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Abstract: Previous studies have explored the role of the microbiome in attention-deficit/hyperactivity
disorder (ADHD). However, whether the microbiome is correlated with emotional–behavioral disturbances,
the most common comorbid symptom of ADHD, remains unclear. We established a cross-sectional study
in which 6- to 18-year-old children with ADHD who were receiving no medication and a healthy control
group of children without ADHD were recruited to analyze their microbiome composition. Microbiota of
fecal samples were collected and analyzed using a 16s rRNA gene sequencing approach. In comparison
with the healthy control group, the gut microbiota in children with ADHD exhibited significantly lower beta
diversity. The abundance of the phylum Proteobacteria and the genera Agathobacter, Phascolarctobacterium,
Prevotella_2, Acidaminococcus, Roseburia, and Ruminococcus gnavus group was increased in the ADHD
group compared with the healthy group. Linear discriminant effect size (LEfSe) analysis was used to
highlight specific bacteria phylotypes that were differentially altered between the ADHD and control
groups. A regression analysis was performed to investigate the association between microbiota and
emotional–behavioral symptoms in children with ADHD. A significant association was noted between
withdrawal and depression symptoms and Agathobacter (p = 0.044), and between rule-breaking behavior
and the Ruminococcus gnavus group (p = 0.046) after adjusting for sex, age, and the ADHD core symptoms
score. This study advances the knowledge of how gut microbiota composition may contribute to emotional–
behavioral symptoms in children with ADHD. The detailed mechanisms underlying the role of the gut
microbiota in ADHD pathophysiology still require further investigation.

Keywords: attention-deficit/hyperactivity disorder; gut microbiota; emotion; behavior

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevel-
opmental disorder among children and adolescents, with an estimated prevalence rate
of approximately 3% to 10% globally [1]. The disorder is characterized by inattention,
hyperactivity, difficulties in impulse control, and impaired academic achievement, social
function, and emotional management [2,3]. In addition to these core symptoms, emo-
tional dysregulation and poor behavior control are also common symptoms in ADHD.
Such emotional–behavioral disturbances, although not reaching the diagnostic criteria
of psychiatric disorders, still strongly affect patients with the disorder [4]. Comorbid
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emotional–behavioral problems in ADHD have been correlated with poor social adjust-
ment, less frequent marriage, unemployment, poor peer relations, and poor schooling
performance [5].

ADHD is a multiple pathogenetic disorder influenced by several genes and environ-
mental factors [6,7]. In addition, recent investigations on the linkage between the gut
microbiota and brain function have suggested that the gut microbiota may play a role in the
etiology of ADHD [8]. The bidirectional communication between the gut and the brain, also
known as the “gut–brain axis”, has been proposed to be involved in some neuropsychiatric
disorders, including depression, anxiety, and schizophrenia [9–11]. Furthermore, the gut
microbiota has also been reported to affect host development and physiology, which is
linked to autism and ADHD [12,13]. The evidence indicates that the gut microbiota may
release neuromodulators, including dopamine and serotonin, which affect emotional regu-
lation [14,15]. However, how the gut microbiota affects emotional–behavioral symptoms in
patients with ADHD still requires clarification.

Only a few studies have investigated the gut microbial profiles of patients with
ADHD, with the results being inconsistent. Some research has compared patients with
ADHD and healthy controls but without demonstrating significant differences in alpha
and beta diversity between the two cohorts [16–18]. However, one study that analyzed the
microbial composition of a German population of adolescents with ADHD and nonrelated
controls reported the conflicting result. Alpha and beta diversity were both significantly
different between the two cohorts, and alpha diversity was negatively correlated with
the level of hyperactivity [19]. Another study in Taiwan revealed no differences in beta
diversity between children with ADHD and healthy controls. However, ADHD children
had significantly higher values of Shannon and Chao 1 indices, and the Simpson index was
significantly lower compared with controls [2]. Therefore, it is difficult to draw a conclusion
from these studies due to the heterogenous composition of the study populations.

Studies have examined the correlation between the gut microbiota and clinical symp-
toms among patients with ADHD [2,17,19,20]. However, in addition to the core symptoms
of ADHD, the association between the gut microbiota and emotional–behavioral problems
of patients with ADHD also require an investigation. High comorbid mood and behavior
disorder has been reported but the role of the gut microbiota in emotional–behavioral
symptoms among patients with ADHD has not been explored [21]. We thus performed
a study to determine whether an imbalanced gut microbiota would be correlated with
the emotional–behavioral symptoms in patients with ADHD. We compared the gut micro-
biota composition of healthy children with that of patients with ADHD and examined the
correlation between the gut microbiota composition and emotional–behavioral symptoms.

2. Materials and Methods
2.1. Participants

All participants were recruited at Chiayi Chang Gung Memorial Hospital. The partici-
pants were aged 6-to-18 years old, and participants and their parents agreed to provide
written informed consent. Patients with ADHD were diagnosed according to the DSM-5
criteria by a senior psychiatrist [22]. All participants were assessed using the Swanson,
Nolan and Pelham Parent Rating Scale. The exclusion criteria included taking probiotics
in the last 2 weeks and having gastrointestinal disease or other developmental or psychi-
atric disorders (except oppositional defiant disorder and conduct disorder). To avoid the
effect of medication, participants who received ADHD medication were also ruled out.
General patient information, including sex, age, body mass index (BMI), and a history
of preterm birth or rhinitis, was collected in this study. The Institutional Review Board
(IRB) at Chang Gung Memorial Hospital in Taiwan approved our research protocol (IRB
number: 201800402A3).
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2.2. Sample Collection and DNA Extraction

To guarantee the reliability of the data, quality control was performed at each step of
study process (ie, DNA sampling, PCR testing, library preparation and sequencing). Total
genomic DNA from samples was extracted using the column-based method (eg, QIAamp
PowerFecal DNA Kit, Qiagen, Hilden, Germany). DNA concentration was determined and
adjusted to 5 ng/µL for the sequencing process.

2.3. Sequencing

For the 16S rRNA gene sequencing, the V3-V4 region was amplified by a specific primer
set (314F: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG,
805R: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC)
according to the 16S Metagenomic Sequencing Library Preparation procedure (Illumina, San
Diego, CA, USA). In brief, 5 ng of gDNA was used for the PCR reaction, which was conducted
using KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland) under the following PCR
conditions: 95 ◦C for 3 min; 25 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s; 72 ◦C
for 5 min; and hold at 4 ◦C. The PCR products were monitored on 1.5% agarose gel. Samples
with a bright main strip at 550 bp were chosen and purified by using AMPure XP beads for the
following library preparation.

The sequencing library was prepared according to the 16S Metagenomic Sequencing
Library Preparation procedure (Illumina). In brief, a secondary PCR was performed using
the 16S rRNA V3-V4 region PCR amplicon and Nextera DNA Indexes Kit with dual indices
and Illumina sequencing adapters (Illumina). The indexed PCR product quality was
assessed using the Qubit dsDNA High Sensitivity Quantification Assay (Thermo Scientific,
Waltham, MA, USA) and Qubit Fluorometric 2.0. An equal amount of the indexed PCR
product was mixed to generate the sequencing library. Lastly, the library was sequenced on
an Illumina MiSeq platform, and paired 300-bp reads were generated.

2.4. Data Processing and Analysis

Amplicon sequencing was performed by using 300-bp paired-end raw reads, and
the entire paired-end reads were assembled using FLASH v1.2.11 [23]. Demultiplexing
was performed using barcode identification. As part of quality control, low-quality reads
(Q < 20) were discarded in the QIIME v1.9.1 pipeline [24]. If 3 consecutive bases were
Q < 20, the read was truncated and the resulting read remained in the data set only if it was
at least 75% of the original length, which was determined using the split_libraries_fastq.py
script in QIIME. Sequences were chimera-checked using UCHIME [25] to obtain the ef-
fective tags and were filtered from the data set before operational taxonomic unit (OTU)
clustering at 97% sequence identity by using the UPARSE function in the pipeline. For
each representative sequence, the RDP classifier (v2.2) [26] algorithm was employed to
annotate the taxonomy classification on the basis of the information retrieved from the Silva
Database v132: 2017.12 [27]/GreenGenes vgg_13_8 [28,29]/NCBI/eHOMD v15.1 [30,31];
classification was performed, and an 80% minimum confidence threshold was necessary
to make an assignment. Sequences with a one-time occurrence (singletons) or that were
present in only one sample were filtered out. To analyze the sequence similarities among
different OTUs, a multiple sequence alignment was conducted using the PyNAST software
(v1.2) [32,33]; sequences were compared against the core-set dataset in the Silva Database
v132; 2017.12/GreenGenes vgg_13_8/NCBI/eHOMD v15.1. A phylogenetic tree was
constructed with a set of sequences representative of the OTUs by using FastTree [34,35].

2.5. Measurements

The severity of ADHD symptoms, including inattention, hyperactivity, and impul-
sivity, was measured and rated by parents with the SNAP-IV parent form [22,36]. The
emotional–behavioral symptoms were also measure by parents using the Child Behavior
Checklist (CBCL). The CBCL is a practical instrument used by parents to evaluate the emo-
tional and behavioral symptoms of children between 4 and 16 years old. The CBCL contains
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8 narrowband syndromes (i.e., withdrawn, anxious/depressed, somatic complaints, social
problems, thought problems, attention problems, aggressive behavior, and delinquency)
and 2 broadband syndromes (i.e., internalizing problems and externalizing problems). A
T-score of 50 in each subscale indicates average functioning in reference to other children
of the same age and gender. The Chinese language version of the CBCL possesses high
test-retest reliability and validity [37,38].

2.6. Statistical and Bioinformatic Analysis

Microbiome 16S sequencing data were analyzed using a combination of the software
programs mothur and R v3.2.5 [39]. To compare the microbial differences between groups,
alpha diversity and beta diversity were analyzed. Alpha diversity, which represents the
complexity of composition within members of a group, was calculated using the metrics of
Chao 1 and ACE (community richness) and the Shannon and Simpson indices (the relative
abundance and evenness accounting for diversity). Beta diversity, which represents the
between-subject similarity of a microbial composition and enables the identification of
differences between samples within a group, was estimated using UniFrac (Unique Frac-
tion) [40,41]. We used an unweighted UniFrac distance that considered only information on
the presence and absence of a species and counted the fraction of branch length unique to ei-
ther community and a weighted UniFrac distance that used species abundance information
and weighted the branch length with the difference in abundance. To determine whether
the UniFrac distances were on average significantly different for pairs of samples, a t test
was performed on the UniFrac distance matrix. To further increase the group distinction,
supervised partial-least-squares discriminant analysis (PLS-DA) was used to evaluate and
visualize variance between the groups on the basis of gut microbiota composition (OTUs).
PLS-DA, which is based on a least-squares regression model, indicated structural differ-
ences in the gut bacterial community between the groups. These differences were assessed
by calculating UniFrac distances, a phylogenetic-based distance metric for measuring the
difference between two collections of sequences.

The composition analysis was calculated using QIIME V1.9.1. We used a linear dis-
criminant analysis effect size (LEfSe) for statistical analysis and visualizing the results [42].
LEfSe takes into account both differences in abundance and frequency and was used to
identify significantly imbalanced OTUs between the ADHD and healthy groups.

Clinical data were analyzed using the statistical software package SPSS, version 20
(SPSS, Chicago, IL, USA). Data were presented as mean ± SD, median (interquartile
range), or number (percentage), as appropriate. Basic characteristics of the children with
ADHD and the healthy controls were compared using chi-square tests for categorical
variables, independent Student’s t tests for normally distributed continuous variables, and
Mann–Whitney U tests for skewed continuous variables. Pearson’s correlation analysis
was performed to assess the taxonomic association between gut microbiota and clinical
symptoms. Multiple linear regression was performed to analyze the relationship between
the relative abundance of bacteria and the CBCL rating score after controlling for sex, age,
and SNAP-IVscore.

3. Results
3.1. Demographic Data

A total 371 participants were recruited, and 270 participants were excluded due to taking
probiotics, having gastrointestinal disease, developmental or psychiatric disorders. There were
79 children with ADHD enrolled and 25 children ADHD who received medication among
them were excluded. Finally, a total of 54 children with ADHD (boys = 44, girls = 10) without
drug treatment and 22 healthy controls (boys = 13, girls = 9) were enrolled (Figure 1). The
proportion of male was significant higher in ADHD cohort than that of the healthy control
group (p = 0.042). The mean age of the ADHD cohort (mean = 8.39 ± 1.75) was younger than
that of the healthy control group (mean = 9.73 ± 2.23). No significant differences were apparent
between the groups in terms of BMI, or a history of preterm birth or allergic rhinitis. We
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compared the core ADHD symptoms through SNAP-IV ratings assigned by parents. Scores for
inattention, hyperactivity/impulsivity, ADHD total, opposition/defiant, and CBCL were higher
in children with ADHD compared with the healthy controls. The characteristics of the children
with ADHD and those of the healthy controls are summarized in Table 1.
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Table 1. Baseline characteristics of ADHD children with treatment-naïve and health controls.

ADHD Children with
Treatment-Naïve

(N = 54)

Healthy Controls
(N = 22) p-Value Effect Size a

Sex, n (%) 0.042 * 3.046
Male 44 (81.5%) 13 (59.1%)
Female 10 (18.5%) 9 (40.9%)

Age (mean ± SD year) 8.39 (1.75) 9.73 (2.23) 0.007 * 0.669
BMI (mean ± SD) 18.32 (3.91) 19.87 (3.72) 0.112 0.406
Preterm birth, n (%) 5 (9.3%) 2 (9.1%) 0.675 1.020
Allergic rhinitis, n (%) 19 (35.2%) 7 (31.8%) 0.499 1.163
SNAP-IV

Inattention (SD) 15.15 (5.7) 4.5 (4.53) <0.001 * 2.069
Hyperactivity/Impulsivity (SD) 11.65 (6.37) 3.41 (4.67) <0.001 * 1.475
Opposition/defiance (SD) 9.83 (6.26) 5.64 (5.28) 0.007 * 0.724
Total Score (SD) 26.8 (10.58) 7.91 (8.19) <0.001 * 1.997

CBCL syndromes, median (SD)
Anxious/Depressed 59.15 (8.72) 54.91 (7.09) 0.047 * 0.534
Withdrawn/Depressed 60.41 (9.26) 55.82 (5.35) 0.033 * 0.607
Somatic Complaints 56.7 (5.79) 53.95 (5.75) 0.064 0.477
Social Problems 63.72 (8.33) 55.5 (8.76) <0.001 * 0.962
Thought Problems 59.52 (7.91) 53.45 (5.35) 0.002 * 0.899
Attention Problems 68.93 (9.8) 55.45 (6.06) <0.001 * 1.654
Rule-Breaking Behavior 62.2 (7.94) 53.86 (5.33) <0.001 * 1.233
Aggressive Behavior 62.59 (8.56) 53.91 (5.42) <0.001 * 1.212
Internalising 58.48 (10.54) 51.36 (10.09) 0.009 * 0.690
Externalising 62.41 (9.36) 49.77 (9.05) <0.001 * 1.373
Total Score 64.22 (8.63) 50.09 (11.21) <0.001 * 1.413

* p < 0.05; a Effect size was analyzed using Cohen’s d for continuous variables and odds ratio for categorical variables.
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3.2. Alpha Diversity and Beta Diversity

Microbial diversity was assessed either within a community (alpha diversity) or
between the collection of samples (beta diversity). Alpha diversity indices, including the
Simpson index, the Shannon diversity index, the ACE metric (Abundance-based Coverage
Estimator), and Chao 1, were calculated using Kruskal-Wallis LSD post-hoc tests. No
significant difference was evident between the children with and without ADHD in alpha
diversity. Subsequently, we characterized beta diversity using UniFrac and PLS-DA and
determined that the gut microbiota communities of the children with ADHD and the
healthy controls were significantly different (unweighted UniFrac, p = 0.00; weighted
UniFrac, p = 0.00; Figures 2 and 3). Children without ADHD had larger variation in their
gut microbiota composition than the ADHD children did.
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Figure 2. Beta diversity using unweighted and weighted uniFrac. Comparison of beta diversity
measurements in ADHD children with treatment-naïve and healthy controls. Beta diversity, measured
by unweighted (A) and weighted (B) unique fraction (UniFrac) is plotted for ADHD children with
treatment-naïve (orange) and healthy controls (blue). The line inside the box represents the median,
while the whiskers represent the lowest and highest values within the 1.5 interquartile range. Outliers
as well as individual samples are shown as dots. The results indicated that there was significant
difference in the gut microbiota communities between ADHD children with treatment-naïve and
healthy controls.
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3.3. LEfSe Analysis

We used LEfSe analysis to identify the specific bacteria phylotypes that were differ-
entially altered between the ADHD and control groups (Figure 4). Significant differences
were evident in the microbial community compositions of the two groups (the logarithmic
LDA score threshold for discriminative features was set to 3.0). At the genus level, the rela-
tive abundance of Alistipes and the Eubacterium eligens group in the healthy group was
significantly higher than in the ADHD group. At the family level, the relative abundance
of Rikenellaceae in the healthy group was significantly higher than in the ADHD group. At
the genus level, Acidaminococcaceae, Agathobacter, Phascolarctobacterium, Prevotella 2,
Parasutterella, Acidaminococcus, Roseburia, and the Ruminococcus gnavus group were
more abundant in the ADHD group than in the healthy group. Class Gammaproteobacteria,
order Betaproteobacteriales, family Burkholderiaceae, and genus Parasutterella all belong
to the phylum Proteobacteria (Figure 4).
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Figure 4. Linear discriminant effect size (LEfSe) analysis. Comparison of microbiota relative abun-
dance at the genus level between ADHD children with treatment-naïve and healthy controls using
LEfSe cladograms (A) and histogram of linear discriminant analysis (LDA, B). The bacterial difference
was identified by Kruskal-Wallis test. Nominal significant threshold: p < 0.05.
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3.4. Association between Clinical Symptoms and Relative Abundance of Bacteria

Table 2 shows the correlation between the relative abundance of bacteria and ADHD
symptoms among participants with ADHD. No significant relationship was identified
between SNAP-IV score and each bacteria taxon.

Table 2. The correlation between relative abundance of microbiota and clinical symptoms of attention-
deficit/hyperactivity disorder (ADHD) according to SNAP-IV.

Genera
Inattention Hyperactivity/Impulsivity Total Score

r p r p r p

Proteobacteria 0.018 0.899 0.012 0.932 0.041 0.768
Gammaproteobacteria −0.065 0.641 −0.030 0.829 −0.022 0.874
Betaproteobacteriales 0.078 0.575 −0.082 0.558 0.007 0.959
Burkholderiaceae 0.078 0.575 −0.082 0.558 0.007 0.959
Acidaminococcaceae −0.107 0.443 −0.125 0.368 −0.120 0.389
Agathobacter 0.236 0.086 0.176 0.204 0.236 0.086
Phascolarctobacterium −0.070 0.617 −0.109 0.433 −0.097 0.485
Prevotella_2 0.134 0.336 −0.071 0.612 0.021 0.881
Parasutterella 0.108 0.437 −0.042 0.762 0.037 0.793
Acidaminococcus 0.116 0.402 0.082 0.558 0.124 0.372
Roseburia 0.024 0.864 0.134 0.333 0.090 0.518
Ruminococcus_gnavus_group −0.054 0.700 0.070 0.615 0.016 0.906
Bacteroides_plebeius_DSM_17135 0.157 0.256 0.039 0.779 0.094 0.498
Rikenellaceae −0.074 0.743 −0.022 0.921 −0.032 0.888
Alistipes −0.074 0.743 −0.022 0.921 −0.032 0.888
Eubacterium_eligens_group 0.289 0.191 −0.057 0.801 0.124 0.582

Table 3 presents the correlations between the relative abundance of bacteria and the
CBCL scores of participants with ADHD. Withdrawal and depression symptoms were asso-
ciated with Agathobacter (p = 0.02) and Acidaminococcus (p = 0.035). Somatic complaints
were associated with Rikenellaceae (p = 0.016) and Alistipes (p = 0.016). Thought problems
were associated with Acidaminococcus (p = 0.021). In addition to rule-breaking behavior,
aggressive behavior and externalizing behavior were associated with the Ruminococcus
gnavus group (p = 0.046, 0.031, and 0.036, respectively).

Furthermore, we examined the effect of each bacteria taxon on the CBCL symptoms
among children with ADHD. We chose the bacteria which is more abundant among
ADHD cohort than that of healthy control, including Agathobacter, Acidaminococcus
and Ruminococcus gnavus group, and examined the association between the selected
bacteria taxon and their correlated CBCL score by using a regression analysis and adjusting
for sex, age, and SNAP-IV scores (Table 4). A significant association was noted between
withdrawal and depression symptoms and Agathobacter (p = 0.044), and between rule-
breaking behavior and the Ruminococcus gnavus group (p = 0.046).
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Table 3. The correlation between relative abundance of microbiota and comorbid emotional-behavioral symptoms of attention-deficit/hyperactivity disorder
(ADHD) according to Child Behavior Checklist (CBCL).

Genera

Withdrawn
/Depressed

Somatic
Complaints

Social
Problems

Thought
Problems

Attention
Problems

Rule-Breaking
Behavior

Aggressive
Behavior Internalizing Externalizing Total Score

r p r p r p r p r p r p r p r p r p r p

Proteobacteria 0.210 0.127 0.225 0.102 0.153 0.268 0.119 0.393 0.152 0.273 0.106 0.446 0.162 0.242 0.222 0.107 0.148 0.284 0.192 0.165
Gammaproteobacteria 0.197 0.154 0.190 0.168 0.180 0.194 0.081 0.560 0.126 0.364 0.109 0.433 0.155 0.263 0.210 0.127 0.150 0.280 0.180 0.193
Betaproteobacteriales 0.057 0.683 0.023 0.870 −0.071 0.610 −0.053 0.705 −0.142 0.305 −0.043 0.757 −0.067 0.630 −0.025 0.860 −0.076 0.586 −0.095 0.495

Burkholderiaceae 0.057 0.683 0.023 0.870 −0.071 0.610 −0.053 0.705 −0.142 0.305 −0.043 0.757 −0.067 0.630 −0.025 0.860 −0.076 0.586 −0.095 0.495
Acidaminococcaceae −0.039 0.779 0.073 0.602 −0.077 0.582 0.122 0.380 −0.026 0.853 −0.049 0.726 −0.051 0.716 0.040 0.774 −0.057 0.680 −0.030 0.832

Agathobacter 0.317 0.020 * 0.119 0.391 0.241 0.079 0.250 0.069 0.120 0.389 0.162 0.241 0.083 0.551 0.146 0.292 0.109 0.431 0.184 0.184
Phascolarctobacterium −0.139 0.318 0.104 0.454 −0.161 0.244 0.042 0.762 −0.049 0.727 −0.132 0.341 −0.135 0.331 −0.032 0.816 −0.144 0.299 −0.107 0.442

Prevotella_2 0.000 0.999 −0.019 0.894 0.095 0.494 −0.019 0.890 −0.097 0.485 0.081 0.562 0.061 0.661 −0.038 0.788 0.097 0.486 0.029 0.838
Parasutterella −0.044 0.750 0.006 0.963 −0.155 0.264 −0.017 0.901 −0.156 0.259 −0.160 0.248 −0.134 0.335 −0.060 0.668 −0.161 0.246 −0.148 0.287

Acidaminococcus 0.288 0.035 * 0.082 0.556 0.223 0.105 0.313 0.021 * 0.202 0.143 0.224 0.104 0.204 0.140 0.154 0.265 0.221 0.108 0.244 0.076
Roseburia −0.058 0.678 −0.103 0.461 0.104 0.456 0.003 0.986 −0.073 0.599 0.058 0.678 0.030 0.828 −0.095 0.493 0.056 0.685 0.010 0.943

Ruminococcus_gnavus_group 0.195 0.157 0.151 0.277 0.175 0.205 0.264 0.054 0.242 0.077 0.272 0.046 * 0.295 0.031 * 0.251 0.068 0.285 0.036 * 0.291 0.033 *
Bacteroides_plebeius_DSM_17135 −0.033 0.814 0.027 0.845 −0.080 0.567 0.008 0.953 0.058 0.678 −0.104 0.454 −0.113 0.416 −0.060 0.664 −0.090 0.518 −0.035 0.799

Rikenellaceae −0.131 0.562 0.505 0.016 * 0.119 0.598 0.088 0.697 0.058 0.799 −0.138 0.540 0.162 0.472 0.341 0.121 0.038 0.868 0.225 0.315
Alistipes −0.131 0.562 0.505 0.016 * 0.119 0.598 0.088 0.697 0.058 0.799 −0.138 0.540 0.162 0.472 0.341 0.121 0.038 0.868 0.225 0.315

Eubacterium_eligens_group −0.224 0.317 −0.112 0.620 0.048 0.832 0.108 0.634 −0.022 0.923 −0.112 0.620 −0.210 0.348 −0.113 0.615 −0.217 0.332 −0.100 0.658

* p < 0.05.



J. Pers. Med. 2022, 12, 1634 10 of 14

Table 4. Multiple regression analysis of the taxonomic association between gut microbiota and comor-
bid emotional-behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD) according
to Child Behavior Checklist (CBCL).

Genera
Withdrawn/Depressed Thought Problems Rule-Breaking Behavior Aggressive Behavior

B SE p Value B SE p Value B SE p Value B SE p Value

Agathobacter 0.002 0.001 0.044 *
Acidaminococcus 0.003 0.002 0.124 0.002 0.001 0.079
Ruminococcus_gnavus_group 0.005 0.003 0.046 * 0.004 0.003 0.111

* p < 0.05.

4. Adjusted for Sex, Age and Score of SNAP-Iv Discussion

To the best of our knowledge, this is the first study to investigate the association
between the selected bacteria and emotional–behavioral symptoms in children with ADHD.
In the present study, we determined that Agathobacter, Acidaminococcus, Rikenellaceae,
and Alistipes were associated with internalizing symptoms and the Ruminococcus gnavus
group was associated with externalizing symptoms in children with ADHD. After control-
ling for confounding factors, including basic characteristics and SNAP-IV scores, the results
indicated that Agathobacter was associated with withdrawal and depression symptoms
and the Ruminococcus gnavus group was associated with rule-breaking behavior.

Previous research has reported that several bacteria were associated with clinical
ADHD symptoms [2,19,20]. One Taiwanese study revealed that the relative abundance of
Bacteroides was associated with clinical ADHD symptoms rated by SNAP-IV [2]. Another
study from Germany also determined that Bacteroides was correlated with relatively
high levels of hyperactivity and impulsivity [19]. However, they reported no significant
correlations between the microbiome and the CBCL symptoms. A study in the Netherlands
revealed that Ruminococcus was associated with inattention [20]. In our study, we did
not identify any correlation between the bacteria and core symptoms of ADHD but did
determine that Agathobacter and the Ruminococcus gnavus group were associated with
CBCL symptoms. The discrepancy between our study and the Western studies may be
attributed to ethnic differences and diet. The discrepancy between our study and another
Taiwanese study may need further investigation with a larger sample size.

In our study, we found that the Ruminococcus gnavus group was associated with
externalizing behavior (per the CBCL) in children with ADHD. Ruminococcus gnavus, an
anaerobic, gram-positive microbiome, is common in the human gut [43]. Ruminococcus
gnavus has been associated with several inflammatory diseases, including spondyloarthri-
tis, eczema in infants, and Crohn disease [44–49]. Ruminococcus gnavus belongs to the
family Ruminococcacceae, and the relative abundance of Ruminococcacceae has been re-
ported to be linked to several psychiatric diseases, such as mood disorders, schizophrenia,
autism, and ADHD [15,50–52]. One animal study reported that mice colonized with ADHD
gut microbiota experienced an increase in anxious behavior and their structural and func-
tional brain characteristics were affected [53]. Ruminococcus is involved in the metabolic
pathway of complex sugar degradation and the degradation of mucin [54,55], which is
vital for supplementing energy. Short-chain fatty acids (SCFAs), which are metabolites
of Ruminococcus, are known to be key molecules that affect brain function and human
behavior and potentially play a role in ADHD [56,57]. Further studies exploring how Ru-
minococcus affects emotional–behavioral symptoms in children with ADHD are required.
Our study also noted that Agathobacter was associated with withdrawal and depression
symptoms in children with ADHD. Agathobacter is an anaerobic, gram-positive bacterial
genus from the family Lachnospiraceae. Similar to Ruminococcus, Agathobacter has been
found to produce SCFAs [58,59]. Research has suggested that the level of SCFAs was
relevant to inflammatory bowel conditions with comorbid depression and anxiety [60,61].
The abundance of Agathobacter has also been determined to be associated with ADHD
and sleep problems in a population with autism spectrum disorder [62,63]. There is a
paucity of information on the role of Agathobacter in the pathophysiology of depression.
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The mechanism underlying the association between Agathobacter and withdrawal and
depression symptoms in children with ADHD requires further exploration.

Strengths and Limitations

This study has several limitations that should be noted. First, this study was conducted
using a cross-sectional method and was unable to determine longitudinal changes and
factors associated with the gut microbiota. Second, although we observed that several
bacterial genera were correlated with ADHD clinical symptoms, no specific bacteria species
were identified. Further gene mapping of bacteria is necessary to explore the mechanisms
underpinning the association between the gut microbiota and ADHD. Third, we did not
investigate diet in this study. Some specific diets (ie, vegan, gluten-free, paleo, low-carb,
isoflavone intake) may influence the microbiota. Previous studies have reported that the
Oriental diet is abundant in isoflavone, which may interact with microbiota and produce
bioactive compounds contributing benefits including inducing nitric oxide production and
anti-inflammatory effect on human health [64,65]. More research is needed to investigate
the antioxidant capacity and anti-inflammatory effect of microbiota and elaborate the
possible para-probiotics compounds to ameliorate emotional–behavioral symptoms in
children with ADHD.

5. Conclusions

In conclusion, we determined that gut microbiome variability differs between children
with ADHD and a healthy population. Two specific genera, Ruminococcu and Agathobac-
ter, were determined to be associated with the emotional–behavioral symptoms of children
with ADHD. Further study to explore the gut microbiome on ADHD should considered the
effect of comorbid emotional–behavioral symptoms. The specific mechanisms responsible
for the association between the gut microbiota and ADHD still require further investigation.
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23. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef] [PubMed]

24. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336.
[CrossRef]

25. Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection.
Bioinformatics 2011, 27, 2194–2200. [CrossRef]

26. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [CrossRef]

http://doi.org/10.1017/S2045796020000608
http://doi.org/10.1111/jcpp.12899
http://doi.org/10.1007/s12402-012-0100-8
http://doi.org/10.1016/S2215-0366(16)00096-1
http://doi.org/10.1016/j.mehy.2018.08.022
http://doi.org/10.3389/fpsyt.2017.00153
http://doi.org/10.3748/wjg.v23.i30.5486
http://doi.org/10.1089/omi.2017.0077
http://www.ncbi.nlm.nih.gov/pubmed/28767318
http://doi.org/10.1007/s00787-017-0969-z
http://www.ncbi.nlm.nih.gov/pubmed/28289903
http://doi.org/10.3390/ijms20092115
http://www.ncbi.nlm.nih.gov/pubmed/31035684
http://doi.org/10.1038/mp.2012.77
http://doi.org/10.1016/j.bbi.2015.03.016
http://doi.org/10.1371/journal.pone.0183509
http://doi.org/10.1016/j.bbr.2018.03.036
http://doi.org/10.3389/fnins.2020.00127
http://doi.org/10.1371/journal.pone.0200728
http://doi.org/10.3390/microorganisms8030406
http://doi.org/10.1007/s00787-017-1005-z
http://www.ncbi.nlm.nih.gov/pubmed/28527021
http://doi.org/10.1177/1073191107313888
http://www.ncbi.nlm.nih.gov/pubmed/18310593
http://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
http://doi.org/10.1038/nmeth.f.303
http://doi.org/10.1093/bioinformatics/btr381
http://doi.org/10.1128/AEM.00062-07


J. Pers. Med. 2022, 12, 1634 13 of 14

27. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [CrossRef]

28. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72,
5069–5072. [CrossRef]

29. McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An
improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.
2012, 6, 610–618. [CrossRef]

30. Chen, T.; Yu, W.H.; Izard, J.; Baranova, O.V.; Lakshmanan, A.; Dewhirst, F.E. The Human Oral Microbiome Database: A web
accessible resource for investigating oral microbe taxonomic and genomic information. Database 2010, 2010, baq013. [CrossRef]

31. Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New Insights into Human Nostril Microbiome from the
Expanded Human Oral Microbiome Database (eHOMD): A Resource for the Microbiome of the Human Aerodigestive Tract.
mSystems 2018, 3, e00187-18. [CrossRef] [PubMed]

32. Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA
and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [CrossRef] [PubMed]

33. Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A flexible tool for aligning
sequences to a template alignment. Bioinformatics 2010, 26, 266–267. [CrossRef] [PubMed]

34. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010,
5, e9490. [CrossRef]

35. Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix.
Mol. Biol. Evol. 2009, 26, 1641–1650. [CrossRef]

36. Gau, S.S.; Shang, C.Y.; Liu, S.K.; Lin, C.H.; Swanson, J.M.; Liu, Y.C.; Tu, C.L. Psychometric properties of the Chinese version of the
Swanson, Nolan, and Pelham, version IV scale–parent form. Int. J. Methods Psychiatr. Res. 2008, 17, 35–44. [CrossRef]

37. Leung, P.W.; Kwong, S.L.; Tang, C.P.; Ho, T.P.; Hung, S.F.; Lee, C.C.; Hong, S.L.; Chiu, C.M.; Liu, W.S. Test-retest reliability and
criterion validity of the Chinese version of CBCL, TRF, and YSR. J. Child Psychol. Psychiatry 2006, 47, 970–973. [CrossRef]

38. Yang, H.J.; Soong, W.T.; Chiang, C.N.; Chen, W.J. Competence and behavioral/emotional problems among Taiwanese adolescents
as reported by parents and teachers. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 232–239. [CrossRef]

39. Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.;
Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing
and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [CrossRef]

40. Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community
comparison. ISME J. 2011, 5, 169–172. [CrossRef]

41. Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.
2005, 71, 8228–8235. [CrossRef] [PubMed]

42. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery
and explanation. Genome Biol. 2011, 12, R60. [CrossRef] [PubMed]

43. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al.
A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [CrossRef] [PubMed]

44. Breban, M.; Tap, J.; Leboime, A.; Said-Nahal, R.; Langella, P.; Chiocchia, G.; Furet, J.P.; Sokol, H. Faecal microbiota study reveals
specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 2017, 76, 1614–1622. [CrossRef] [PubMed]

45. Zheng, H.; Liang, H.; Wang, Y.; Miao, M.; Shi, T.; Yang, F.; Liu, E.; Yuan, W.; Ji, Z.S.; Li, D.K. Altered Gut Microbiota Composition
Associated with Eczema in Infants. PLoS ONE 2016, 11, e0166026. [CrossRef]

46. Henke, M.T.; Kenny, D.J.; Cassilly, C.D.; Vlamakis, H.; Xavier, R.J.; Clardy, J. Ruminococcus gnavus, a member of the human gut
microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. Acad. Sci. USA 2019, 116,
12672–12677. [CrossRef]

47. Willing, B.P.; Dicksved, J.; Halfvarson, J.; Andersson, A.F.; Lucio, M.; Zheng, Z.; Järnerot, G.; Tysk, C.; Jansson, J.K.; Engstrand, L.
A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes.
Gastroenterology 2010, 139, 1844–1854.e1841. [CrossRef]

48. Joossens, M.; Huys, G.; Cnockaert, M.; De Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the faecal
microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 2011, 60, 631–637. [CrossRef]

49. Hall, A.B.; Yassour, M.; Sauk, J.; Garner, A.; Jiang, X.; Arthur, T.; Lagoudas, G.K.; Vatanen, T.; Fornelos, N.; Wilson, R.; et al.
A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med. 2017, 9, 103. [CrossRef]

50. Painold, A.; Mörkl, S.; Kashofer, K.; Halwachs, B.; Dalkner, N.; Bengesser, S.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.;
et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord.
2019, 21, 40–49. [CrossRef]

51. Nguyen, T.T.; Kosciolek, T.; Maldonado, Y.; Daly, R.E.; Martin, A.S.; McDonald, D.; Knight, R.; Jeste, D.V. Differences in gut microbiome
composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr. Res. 2019, 204, 23–29. [CrossRef]

http://doi.org/10.1093/nar/gks1219
http://doi.org/10.1128/AEM.03006-05
http://doi.org/10.1038/ismej.2011.139
http://doi.org/10.1093/database/baq013
http://doi.org/10.1128/mSystems.00187-18
http://www.ncbi.nlm.nih.gov/pubmed/30534599
http://doi.org/10.1093/nar/gkt1209
http://www.ncbi.nlm.nih.gov/pubmed/24293649
http://doi.org/10.1093/bioinformatics/btp636
http://www.ncbi.nlm.nih.gov/pubmed/19914921
http://doi.org/10.1371/journal.pone.0009490
http://doi.org/10.1093/molbev/msp077
http://doi.org/10.1002/mpr.237
http://doi.org/10.1111/j.1469-7610.2005.01570.x
http://doi.org/10.1097/00004583-200002000-00024
http://doi.org/10.1128/AEM.01541-09
http://doi.org/10.1038/ismej.2010.133
http://doi.org/10.1128/AEM.71.12.8228-8235.2005
http://www.ncbi.nlm.nih.gov/pubmed/16332807
http://doi.org/10.1186/gb-2011-12-6-r60
http://www.ncbi.nlm.nih.gov/pubmed/21702898
http://doi.org/10.1038/nature08821
http://www.ncbi.nlm.nih.gov/pubmed/20203603
http://doi.org/10.1136/annrheumdis-2016-211064
http://www.ncbi.nlm.nih.gov/pubmed/28606969
http://doi.org/10.1371/journal.pone.0166026
http://doi.org/10.1073/pnas.1904099116
http://doi.org/10.1053/j.gastro.2010.08.049
http://doi.org/10.1136/gut.2010.223263
http://doi.org/10.1186/s13073-017-0490-5
http://doi.org/10.1111/bdi.12682
http://doi.org/10.1016/j.schres.2018.09.014


J. Pers. Med. 2022, 12, 1634 14 of 14

52. Rose, D.R.; Yang, H.; Serena, G.; Sturgeon, C.; Ma, B.; Careaga, M.; Hughes, H.K.; Angkustsiri, K.; Rose, M.; Hertz-Picciotto, I.; et al.
Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal
symptoms. Brain Behav. Immun. 2018, 70, 354–368. [CrossRef] [PubMed]

53. Tengeler, A.C.; Dam, S.A.; Wiesmann, M.; Naaijen, J.; van Bodegom, M.; Belzer, C.; Dederen, P.J.; Verweij, V.; Franke, B.;
Kozicz, T.; et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome
2020, 8, 44. [CrossRef] [PubMed]

54. Cervera-Tison, M.; Tailford, L.E.; Fuell, C.; Bruel, L.; Sulzenbacher, G.; Henrissat, B.; Berrin, J.G.; Fons, M.; Giardina, T.; Juge, N.
Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: Insights into the metabolism of a plant
oligosaccharide by a human gut symbiont. Appl. Environ. Microbiol. 2012, 78, 7720–7732. [CrossRef] [PubMed]

55. Crost, E.H.; Tailford, L.E.; Le Gall, G.; Fons, M.; Henrissat, B.; Juge, N. Utilisation of mucin glycans by the human gut symbiont
Ruminococcus gnavus is strain-dependent. PLoS ONE 2013, 8, e76341. [CrossRef]

56. Dam, S.A.; Mostert, J.C.; Szopinska-Tokov, J.W.; Bloemendaal, M.; Amato, M.; Arias-Vasquez, A. The Role of the Gut-Brain Axis
in Attention-Deficit/Hyperactivity Disorder. Gastroenterol. Clin. N. Am. 2019, 48, 407–431. [CrossRef]

57. Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; et al. Altered gut microbiota and short chain
fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 2019, 9, 287. [CrossRef] [PubMed]

58. Rosero, J.A.; Killer, J.; Sechovcová, H.; Mrázek, J.; Benada, O.; Fliegerová, K.; Havlík, J.; Kopečný, J. Reclassification of Eubacterium
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