducers J. 2010, 114, I–VI.
2. Braeken, A.; Porambage, P.; Gurtov, A.; Ylianttila, M. Secure and Efficient Reactive Video Surveillance for

Patient Monitoring. Sensors 2016, 16, 1–13. [CrossRef] [PubMed]
3. Martín-Fernández, F.; Caballero-Gil, P.; Caballero-Gil, C. Authentication Based on Non-Interactive

Zero-Knowledge Proofs for the Internet of Things. Sensors 2016, 16, 1–20. [CrossRef] [PubMed]
4. Sánchez Alcón, J.A.; López, L.; Martínez, J.-F.; Rubio Cifuentes, G. Trust and Privacy Solutions Based on

Holistic Service Requirements. Sensors 2016, 16, 1–38. [CrossRef] [PubMed]
5. ISO/IEC. Information Technology—Security Techniques—Security Assurance Framework; ISO/IEC TR 15443:2012;

International Organization for Standardization and International Electrotechnical Commission: Geneva,
Switzerland, 2012.

6. Common Criteria for IT Security Evaluation, Version 3.1 rev. 4, 2012; Common Criteria Member
Organizations, Part 1–3. Available online: http://www.commoncriteriaportal.org/ (accessed on
12 February 2016).

7. Common Criteria Portal Home Page. Available online: http://www.commoncriteriaportal.org/ (accessed
on 12 February 2016).

8. Hermann, D.S. Using the Common Criteria for IT Security Evaluation; CRC Press: Boca Raton, FL, USA, 2003.
9. Higaki, W.H. Successful Common Criteria Evaluation. A Practical Guide for Vendors; CreateSpace Independent

Publishing Platform: Lexington, KY, USA, 2011.
10. Bialas, A. Intelligent Sensors Security. Sensors 2010, 10, 822–859. [CrossRef] [PubMed]
11. Bialas, A. Common Criteria Related Security Design Patterns—Validation on the Intelligent Sensor Example

Designed for Mine Environment. Sensors 2010, 10, 4456–4496. [CrossRef] [PubMed]
12. Bialas, A. Common Criteria Related Security Design Patterns for Intelligent Sensors—Knowledge

Engineering-Based Implementation. Sensors 2011, 11, 8085–8114. [CrossRef] [PubMed]
13. Noy, N.F.; McGuiness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology; Knowledge

Systems Laboratory, Stanford University: Stanford, CA, USA; March; 2001.

http://dx.doi.org/10.3390/s16010032
http://www.ncbi.nlm.nih.gov/pubmed/26729130
http://dx.doi.org/10.3390/s16010075
http://www.ncbi.nlm.nih.gov/pubmed/26751454
http://dx.doi.org/10.3390/s16010016
http://www.ncbi.nlm.nih.gov/pubmed/26712752
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://dx.doi.org/10.3390/s100100822
http://www.ncbi.nlm.nih.gov/pubmed/22315571
http://dx.doi.org/10.3390/s100504456
http://www.ncbi.nlm.nih.gov/pubmed/22399888
http://dx.doi.org/10.3390/s110808085
http://www.ncbi.nlm.nih.gov/pubmed/22164064

Sensors 2016, 16, 759 33 of 34

14. Stanford University. Protégé Ontology Editor and Knowledge Acquisition System. Available online:
http://protege.stanford.edu/ (accessed on 12 February 2016).

15. CCMODE—Common Criteria Compliant, Modular, Open IT Security Development Environment Project.
Available online: http://commoncriteria.pl/index.php/en/ (accessed on 14 February 2016).

16. Malavenda, C.S.; Menichelli, F.; Olivieri, M. A Regulation-Based Security Evaluation Method for Data Link
in Wireless Sensor Network. J. Comput. Netw. Commun. 2014, 2014, 591920. [CrossRef]

17. Singh, K.; Muthukkumarasamy, V. Addressing Security, Privacy and Efficiency Issues in Health Care Systems.
In Healthcare Sensor Networks: Challenges Toward Practical Implementation; Lai, D.T.H., Marimuthu, P., Begg, R.,
Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 111–138.

18. Sampigethaya, K.; Poovendran, R.; Bushnell, L. Secure Operation, Control, and Maintenance of Future
E-Enabled Airplanes. IEEE Proc. 2008, 96, 1992–2007. [CrossRef]

19. Sampigethaya, K.; Li, M.; Poovendran, R.; Robinson, R.; Bushnell, L.; Lintelman, S. Secure Wireless Collection
and Distribution of Commercial Airplane Health Data. In Proceedings of the 26th Digital Avionics Systems
Conference, Dallas, TX, USA, 21–25 October 2007.

20. Robinson, R.; Li, M.; Lintelman, S.; Sampigethaya, K.; Poovendran, R.; von Oheimb, D.; Bußer, J.W.; Cuellar, J.
Electronic Distribution of Airplane Software and the Impact of Information Security on Airplane Safety. In
Proceedings of the 26th International Conference on Computer Safety, Reliability, and Security, Nuremberg,
Germany, 18–21 September 2007; pp. 28–39.

21. Lintelman, S.; Sampigethaya, K.; Li, M.; Poovendran, R.; Robinson, R. High Assurance Aerospace CPS &
Implications for the Automotive Industry. Available online: https://www.ee.washington.edu/research/nsl/
papers/HCSS-08.pdf (accessed on 28 March 2016).

22. The Council of the European Union. Commission Regulation (EC) No.1360/2002 on Recording Equipment
in Road Transport. Annex 1B Requirements for Construction, Testing, Installation and Inspection. Off. J. Eur.
Commun. 2002, L207, 204–252.

23. Furgel, I.; Lemke, K. A Review of the Digital Tachograph System. In Embedded Security in Cars; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 69–94.

24. Actia. Security Target IS2000 Smartach SRES, P206412; Actia: Toulouse, France, 2005.
25. Bialas, A. Security-Related Design Patterns for Intelligent Sensors Requiring Measurable Assurance.

Electr. Rev. (Prz. Elektrotech.) 2009, 85, 92–99.
26. Bialas, A. Ontological Approach to the Motion Sensor Security Development. Electr. Rev. (Prz. Elektrotech.)

2009, 85, 36–44.
27. Federation International de l’Automobile. Protection against Mileage Fraud by Common Criteria. In

Proceedings of the 108th Session of the Working Party on General Safety Provisions (GRSG), United Nations
Economic Commission for Europe (UNECE), Geneva, Switzerland, 4–8 May 2015.

28. Veryha, Y. SCADA Systems for Virtual Utilities. Electr. Today 2005, 17, 24–30.
29. Falco, J.; Stouffer, K.; Wavering, A.; Proctor, F. IT Security for Industrial Control Systems, National Institute

of Standards and Technology (NIST) in Coordination with the Process Control Security Requirements Forum
(PCSRF), White Paper. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.
9422&rep=rep1&type=pdf (accessed on 19 February 2016).

30. National Institute of Standards and Technology (NIST) in Coordination with the Process Control
Security Requirements Forum (PCSRF). System Protection Profile—Industrial Control Systems. NISTIR
7167. NIST, October 2004. Available online: https://scadahacker.com/library/Documents/Standards/
NIST%20-%20System%20Protection%20Profile%20Industrial%20Control%20Systems.pdf (accessed on
19 February 2016).

31. Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F.; Sommerlad, P. Security Patterns:
Integrating Security and Systems Engineering; John Wiley and Sons: Chichester, UK, 2006.

32. Yoshioka, N.; Washizaki, H.; Maruyama, K. A survey on security patterns. Prog. Inf. 2008, 5, 35–47. [CrossRef]
33. Beckers, K.; Heisel, M.; Hatebur, D. Supporting Common Criteria Security Analysis with Problem Frames. In

Pattern and Security Requirements; Springer International Publishing: Cham, Switzerland, 2015; pp. 195–228.
34. ISO/IEC. Information Technology—Security Techniques—Guide for the Production of Protection Profiles and

Security Targets; ISO/IEC TR 15446:2009; International Organization for Standardization and International
Electrotechnical Commission: Geneva, Switzerland, 2009.

http://protege.stanford.edu/
http://commoncriteria.pl/index.php/en/
http://dx.doi.org/10.1155/2014/591920
http://dx.doi.org/10.1109/JPROC.2008.2006123
https://www.ee.washington.edu/research/nsl/papers/HCSS-08.pdf
https://www.ee.washington.edu/research/nsl/papers/HCSS-08.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.9422&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.9422&rep=rep1&type=pdf
https://scadahacker.com/library/Documents/Standards/NIST%20-%20System%20Protection%20Profile%20Industrial%20Control%20Systems.pdf
https://scadahacker.com/library/Documents/Standards/NIST%20-%20System%20Protection%20Profile%20Industrial%20Control%20Systems.pdf
http://dx.doi.org/10.2201/NiiPi.2008.5.5

Sensors 2016, 16, 759 34 of 34

35. Bundesamt für Sicherheit in der Informationstechnik. Guidelines for Developer Documentation According to
Common Criteria, Version 3.1; Bundesamt für Sicherheit in der Informationstechnik: Bonn, Germany, 2007.

36. CC Toolbox. Available online: http://niatec.info/ViewPage.aspx?id=44 (accessed on 21 February 2016).
37. Horie, D.; Yajima, K.; Azimah, N.; Goto, Y.; Cheng, J. GEST: A Generator of ISO/IEC 15408 Security Target

Templates. In Computer and Information Science 2009; Lee, G., Hu, H., Eds.; Springer-Verlag: Berlin, Germany,
2009; pp. 149–158.

38. TL SET. Available online: http://trusted-labs.com/security-consulting/tools-training/tl-set/ (accessed on
21 February 2016).

39. Bialas, A. Semiformal Common Criteria Compliant IT Security Development Framework. Available online:
http://studiainformatica.polsl.pl/index.php/SI (accessed on 23 February 2016).

40. D2RQ Platform, Freie Universität Berlin, Germany. Available online: http://d2rq.org/ (accessed on
6 March 2016).

41. SVN—Subversion. Available online: https://subversion.apache.org/ (accessed on 6 March 2016).
42. Redmine—Open Source Project Management Software. Available online: http://www.redmine.org/

(accessed on 6 March 2016).
43. Testlink—Web-based test management system. Available online: https://sourceforge.net/projects/testlink/

(accessed on 6 March 2016).
44. Site Certification. Supporting Document Guidance, version 1.0 rev. 1, 2007, CCDB-2007-11-001; Common

Criteria Member Organizations, Bundesamt Für Sicherheit in der Informationstechnik (Tech. Editor).
Available online: http://www.commoncriteriaportal.org/cc/#supporting (accessed on 1 April 2016).

45. SKOS—Simple Knowledge Organization System. Available online: https://www.w3.org/2004/02/skos/
intro (accessed on 6 March 2016).

46. Common Methodology for Information Technology Security Evaluation (CEM), version 3.1 rev. 4, 2012.
Common Criteria member organizations. Available online: http://www.commoncriteriaportal.org/
(accessed on 20 March 2016).

47. Rogowski, D. Software Support for Common Criteria Security Development Process on the Example of
a Data Diode. In Advances in Intelligent Systems and Computing; Zamojski, W., Mazurkiewicz, J., Sugier, J.,
Walkowiak, T., Kacprzyk, J., Eds.; Springer-Verlag: Cham, Switzerland; Heidelberg, Germany; New York,
NY, USA; Dordrecht, The Netherlands; London UK, 2014; pp. 363–372.

48. Trustless Initiative. Available online: http://www.openmediacluster.com/user-verified-social-telematics/
(accessed on 28 March 2016).

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://niatec.info/ViewPage.aspx?id=44
http://trusted-labs.com/security-consulting/tools-training/tl-set/
http://studiainformatica.polsl.pl/index.php/SI
http://d2rq.org/
https://subversion.apache.org/
http://www.redmine.org/
https://sourceforge.net/projects/testlink/
http://www.commoncriteriaportal.org/cc/#supporting
https://www.w3.org/2004/02/skos/intro
https://www.w3.org/2004/02/skos/intro
http://www.commoncriteriaportal.org/
http://www.openmediacluster.com/user-verified-social-telematics/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Basic Common Criteria Methodology Terms Used in the Article
	Current State of the Research Field
	Research Motivation and Directions

	Experimental Section
	General Features of CCMODE Tools
	Evaluation Evidences Patterns Implemented in CCMODE Tools
	Specification Means Patterns Implemented in CCMODE Tools
	Adaptation of CCMODE Tools to Sensors and Sensors Systems Domain of Applications
	Range of the Validation Experiment
	CCMODE Tools Configuration for the MethSens Project
	Security Model of the MethSens Device
	Security Problem Definition (SPD)—Threats, Organizational Security Policies and Assumptions
	Security Objectives (SO)—Solving the Security Problem
	Security Functional Requirements (SFR)—Semiformal Representation of the Security Objectives

	MethSens Security Target Elaboration
	Other Evaluation Evidences for the MethSens Device

	Results and Discussion
	Validation Context
	Range of Development Suite Customization
	Course of Validation Experiment
	Self-Assessment—Useful Optional Step

	Conclusions
	Research Findings and Implications
	Paper Contribution and Future Research

