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Abstract
Antiphospholipid syndrome (APS) is an autoimmune thrombophilia propelled by circulating antiphospholipid antibodies 
that herald vascular thrombosis and obstetrical complications. Antiphospholipid antibodies recognize phospholipids and 
phospholipid-binding proteins and are not only markers of disease but also key drivers of APS pathophysiology. Thrombotic 
events in APS can be attributed to various conspirators including activated endothelial cells, platelets, and myeloid-lineage 
cells, as well as derangements in coagulation and fibrinolytic systems. Furthermore, recent work has especially highlighted 
the role of neutrophil extracellular traps (NETs) and the complement system in APS thrombosis. Beyond acute thrombosis, 
patients with APS can also develop an occlusive vasculopathy, a long-term consequence of APS characterized by cell pro-
liferation and infiltration that progressively expands the intima and leads to organ damage. This review will highlight known 
pathogenic factors in APS and will also briefly discuss similarities between APS and the thrombophilic coagulopathy of 
COVID-19.
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Introduction

Antiphospholipid syndrome (APS) is a thrombo-inflamma-
tory disease that complicates up to one-third of cases of 
systemic lupus erythematosus (referred to as “lupus” going 
forward) where it portends the acquisition of more organ 
damage over time [1–6]. Meanwhile, the standalone form 
of APS (primary APS) is even more common, affecting at 
least 1 in 2000 Americans [7]. APS is propelled by circulat-
ing antiphospholipid antibodies (aPL) that cause vascular 
thrombosis and obstetrical complications [8]. Thrombosis 

in APS may affect vascular beds of all sizes including arte-
rial, venous, and microvascular circuits. Lower extremity 
deep veins and cerebral arteries are the most frequent sites 
of venous and arterial thrombosis, respectively [9]. Thrombi 
may also form in sites uncommonly seen in the general pop-
ulation including arteries that supply the viscera and venous 
sinuses surrounding the brain. Patients with APS are addi-
tionally at risk for microvascular thrombosis in the skin, 
eyes, heart, lungs, kidneys, and other organs. A minority of 
patients develop catastrophic APS (CAPS), characterized by 
microvascular thrombosis in at least three organs, typically 
all emerging within 1 week [10, 11]. Beyond thrombosis 
and pregnancy loss, APS is also associated with a variety 
of extra-criteria manifestations, including livedo reticularis 
and racemosa, neurologic pathology (cognitive dysfunction, 
choreiform movements, seizures), valvular heart disease, 
occlusive vasculopathy, pulmonary hypertension, nephropa-
thy, and thrombocytopenia, among others [12, 13].

In addition to a history of at least one morbid thrombotic 
or obstetric event, APS classification criteria (Table 1) seek 
the stable presence of anticardiolipin or anti-beta-2 glyco-
protein I (β2GPI) antibodies [8]. Furthermore, the “lupus 
anticoagulant” test—a functional assay screening for aPL 
based on prolongation of clotting times—is part of the 
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classification criteria where it detects a variety of species 
of aPL including anti-phosphatidylserine/prothrombin anti-
bodies [14]. Modern anticardiolipin assays are designed to 
recognize anti-β2GPI antibodies, as β2GPI protein present 
in the sample diluent provides a bridge between antibody 
and cardiolipin [15–17]. Furthermore, some anti-β2GPI anti-
bodies clearly have lupus anticoagulant activity [18–20]. It 
should therefore be recognized that a single antibody can 
potentially turn all three criteria lab tests positive, and the 
information provided by these different assays is therefore 
not as granular as one may initially assume.

APS is present if at least one of the clinical criteria and 
one of the laboratory criteria are met.

It is now recognized that the term “antiphospholipid” is 
something of a misnomer since the best characterized aPL 
do not recognize isolated anionic phospholipids such as 
cardiolipin and phosphatidylserine as originally surmised, 
but rather specific phospholipid-binding proteins, with aPL 
targeting the abundant plasma protein β2GPI particularly 
pathogenic [21–23]; it is also conceivable that these anti-
bodies detect heterotypic complexes of phospholipids and 
phospholipid-binding proteins. Intriguingly, the isotype of 
aPL immunoglobulin abnormality may vary by patient sub-
set. For example, an early study observed that IgA was the 
most prevalent isotype among Black patients with SLE [24], 
although the potential pathogenic role of IgA and implica-
tions for APS remain to be firmly established.

Life-long anticoagulation is so far the only treatment that 
has been proven to reduce the vascular complications of 
APS. However, while anticoagulation regimens are relatively 
effective in restraining large-vessel events such as deep vein 
thrombosis and thromboembolic stroke, they do not combat 
many extra-criteria manifestations such as livedoid vascu-
lopathy, seizures, cognitive decline, alveolar hemorrhage, 
and thrombocytopenia. Furthermore, anticoagulants do not 
mitigate the chronic occlusive vasculopathy and progressive 
organ deterioration that afflict many patients over time. This 

unmet need is emphasized by an international cohort of more 
than 800 aPL-positive patients in which 56% of patients had 
at least one non-thrombotic/non-obstetric manifestation of 
APS [25]. Notably, more than 25% of these patients were 
identified as having either white matter brain lesions or pre-
mature cognitive dysfunction, and 20% were found to have 
microvascular disease involving either the kidney or skin. 
Strategies to combat the long-term, anticoagulant-resistant 
manifestations of APS are unknown and will likely require 
new immunomodulatory approaches.

The development of a consensus, unified explanation of 
APS pathophysiology has unfortunately been hindered by 
the heterogeneity of aPL profiles (only a fraction of which 
is likely revealed by standard clinical laboratory testing) and 
diversity of potential aPL effector functions. As will be dis-
cussed below, numerous and wide-ranging “bad actors” have 
been implicated to date, including blood and immune cells, 
complement proteins, and coagulation/fibrinolytic systems.

Thrombosis

Notably, aPL are not only markers of disease but also key 
drivers of APS pathogenesis. Indeed, many manifestations of 
APS can be reproduced experimentally via transfer of patient 
serum or immunoglobulins into animals [26–28]. Although 
the infusion of pathogenic aPL does not cause spontaneous 
thrombosis in animals, the introduction of some type of dis-
ruption to the vasculature (such as injury to the vessel wall; 
alteration of blood flow; or infusion of lipopolysaccharide, 
histones, or other immune stimulants) unmasks the exag-
gerated thromboinflammatory state. The “two-hit” concept 
of APS (in animal models as well as in patients) posits that 
aPL provide the first hit, creating a generalized procoagulant 
state. Subsequently, a second hit (sometimes cryptic) such 
as a vascular injury or inflammatory stimulus then tips cir-
culating blood toward coagulation. Although this triggering 

Table 1  Classification criteria for antiphospholipid syndrome [8]

Clinical criteria Vascular thrombosis  ≥ 1 clinical episode of arterial, venous, or small-vessel thrombosis
Pregnancy morbidity a) ≥ 1 unexplained death of a morphologically normal fetus at ≥ 10 weeks 

of gestation
b) ≥ 1 premature delivery of a morphologically normal fetus 

at < 34 weeks’ gestation because of:
i) Severe preeclampsia or eclampsia defined according to standard defini-

tion
ii) Recognized features of placental insufficiency
c) ≥ 3 unexplained consecutive miscarriages at < 10-week gestation, with 

maternal and paternal factors (anatomic, hormonal, or chromosomal 
abnormalities) excluded

Laboratory criteria The presence of antiphospholipid antibodies on ≥ 2 occasions ≥ 12 weeks apart
a) Presence of lupus anticoagulant in plasma
b) Medium- to high-titer anticardiolipin antibodies of IgG or IgM isotypes
c) Medium- to high-titer anti-beta-2 glycoprotein I (anti-β2GPI) antibodies of IgG or IgM isotypes
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stimulus is not obvious in many cases of thrombotic APS, a 
precipitating factor such as surgery, infection, pregnancy, or 
anticoagulation withdrawal has been identified in 50 to 80% 
of CAPS episodes [29].

Attention should also be paid to additional risk factors 
that further increase thrombotic risk in aPL-positive patients 
[30, 31]. Some potential factors include a concomitant diag-
nosis of lupus, pregnancy, receipt of estrogen-containing 
contraceptives, immobilization after surgery, active cancer, 
heritable thrombophilias, and traditional cardiovascular 
risk factors such as smoking, hypertension, hypercholes-
terolemia, and obesity. As an example, one large popula-
tion-based case–control study found that the odds ratio of 
ischemic stroke in lupus anticoagulant-positive females 
was 43.1 (95% confidence interval 12.2 to 152.0), further 
increasing to 87 (95% confidence interval 14.5 to 523.0) 
in individuals who smoked and to a remarkable 201 (95% 
confidence interval 1.9 to 242) in individuals using estrogen-
containing oral contraceptives [32].

The earliest identified prothrombotic effects of aPL were 
via interference with natural anticoagulant systems regu-
lating coagulation and fibrinolysis. However, subsequent 
studies eventually revealed that a key role of aPL (arguably 
the key role) is to induce activation of various blood and 
immune cells, as well as the complement system, with pro-
coagulant and proinflammatory consequences. Major patho-
genic mechanisms are summarized in Table 2. The relative 
importance of these factors to a particular thrombotic event 
is likely dependent on the vascular bed being considered, a 
concept that will benefit from further mechanistic research.

Endothelial cells. Given its constant confrontation with 
whole blood, the endothelium necessarily has properties that 
counter thrombosis and inflammation [62]. For example, 
heparanoid proteoglycans, prostacyclins, ectonucleotidases 
such as CD39 and CD73, protein C receptor, and tissue fac-
tor pathway inhibitor all help promote an antithrombotic sur-
face [63]. The endothelium is also a barrier that selectively 

permits molecular and cellular transit from the blood com-
partment into tissue. When activated, the normally quiescent 
endothelium sheds its antithrombotic profile and acquires a 
phenotype that promotes an inflammatory response. Leuko-
cyte-endothelial interactions and extravasation are orches-
trated by selectins and cell adhesion molecules that facili-
tate rolling at the endothelial surface, followed by stronger 
integrin-mediated interactions that promote adhesion and 
eventual exodus of leukocytes from vessels [64]. Transla-
tional studies have detected endothelium-derived micropar-
ticles in the circulation of APS patients as a surrogate for 
endothelial activation, suggesting the vessel wall may be 
primed for leukocyte interactions [35, 36].

In vitro, aPL activate healthy cultured endothelial cells 
to express adhesion molecules and tissue factor [33, 34]. 
Mechanistically, aPL co-opt pathways normally associated 
with non-autoimmune inflammatory stimuli. aPL engage 
apolipoprotein E receptor 2 and possibly other surface 
receptors on endothelial cells [65–70] with subsequent 
activation of NF-κB and p38 MAPK, and suppression of 
vasculo-protective Krüppel-like factors [71–73]. Modulation 
of these pathways leads to suppression of anti-inflammatory 
transcription factors, reduction in nitric oxide synthesis, and 
increased tissue factor synthesis [33, 34, 69, 70, 72–76]. 
In a mouse model, aPL increased tissue factor activity in 
carotid homogenates [77]. Meanwhile, aPL administration 
to mice also results in increased leukocyte-endothelium 
interactions [78, 79]. Concordantly, mice can be protected 
from aPL-mediated thrombosis by disrupting the function 
of E-selectin and P-selectin (the key selectins expressed on 
endothelium), P-selectin glycoprotein ligand-1 (PSGL-1, a 
key selectin ligand), or endothelial integrin ligands VCAM-1 
and ICAM-1 [76, 79, 80].

Platelets. Platelets are being increasingly recognized 
for their roles that extend beyond hemostasis and throm-
bosis. Platelet-leukocyte interactions result in bidirectional 
immune crosstalk and transactivation, with downstream 

Table 2  Some mechanistic highlights of APS pathophysiology

Cell or pathway In vitro, aPL… In patients, we can find…

Endothelial cells Increase expression of tissue factor and adhesion molecules 
[33, 34]

More endothelium-derived microparticles [35, 36]

Platelets Induce activation under shear stress [37] Increased platelet-leukocyte aggregates [38]
Monocytes Trigger expression of tissue factor [39–42] and pro-inflam-

matory cytokines [43–45]
Increased tissue factor-expressing monocytes [46–48]

Neutrophils Promote release of prothrombotic neutrophil extracellular 
traps (NETs) [49]

High levels of circulating NETs [49] and anti-NET antibodies 
[50]

Complement Trigger cell lysis as measured by modified Ham test [51] High levels of complement split products [52–54]
Coagulation Interfere with coagulation inhibitors, especially protein C and 

antithrombin [55, 56]
High levels of the active free thiol form of factor XI [57]

Fibrinolysis Interfere with activity of tissue plasminogen activator [58] High levels of plasminogen activator inhibitor-1 (PAI-1) 
[59–61]
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effects on vascular inflammation. Circulating platelet-leu-
kocyte aggregates are detected at increased levels in patients 
with APS, consistent with persistent, low-grade platelet acti-
vation [38]. The unstimulated platelet surface resists binding 
by β2GPI protein and anti-β2GPI antibodies; however, under 
shear stress, β2GPI engages surface ApoER2 and GPIb, cre-
ating a platform by which anti-β2GPI antibodies can then 
trigger platelet activation [37]. Meanwhile, aPL also activate 
platelets primed by low levels of thrombin in a mitogen-
activated protein kinase (MAP kinase)-dependent fashion 
[81]. In a mouse model of APS, aPL-activated platelets are 
preferentially recruited to injured endothelium where they 
are required for fibrin generation in the expanding throm-
bus [82]. As discussed above, thrombocytopenia commonly 
complicates the course of APS. The extent to which this 
thrombocytopenia of APS is attributable to low-grade plate-
let activation and subsequent clearance, or to autoimmune-
mediated removal via anti-platelet glycoprotein antibodies 
likely varies from patient to patient [83–86].

Monocytes. The relative ease of monocyte isolation from 
peripheral blood has led to deeper characterization of mono-
cytes than with endothelial cells or platelets. For example, it 
was demonstrated 20 years ago that in patients with lupus, 
the presence of aPL is associated with enhanced monocyte 
tissue factor production [87]. Similar findings have been 
appreciated in patients with primary APS [46–48]. Beyond 
tissue factor, APS monocytes also express high levels of 
VEGF and its receptor Flt-1 [88]. Unbiased transcriptomic 
profiling has demonstrated upregulation of proinflammatory 
genes including TLR8, CD14, and genes associated with oxi-
dative stress [89, 90]. APS monocytes have also been shown 
to upregulate certain protease-activated receptors [91], best 
known for their response to activated coagulation factors 
such as thrombin but also now appreciated for their immune 
signaling functions. Monocyte-derived microparticles are 
found at increased levels in APS circulation [92, 93], where 
they are potentially an important source of tissue factor [36].

Experimentally, aPL trigger monocytes to express tissue 
factor [39–42] and pro-inflammatory cytokines including 
TNF-α and IL-1β in vitro [43–45]. Concordantly, neutral-
izing tissue factor in mice with a blocking antibody protects 
against aPL-mediated venous thrombosis [94]. Although cir-
culating monocytes have not, for the most part, been specifi-
cally characterized in animal studies, one interesting report 
demonstrated that the introduction of a Nox2 (NADPH oxi-
dase) mutation into bone marrow-derived cells (e.g., mye-
loid cells but not endothelial cells) protects against venous 
thrombosis [94].

Neutrophils. Neutrophils are the most abundant leuko-
cytes in circulation where they patrol the bloodstream wait-
ing to be recruited to sites of inflammation. Until recently, 
phagocytosis was thought to be the dominant mechanism 
by which neutrophils neutralized invading pathogens [95, 

96]. In 2004, Brinkmann and colleagues described a pro-
cess whereby neutrophils eject webs of chromatin into the 
extracellular space [97, 98]. These neutrophil extracellu-
lar traps (NETs) are tangles of decondensed extracellular 
DNA and histones decorated with microbicidal proteins 
derived from neutrophil granules and cytoplasm. NETs are 
released in response to both infectious and sterile stimuli 
including bacteria, fungi, protozoa, and viruses, as well as 
activated platelets and endothelial cells, complement pro-
teins, cytokines, autoantibodies, and immune complexes 
[99]. While NETs likely evolved to trap pathogens, they 
are also now well recognized to be prothrombotic (Fig. 1) 
[100]. NETs activate platelets and clotting factors and can 
be found in both deep vein thrombi [101–104] and arterial 
clots [105–107]. Indeed, studies by various groups have 
shown that disrupting neutrophil-endothelium interactions, 
preventing NET formation, and dissolving NETs are all 
strategies that can mitigate thrombosis in animal models 
[104, 108–115].

In the 1990s, prior to the first descriptions of NETs, it 
was found that mouse monoclonal antibodies against human 
β2GPI activated neutrophils, stimulating degranulation and 
hydrogen peroxide production [116]. In the early 2000s, an 
important series of experiments characterized pregnancy 
models of APS and found that neutrophils and comple-
ment were important mediators of fetal injury [117–119]. 
In vitro experiments have demonstrated that various human 
monoclonal aPL induce neutrophil activation as measured 
by oxidative burst, phagocytosis, and shedding of L-selectin 
[120]; these phenotypes were potentiated by lipopolysaccha-
ride and Pam3Cys-Ser-(Lys)4, demonstrating the potential 
for synergy with Toll-like receptor signaling [120]. Another 
study found increased tissue factor expression by control 
neutrophils cultured with APS serum; in this system, com-
plement activation, and specifically the C5a receptor, was 
required for maximum tissue factor expression [121].

In one of the first studies to evaluate a potential role 
for NETs in APS, pre-formed NETs were exposed to APS 
patient serum [122]. As compared with healthy serum, the 
authors found that approximately 13% of APS serum sam-
ples (both primary and secondary) were defective in NET 
degradation [122]. In the same study, “anti-NET antibodies” 
were detected by adding APS serum to preformed NETs and 
then visualizing IgG deposition [122]. The concept of anti-
NET antibodies has been more comprehensively examined 
in a recent study [50]. In a cohort of 76 patients with primary 
APS, the authors found IgG and IgM anti-NET antibodies 
to be markedly elevated as compared with healthy controls. 
Anti-NET antibodies did not correlate with anti-β2GPI anti-
bodies but did associate with impaired NET degradation by 
patient serum as well as a clinical history of recurrent venous 
thrombosis [50]. The extent to which anti-NET antibodies 
recognize similar antigens as the anti-chromatin antibodies 
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previously described in primary APS is an intriguing ques-
tion worthy of further study [123].

A study in 2015 was the first to show an association 
between aPL and NET release [49], a finding that has since 
been replicated by independent groups [124, 125]. The 
authors of the original study found high levels of NETs in 
circulation even in the absence of active thrombosis and that 
freshly isolated neutrophils from patients with APS released 
more NETs than neutrophils from healthy patients [49]. 
Moreover, human monoclonal anti-β2GPI antibodies pro-
moted NET release, while patients with triple-positive APS 
(presence of anticardiolipin, anti-β2GPI, and lupus antico-
agulant) tended to have the highest levels of circulating NET 
remnants [49]. Mechanistically, aPL-stimulated NET release 
depended on ROS generation by the NADPH oxidase and 
TLR4 signaling [49], with a role for Mac-1-mediated adhe-
sion [126]. In vivo experiments used a flow restriction model 
of venous thrombosis to characterize aPL-mediated thrombo-
sis in mice [127]. Mice administered APS IgG formed large 
thrombi that were enriched for NETs [127]. Meanwhile, both 
neutrophil depletion and deoxyribonuclease administration 
reduced thrombosis in APS mice to levels observed in control 
mice [127]. Other NET-disrupting strategies that mitigate 
aPL-mediated thrombosis in mouse models include PSGL-1 
deficiency or inhibition [79], activation of cell surface 

adenosine receptors by drugs such as dipyridamole and defi-
brotide [128, 129], and even administration of ginger-derived 
phenolic substances, which function as phosphodiesterase 
inhibitors [130]. In patients, administration of the antioxi-
dant coenzyme Q10 has been suggested as a complementary 
strategy for inhibiting NETs [131, 132].

Low-density granulocytes (LDGs), a subset of neutro-
phils best characterized in lupus, are proinflammatory and 
have a low threshold for releasing NETs [133–137]. van den 
Hoogen and colleagues recently found higher frequency of 
LDGs in APS patients whether or not the patients had coex-
isting lupus [138]. Notably, they also observed that anti-
β2GPI-positivity was predictive of APS patients who would 
have more LDGs in circulation.

A few studies have examined gene expression in APS 
neutrophils. In one, transcriptomic analysis of APS neutro-
phils by RNA sequencing revealed increase expression of 
pro-inflammatory genes, particularly with regard to type I 
interferon signaling, Toll-like receptor signaling, and meta-
bolic reprogramming [79]. IFIT1, a type I interferon respon-
sive gene, was most significantly upregulated (8.5-fold) in 
APS neutrophils [79]. In another study, genome-wide DNA 
methylation analysis of APS neutrophils did not find nota-
ble demethylation of interferon genes as has been previ-
ously reported for lupus neutrophils, suggesting divergent 

Fig. 1  Neutrophil extracellular promote thrombosis. Activated neu-
trophils release decondensed chromatin decorated with nuclear (his-
tones), granule (proteases that degrade antithrombotic molecules 
such as TFPI and antithrombin), and cytoplasmic proteins that pro-

mote inflammation and coagulation (tissue factor, factor XI and XII). 
Together, NETs form a scaffold for cell aggregation and thrombus 
formation. TFPI = tissue factor pathway inhibitor. Illustration credit: 
Ethan Tyler (NIH)
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epigenomic signatures [139]. Gene ontology analysis of 
hypomethylated genes in APS neutrophils demonstrated an 
enrichment of ETS1, EMP2, OXT, and DPPA3, all genes 
associated with mammalian pregnancy [139]. The physi-
ologic consequences of epigenetic changes in APS neutro-
phils, including their potential relevance to APS-associated 
pregnancy morbidity, remain to be elucidated.

Taken together, these studies suggest exaggerated NET 
formation and impaired NET degradation in APS, both 
mechanisms that could amplify the impact of NETs on 
thrombosis. However, numerous questions remain, includ-
ing the extent to which NETs might contribute to obstetric 
and extra-criteria manifestations of APS. Given that β2GPI is 
a recognized DNA-binding protein, future studies may also 
ask whether anti-β2GPI antibodies provide the possibility for 
epitope expansion to traditional lupus autoantigens such as 
double-stranded DNA and chromatin in some patients [140].

Complement. Complement is a system of over 50 pro-
teins of the innate immune system that interact via protease 
activity to promote inflammatory cell recruitment, opsoniza-
tion and clearance of pathogens, and sometimes cell death. 
Complement also links inflammatory responses to coagula-
tion pathways [141]. The system can be activated by differ-
ent stimuli with eventual convergence at the level of C5a 
generation (a chemotactic and pro-inflammatory protein) 
and assembly of the so-called membrane-attack complex 
(inclusive of C5b, C6, C7, C8, and C9) [142].

There is evidence of smoldering complement activation 
in APS [52–54], via both the alternative pathway [143–145] 
and the classical pathway [146–148]. Mechanistically, an 
important recent study used sera and purified anti-β2GPI 
antibodies to demonstrate C5b-9 deposition and comple-
ment-mediated cell death via what the authors described as 
a “modified Ham test” [51]; importantly, complement activa-
tion as measured by this novel test correlated clinically with 
both triple-positive status and recurrent thrombosis.

Animal models provide strong evidence linking the com-
plement system to APS. After early work demonstrated that 
antagonizing complement could protect against pregnancy 
loss [149], attention turned to its potential role in aPL-accel-
erated thrombosis. In a femoral vein injury model of throm-
bosis, disrupting complement C3, C5, and C6 were all indi-
vidually protective against thrombosis [150–153]. Similarly, 
antagonizing either C5 or C6 was protective in a mesenteric 
thrombosis model triggered by lipopolysaccharide [154]. A 
deeper understanding of the complement pathway in APS is 
now needed, including mechanisms by which it integrates 
inflammation and coagulation.

Clinical reports of the complement inhibitor eculizumab 
effectively treating thrombosis in APS and CAPS [155, 156] 
are intriguing. Although there is a paucity of therapeutics 
available to mitigate the high mortality associated with 
CAPS, well-designed, randomized clinical trials are needed 

to develop a stronger evidence basis for complement inhibi-
tion and appropriate patient selection in APS.

Coagulation. The complex of β2GPI and anti-β2GPI 
disrupts the annexin A5 “anticoagulant shield” whereby 
annexin A5 normally binds to and neutralizes procoagulant 
phospholipids such as phosphatidylserine on cell surfaces 
[157–159]. In addition, anti-β2GPI antibodies have been 
reported to impair the natural ability of β2GPI to blunt von 
Willebrand factor-dependent platelet aggregation [160].

As discussed above, aPL represent a broader repertoire 
of antigenic targets than β2GPI and cardiolipin, and the 
effects of aPL on specific components of the coagulation 
system remain an area of investigation. For example, aPL 
contribute to so-called activated protein C resistance which 
occurs when activated protein C is unable to inactivate 
coagulation factors V and VIII [55, 161]. Some aPL have 
been found to antagonize antithrombin activity by inhibit-
ing the heparin binding that is required for full activation 
of antithrombin [56]; meanwhile, aPL with activity against 
thrombin may further protect thrombin from inactivation 
by antithrombin [162]. Similarly, aPL targeting factors IX 
[163] and X [164] appear to prevent their negative regu-
lation by antithrombin. Elevated levels of factor XI are a 
known risk factor for thrombosis in the general population 
[165], and as compared with age- and sex-matched con-
trols, APS patients carry higher-than-expected circulating 
levels of the active free thiol form of factor XI [57]. The 
activity of tissue factor may also be potentiated in APS via 
aPL-mediated inhibition of tissue factor pathway inhibitor 
(TFPI), or disassembly of a normally inhibited TF complex 
at the cell surface [166–168].

Fibrinolysis. Impaired fibrinolysis has been found in APS 
patients with thrombotic as well as obstetric manifestations 
[169]. Some aPL may inhibit fibrinolysis by neutralizing the 
ability of β2GPI to stimulate tissue plasminogen activator 
(tPA)-mediated plasminogen activation and fibrinolysis 
[58]. Furthermore, there are reports of APS-associated 
autoantibodies that directly antagonize various pro-
fibrinolytic factors (e.g., anti-annexin-A2, anti-tissue-type 
plasminogen activator/tPA, anti-plasmin) [169–171]. Small 
studies have also demonstrated upregulation of natural anti-
fibrinolytic proteins [59–61], most notably plasminogen 
activator inhibitor-1 (PAI-1, the physiologic inhibitor of both 
tPA, and urokinase plasminogen activator). Mechanistically, 
PAI-1 is upregulated in human umbilical vein endothelial 
cells upon exposure to anti-β2GPI antibodies from APS 
patients [172]. Interestingly, PAI-1 appears to have diverse 
functions beyond its role in restraining fibrinolysis, as 
elevated PAI-1 levels have regularly been associated with 
chronic disease states including fibrosis (of lung, liver, and 
kidney) and atherosclerosis [173–176] raising the possibility 
that PAI-1 might also play a role in the chronic occlusive 
APS vasculopathy that will be discussed below.
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Catastrophic APS

CAPS is characterized by rapidly developing and widespread 
microvascular thrombosis causing ischemic injury (Table 3) 
[10].

Current standard of care treatment for CAPS includes 
anticoagulation (typically with unfractionated heparin), 
immunosuppression (with high-dose corticosteroids), and 
plasmapheresis to emergently reduce the circulating aPL 
burden [11]. Given the relative rarity of CAPS, few stud-
ies have had the opportunity to pursue deep, mechanistic 
studies. There is some suggestion of endothelial and/or 
platelet activation based on high levels of von Willebrand 
factor and P-selectin in circulation [177]. Complement acti-
vation has also been indirectly implicated in the patho-
genesis of CAPS as complement regulatory gene variants 
have been found in 60% of patients, perhaps contributing 
to uncontrolled complement activation [51]. Most patients 
with CAPS have an identifiable precipitating event such 
as surgery, infection, or pregnancy, which may serve as a 
complement-stimulating “second hit” in the setting of ger-
mline variants that may have reduced capacity to restrain 
complement amplification.

The potential role of complement in CAPS is further sup-
ported by reports of successful use (as mentioned above) of 
eculizumab in patients refractory to standard therapies. One 
series reported that 5 of 11 patients with CAPS responded 
to treatment with eculizumab [156]; individuals who had 
a response were more likely to have microangiopathic 
hemolytic anemia and thrombocytopenia, while those who 
already had dialysis-dependent kidney failure were less 
likely to respond. In another report, eculizumab allowed suc-
cessful kidney transplantation in two patients with CAPS 
[178]. Based on these and other reports, the enthusiasm in 
the clinic for complement-inhibiting approaches to CAPS 
remains high, and additional evidence for this is eagerly 
anticipated.

APS vasculopathy

Distinct from APS-associated thrombotic events that acutely 
close vessels, the chronic occlusive vasculopathy of APS 
is characterized by cell proliferation and infiltration that 
progressively expands the intima [179–181]. These lesions 
are reminiscent of those seen following vascular interven-
tions such as angioplasty and stent deployment in which 
the intima becomes thickened due to proliferation of vas-
cular smooth muscle cells and production of proteoglycan-
rich extracellular matrix between the endothelium and the 
internal elastic lamina [182]. Although this pathology was 
initially reported—and is still best defined—in the small ves-
sels of APS kidneys [183–186], occlusive APS vasculopathy 
has also been observed in small- and medium-sized vessels 
of the brain, heart, and mesentery [179–181].

The molecular pathways that license these lesions are for 
the most part unknown, although one yet-to-be-reproduced 
report posited that the mTOR/Akt pathway is an important 
mediator of APS nephropathy and therefore a potential 
pharmacologic target via clinically available agents such as 
sirolimus [187]. mTOR is a kinase that integrates a variety 
of signaling pathways to regulate cellular growth, prolif-
eration, and survival. In individuals with aPL-associated 
nephropathy, the vascular endothelium of intrarenal vessels 
was found to display molecular markers consistent with 
activation of mTOR and downstream signaling [187]. Fur-
thermore, patients with aPL-associated nephropathy who 
required transplantation and were receiving sirolimus had 
minimal recurrence of vascular lesions, which contrasted 
with matched patients with aPL who were not receiving 
sirolimus [187].

The signaling pathways by which aPL trigger neointimal 
hyperplasia and occlusive vasculopathy may occur through 
direct or indirect interactions with the endothelium and 
smooth muscle of the vessel wall. Endothelial activation by 
aPL may create a dysfunctional, nitric oxide-depleted state 

Table 3  Classification criteria for catastrophic antiphospholipid syndrome (CAPS) [10]

Criteria

1. Evidence of involvement of three or more organs, systems, and/or tissues
2. Development of manifestations simultaneously or in less than a week
3. Confirmation by histopathology of small vessel occlusion in at least one organ or tissue
4. Laboratory confirmation of antiphospholipid antibodies (lupus anticoagulant, anticardiolipin antibodies, and/or anti-β2GPI antibodies)
Definite CAPS requires all 4 criteria
Probable CAPS is based on any of the following:
All four criteria, except for only two organs, systems, and/or sites of tissue involvement
All four criteria, except for the laboratory confirmation at least six weeks apart due to the early death of a patient never previously tested for aPL
Criteria 1, 2, and 4
1, 3, and 4 and the development of a third event in more than a week but less than one month, despite anticoagulation
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in addition to facilitating leukocyte and platelet adhesion. 
Proliferation of endothelial and smooth muscle cells may 
be supported by mTOR signaling, complement activation, 
macrophage foam cell formation, canonical cell adhesion 
molecules, and repression of pro-resolving factors, among 
other possible mechanisms. As mechanisms and new treat-
ment approaches are investigated for the acute and cata-
strophic complications of APS, it will be important to keep 
in view the chronic sequelae of multi-system vasculopathy 
that also leads to progressive organ dysfunction in patients 
with APS.

COVID‑19

Like APS, coronavirus disease 2019 (COVID-19) is asso-
ciated with a high incidence of thrombosis in arterial, 
venous, and microcirculatory vascular beds [188, 189]. 
Notably, studies of COVID-19 patient samples demonstrate 
some similarities with APS, including evidence for aber-
rant activation of neutrophils [190, 191], endothelial cells 
[192], platelets [193], and complement [194]. A report from 
early in the pandemic detected aPL in three patients with 
COVID-19 who experienced cerebrovascular accidents 
[195]. This was soon followed by a study of 56 hospital-
ized in whom lupus anticoagulant was detected in 25; five 
of the patients also had either anticardiolipin or anti-β2GPI 

antibodies [196]. Studies in COVID-19 patients have 
detected both traditional aPL and various “non-criteria” 
aPL (anti-phosphatidylserine/prothrombin IgG and IgM as 
well as anticardiolipin and anti-β2GPI IgA). Studies have 
demonstrated significant heterogeneity in terms of preva-
lence of aPL (some as high as 50%) and which aPL spe-
cies are most detected [197–199]. At the present time, it is 
mostly unknown whether these are transient aPL, as have 
been reported in other viral infections [200], or persistent 
aPL that herald long-term thrombotic risk.

Most studies have not found a clear association of aPL 
with macrovascular thrombotic events in COVID-19. Fur-
thermore, functional assays such as lupus anticoagulant 
should be interpreted with caution in severely ill patients 
due to potential confounding by high levels of C-reactive 
protein and administration of anticoagulation. Despite 
these caveats, the relationship between aPL and COVID-
19 is an emerging area deserving of further research. There 
is some evidence that IgG fractions isolated from the serum 
of patients with COVID-19 with high titers of aPL have 
prothrombotic properties in vitro and in mice [199, 201]. 
Future studies are required to determine persistence of 
these antibodies and identify mechanistic connections that 
can further clarify the extent to which aPL-like antibodies 
in patients with COVID-19 mimic those seen in patients 
with traditional APS.

Fig. 2  Potential mechanisms contributing to thrombotic APS. A 
Endothelial cells increase expression of tissue factor (TF) and adhe-
sion molecules. Complement damages the endothelium via the mem-
brane attack complex (MAC) and acts as a chemoattractant via C5a. 
Monocytes express TF and cytokines such as tumor necrosis factor-
alpha (TNF-α), interleukin-1 beta (IL-1β), and type I interferons 
(IFNs), and release microparticles. Neutrophils produce reactive oxy-

gen species and release neutrophil extracellular traps (NETs). B NETs 
form an intravascular scaffold that promotes thrombus accretion. C 
Chronic activation of the endothelium by aPL can result in progres-
sively occlusive vasculopathy. aPL = antiphospholipid antibodies; 
ApoER2 = apolipoprotein E receptor 2; β2GPI = beta-2 glycoprotein I; 
NF-κB = nuclear factor kappa B; KLFs = Kruppel-like factors. Illus-
tration credit: Ethan Tyler (NIH)
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Summary

Like other systemic autoimmune diseases such as lupus, sys-
temic sclerosis, and autoimmune vasculitis, there is signifi-
cant person-to-person heterogeneity in individuals present-
ing with APS. One individual may present with heart valve 
lesions and thrombocytopenia, another with recurrent venous 
thrombosis, and another with livedo racemosa and white mat-
ter hyperintensities. The potential mechanisms covered above 
are myriad (Fig. 2) and the extent to which each mechanism 
manifests in a particular individual may help explain disease 
heterogeneity. One potential model is that aPL profiles are 
relatively consistent, while heterogeneity is best explained 
by comorbid genetic and acquired risk factors. Alternatively, 
aPL profiles may vary more than we realize as only a handful 
of types of aPL can be routinely tested for clinically. In that 
scenario, we will not be able to fully explain APS pathophysi-
ology until the full autoantigenome of a particular individual 
has been defined; this is an important area for future research.

While the thrombophilia of COVID-19 does not appear to 
be explained by the best characterized aPL such as anti-β2GPI 
antibodies, it does seem possible that less refined aPL-like 
antibodies do contribute to the COVID thrombotic burden, 
especially in the microvasculature. The ongoing global pan-
demic emphasizes the importance of more deeply defining 
understudied disease states such as APS. Meanwhile, the hope 
is that the relative spotlight APS has received during the pan-
demic will build momentum for significant discovery over the 
next decade in pursuit of the personalized proactive approaches 
to diagnosis and treatment that our patients deserve.
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