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a b s t r a c t

Microbial communities organize into spatial patterns that are largely governed by interspecies interac-
tions. This phenomenon is an important metric for understanding community functional dynamics, yet
the use of spatial patterns for predicting microbial interactions is currently lacking. Here we propose
supervised deep learning as a new tool for network inference. An agent-based model was used to simu-
late the spatiotemporal evolution of two interacting organisms under diverse growth and interaction sce-
narios, the data of which was subsequently used to train deep neural networks. For small-size domains
(100 mm � 100 mm) over which interaction coefficients are assumed to be invariant, we obtained fairly
accurate predictions, as indicated by an average R2 value of 0.84. In application to relatively larger
domains (450 mm � 450 mm) where interaction coefficients are varying in space, deep learning models
correctly predicted spatial distributions of interaction coefficients without any additional training.
Lastly, we evaluated our model against real biological data obtained using Pseudomonas fluorescens and
Escherichia coli co-cultures treated with polymeric chitin or N-acetylglucosamine, the hydrolysis product
of chitin. While P. fluorescens can utilize both substrates for growth, E. coli lacked the ability to degrade
chitin. Consistent with our expectations, our model predicted context-dependent interactions across two
substrates, i.e., degrader-cheater relationship on chitin polymers and competition on monomers. The
combined use of the agent-based model and machine learning algorithm successfully demonstrates
how to infer microbial interactions from spatially distributed data, presenting itself as a useful tool for
the analysis of more complex microbial community interactions.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Communities of soil microorganisms play a key role in control-
ling the global biogeochemical cycle. Soil microbial activities in soil
include cycling of organic carbon compounds, which exert a signif-
icant impact on atmospheric CO2 concentrations [1,2]. A mechanis-
tic understanding of microbial interactions underpinning cycling of
C and other nutrients remains a grand challenge due to the over-
whelming compositional and functional complexity of the soil
microbiome. Soil microbial communities dynamically shift mem-
bership, interactions, and functions across both spatial and tempo-
ral scales [3]. Thus, gaining a predictive understanding of microbial
interactions in soil is critical for future efforts to control commu-
nity dynamics and ecosystem function. However, the ability to pre-
dict microbial interactions in such a highly complex multi-
dimensional space is currently lacking.

Soil microorganisms self-assemble into specific spatial patterns
that are governed both by the metabolic capacity of individual
members (e.g. quorum sensing and antibiotic production), and by
myriads of environmental variables [4–6]. Microbial spatial pat-
terns formed at microscales are thus a result of the dynamic inter-
play among populations and can consequently serve as a key input
for predicting interspecies interactions. Rapid advancement in
experimental and instrumental technologies is enabling the gener-
ation of high-resolution and high-throughput images that enable
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visualization of the spatial distribution of microorganisms at the
microscopic scale [7–9]. For example, image data from fluores-
cence microscopy provides clues to interspecies interactions by
quantifying cell-to-cell spatial distances and cellular aggregation
patterns [5]. In a previous study, imaging techniques were used
to determine that inter-cell distances were shorter in surface soil
and lengthened with depth [10], indicating relatively closer micro-
bial interactions near the soil surface. Despite these advancements,
spatial data per se do not provide direct information on microbial
interactions.

One promising approach to overcome this gap is computational
network inference. Conventionally, this approach uses species
abundance data as a primary input to predict interspecies interac-
tions based on similarity metrics, through data-model fitting, or by
setting up certain interaction rules [11,12]. These methods have
proven effective in inferring how species are interacting at a pop-
ulation level (e.g., [13,14]) but have yet to be extended to incorpo-
rate spatial organizations of microorganisms. Here, we propose
supervised deep learning as a new network inference tool. As a
subfamily of machine learning, supervised learning trains an
empirical model based on the known relationships between inputs
and outputs and provides the most likely predictions of outputs for
new inputs [15]. Artificial neural networks are frequently used for
this purpose [16]. Neural networks are composed of hidden layers
between input and output layers and get ‘deeper’ as the number of
layers increases. Implementation of deep network models requires
significant computational power, as well as a sufficiently large set
of labeled data for training the network [15]. Due to these chal-
lenges, the use of a neural network for machine learning has previ-
ously been limited to structurally simple nets. However, various
computational advances and breakthroughs over the last decade
are now poised to enable overcoming the limitations associated
with training, as exemplified by the use of deep learning that has
come into the spotlight with unprecedented achievements in solv-
ing many historically challenging problems in diverse scientific
fields [17–21]. In a recent study, the utility of deep learning models
has also been extended to analyze bacterial colony structures for
classification [22].

Training deep neural networks directly from experimental
microscopy image data to infer microbial interactions is currently
infeasible due to unknown input–output relationships (i.e., inap-
propriate for supervision) and insufficient data size (i.e., scanty
for deeper networks). To avoid such limitations, agent-based mod-
els can be used as a tool for data generation under diverse growth
and interaction contexts. In contrast with traditional population-
level ecological models that neglect the variance of growth proper-
ties in individual cells, agent-based models account for phenotypic
heterogeneity in a population by viewing individual cells as auton-
omous entities [23]. Consequently agent-based models enable pre-
dicting the formation of microbial assembly patterns in space as a
community’s higher-order property emerging from the interaction
of individual cells with each other and with the environment. This
high-fidelity simulation tool has been used for various applica-
tions, e.g., to examine how microbial growth on soil surfaces is
localized in dry compared to wet conditions [24,25].

In this work, we present a new pipeline of network inference
that synergistically combines agent-based models and deep learn-
ing techniques to predict microbial interactions from both in silico
and actual image data (Fig. 1). Through case studies of two inter-
acting organisms temporally co-evolving in a two-dimensional
space, we demonstrate that our deep learning networks not only
provide accurate predictions of microbial interactions, but also
enable extracting local variations of interaction parameters in
heterogeneous environments. In the subsequent application to
the analysis of real microscopy images, deep learning models that
were trained using in silico image data correctly predicted shifts in
microbial interactions across different culture conditions. This
approach has potential to significantly improve our understanding
of how microorganisms colonize habitats and interact with each
other in spatially heterogeneous environments such as soils.

2. Materials and methods

2.1. Agent-based models for generating spatiotemporal patterns of
interaction species

2.1.1. Growth rules
Agent-based models were designed to simulate two interacting

microbial species (denoted by ‘G’ and ‘R’ hereafter) that were co-
growing in a two-dimensional space. Simulations were performed
in two different sizes of computational domains (i.e., 100 � 100
and 450 � 450 grids). We set the size of each grid to represent
the physical dimension of 1 mm � 1 mm and we assumed that it
can be occupied by only one microbial cell. Thus, each grid can take
three states: occupancy by ‘G’, occupancy by ‘R’, or vacancy.

As an initial condition, we randomly distributed ‘G’ and ‘R’ cells
(50/50 ratio) to fill about 5% of the computational domain. The
growth of individual cells was modeled based on the following
equation [26,27]:

ri ¼ ri0 þ aijuj 1�uið Þ
h i

1� v ui þuj

� �h i
; i; jð Þ

2 G;Rð Þ; R;Gð Þf g ð1Þ
where ri denotes the actual growth rate, ri0 is the basal growth rate
(i.e., the growth rate without the influence of neighbor species or in
the absence of space limitation), ui and uj are fractional occupancies
of species i and j in a defined domain of interaction, DOI (i.e., the
area where species influence each other), aijuj 1�uið Þ represents
the effect of species j on the growth of species i, where aij is the
interaction coefficient (i.e., the effect of species j on the growth of
species i), and the term uj 1�uið Þ accounts for the increase and
decrease of the effect of the partner with the abundance of species

j and species i. Therefore, ‘1� v ui þuj

� �
’ reflects the decrease of ri

due to increased intra- and inter-specific competition when the
total occupancy in the interaction domain increases.

2.1.2. Simulation of assembly patterns using a single set of parameters
We performed 5000 Monte-Carlo simulations using the agent-

based model in the computational domain with 100 � 100 grids.
We assumed that the parameter values governing the growth
and interaction dynamics of two species are homogeneously dis-
tributed in this small space. Thus, in each simulation, the model
was assigned with a single set of parameters that were randomly
sampled over the following ranges: 0 � ri0 � 0.1, �1 � aij � 1,
0 � v � 1, and 3 � 3 grids � DOI (the size of interaction
domain) � 11 � 11 grids. These parameter ranges reflect the con-
ditions commonly considered in the literature [27]. We applied
periodic boundary conditions on the four sides of the computa-
tional domain. The datasets obtained from this setting are used
as the primary source to develop neural network models
(Section 3.2).

2.1.3. Simulation of assembly patterns using a composite set of
parameters

We extended the agent-based model simulation to the compu-
tational domain with 450 � 450 grids. For this relatively larger
domain, we released the previous assumption of homogeneous
parameter distribution. As illustrated in Supplementary Fig. S1,
we divided the computational domain into five subdomains, each
of which is governed by a distinct set of parameters. The way we
assign parameter values in each subdomain is the same as that



Fig. 1. Deep learning pipeline to infer microbial interactions from microbial assembly patterns: (a) training deep learning networks using in silico images generated from
agent-based models to predict interactions from new test (or unseen) datasets. aGR and aRB represent the effect of R (red) on the growth of G (green) and the effect of G on the
growth of R, respectively; (b) prediction of spatial variation of interaction coefficients in real images using a sliding window method (left panel), final prediction determined
by taking averages from an ensemble of best-performing deep learning models (middle panel), and interaction heatmaps generated by integrating neighboring sliding
window estimations (right panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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described in the previous section. These datasets were used for fur-
ther testing neural network models in heterogeneous environ-
ments (Section 3.3).

2.1.4. Dynamic stochastic simulation of microbial growth
Cellular growth in space is often described as a stochastic pro-

cess. To reflect this nondeterministic aspect of growth, we ran
dynamic simulations of the agent-based model using the Gille-
spie’s stochastic simulation algorithm (SSA) [28,29]. In each time
instance, the SSA algorithm independently determines the follow-
ing two random variables: 1) the time until the next cell growth
occurs (a continuous random variable), and 2) the index of the cell
to grow (a discrete random variable). For the details of implement-
ing the SSA, we refer the reader to a review article by Higham [30].

2.2. Development of deep artificial neural net models

2.2.1. Neural network architectures
We employed plain convolutional neural networks (CNNs)

[31,32] and residual networks (ResNets) [33], the effectiveness of
which has been demonstrated in various fields, especially in image
processing. Similar to Visual Geometry Group (VGG) networks
[31], our plain CNN networks consist of a stack of convolution lay-
ers, followed by fully connected layers. Specifically, we considered
3 to 6 convolution layers and 2 to 3 fully connected layers so that
we tested for eight plain CNN structures with different depths
(Supplementary Table S1(a) and Supplementary Fig. S2(a)). We
also tested the effect of the width of the convolution layers, which
started from 8 or 16 in the first layer and then increased by a factor
of 2 after each pooling layer, until it reached 32 or 64. For the pool-
ing layer, we applied the 2D average pooling and max pooling in
each network configuration.

For deeper network architectures, we tested the ResNets, where
the identity shortcut connections (or residual connections) are
simply inserted in the plain networks (see Supplementary
Table S1(b) and Supplementary Fig. S2(b)). We adapted the
ResNet-18 and ResNet-34 structures [33] to fit our data. We tested
the basic building blocks of two 3 � 3 convolution layers and the
bottleneck blocks of three convolution layers of 1 � 1, 3 � 3, and
1 � 1 as well. In addition, we compared the original residual net-
works with the pre-activation residual networks introduced in
[34], which improved accuracy and reduced overfitting by using
identity shortcut connections and identity after-addition activation
(Supplementary Fig. S2(c)). For convolutional layers, the rectified
linear unit (ReLU) activation function [35] and batch normalization
(BN) [36] were adopted in each convolution to improve the train-
ability and stability of deep neural networks. BN is prevalent for
deeper models since it allows higher learning rates and less careful
initialization by employing a way to normalize activations in inter-
mediate layers. Details of the algorithms can be found in these
papers [31,33,34].

During training, the input to the convolution layers was set
with a fixed-size (e.g., 100 � 100) ternary image with a single
channel that is generated from the agent-based model. We used
1, �1, 0 to denote to denote occupancy by ‘G’, occupancy by ‘R’,
and vacancy, respectively.
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To infer a set of interaction coefficient values, we put a linear
layer with the same number of output nodes at the end layer. In
our case study of two species, we set the number of nodes for
the final linear layer to be two to predict asymmetric binary inter-
action coefficients.
2.2.2. Hyperparameters
We performed hyperparameter optimization to search for the

best neural net models. We considered the following parameters
as a set of hyperparameters to optimize: configurations of convolu-
tion layers and fully-connected layers (see Supplementary
Table S1), mini-batch sizes, learning rates, optimization algo-
rithms, dropout probabilities, and L2 regularization coefficients
(see Supplementary Table S2 for details). Instead of performing a
time-consuming exhaustive search in such a large parameter
space, we pre-determined 300 sets of hyperparameters through
random selection and performed random grid search.

Out of 35,000 in silico images (=5,000 simulation conditions � 7
time points) obtained from agent-based model simulations, we set
aside the 20% of the data for testing and used 80% of the data for
developing deep neural network models, which were in turn split
into five groups for k-fold cross validation [37]. In each training,
the best hyperparameter set was determined based on the mini-
mum average validation loss for the validation dataset.
2.2.3. Model training and early stopping
We trained deep neural networks following the standard super-

vised training procedure [31]. Using the commonly used mini-
batch algorithms: mini-batch gradient descent (GD) with momen-
tum and Adam [38,39], we determined parameters in deep learn-
ing networks such that the following mean squared error (MSE)
is minimized:

MSE ¼
Pn

k¼1

P
i;j akij � bak

ij

� �2

2n
; i; jð Þ 2 G;Rð Þ; R;Gð Þf g ð2Þ

where the aij and baij denote the known (or target) and predicted
interaction coefficients, respectively, and n is the number of batch
images.

To avoid overfitting, we used the validation loss improvements
for early stopping [40]. We set the patience to be 20 during 200
epochs. That is we stopped the training if the performance against
the validation set did not show any improvement after twenty con-
secutive epochs in a maximum of 200 epochs. For initialization of
the neural network weights, we used the same strategies as the
one in [33], which helps to avoid learning stagnation, a common
problem encountered in training deep networks.
2.2.4. Performance metric for model inference
To measure the model performance, we took the following cou-

ple of commonly used metrics: root mean squared error (RMSE)
and R2 (coefficient of determination), i.e.,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1
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; i; jð Þ 2 G;Rð Þ; R;Gð Þf g ð3Þ
R2 ¼ 1
2

X
i;j

1�
Pn

k¼1 akij � bak
ij

� �2

Pn
k¼1 akij � akij

� �2

0
B@

1
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where aij denotes the average of the true aij
0s.
2.2.5. Sliding window estimator to predict interactions in larger and
irregular sized images

In order to extend the pre-trained models to image data with
larger size than the input data (used for training), we adopt the
sliding window method, which has been widely used for object
detection in images [41,42]. A basic idea is to scan the larger size
image using the smaller-size square window that slides with a
fixed step size. The size of window is the same as that of the images
used for training. While any integer value can be considered for the
step size, we recommend setting it as a factor of the input size (i.e.,
window size) for convenient interpretation. The numbers of sliding
windows across rows and columns (Nrow and Ncol) are as follows:

Nrow ¼ h� nið Þ%ns þ 1 ð5Þ

Ncol ¼ w� nið Þ%ns þ 1 ð6Þ
where ns, w, h, and ni denote the step size, image width and height,
and input size (=window size), respectively. The input size ni is
divisible by the step size ns. The % represents the integer divide
operator that divides two numbers and returns the integer part of
the result. As the step size gets smaller, the computational cost to
analyze a test image should get higher due to the increase of Nrow

and Ncol. For simplicity, we discarded the residual part in the right
and bottom edges in test images.

As the sub-image in each windowwas set to fit the model input,
prediction of interaction values for each window is straightfor-
ward. With the step size typically smaller than the window size,
grid blocks will be generated by overlapping multiple windows.
Thus, the values of interaction coefficients in each of the grid
blocks can be estimated as the averaged interactions of associated
neighboring windows, which overlays the grid block. In the same
manner, we can also estimate the variability of the neighbor inter-
actions, which allows to quantify the local variance of interactions.
That is, if the predicted interactions of the neighboring windows of
the overlapping block has large variance, it can be said that this
local area is likely to be governed by a composite of different
context-dependent relationships.

To validate this approach, we defined the target interaction
coefficients a�ij;S of each sliding window S that contains K subdo-
mains governed by different interaction parameters as follows:

a�ij;S ¼
XK
k¼1

wk;Sakij;S; i; jð Þ 2 G;Rð Þ; R;Gð Þf g ð7Þ

where k indicates a subarea in a window that has a different inter-
action and wk;S represents the area ratio of the subarea k to the total
area of the sliding window S.

2.2.6. Pre-processing of real images
To infer the interaction coefficients from the real images, we

transformed the RGB images into ternary images (2D array of 1 s,
�1 s, and 0 s) to be available for the trained models. For identifying
red and green colors, we used the following color ranges in an HSV
color space: (H:36, S:25, V:25) to (H:70, S:255, V:255) for green
colors and (H:-20, S:25, V:25) to (H:20, S:255, V:255) for red colors.
To get prediction for the sliding windows, split images are fed to
the ensemble of trained deep learning models.

2.2.7. Deep learning implementation
In silico image data generated using the agent-based model

were stored in the mat file format. For the implementation of deep
learning methods, we used PyTorch 1.0.1 (Python 3.6), an open
source deep learning software library for the Python programming
language (https://pytorch.org/). We employed the Python packages
such as pandas to convert the mat files to pickle format, scikit-
learn to efficiently manage training/test data, and OpenCV to

https://pytorch.org/
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import and process the real images to be fit to the deep learning
models.

We used the GPU-equipped machine to train deep learning
models, which were configured as follows: Intel(R) Xeon(R) CPU
E5645 @ 2.40 GHz CPU, 96 GB RAM, and Nvidia GeForce GTX
1080 Ti with 12 GB VRAM. Using this hardware configuration,
training a ResNet-18 model with pre-activation blocks took
approximately 6.4 h on average. The use of GPU was critical -
model inference for an input took about 1.62 ms on average in
the GPU mode, but took about 1.05 s in the CPU mode.

2.3. Experimental design and microscopy

2.3.1. Construction of fluorescent bacterial strains
Red and green fluorescent bacterial populations for co-culture

studies were prepared as follows. We modified a non-chitinolytic
E. coli K-12 BW25113 4chiA, a chitinase gene chiA deletion strain
from the Keio Knockout Collection (Dharmacon) [43], to include a
genomic insertion of constitutively expressed mScarlet-I red fluo-
rescent protein (RFP). To do so, we used a pMRE-Tn5-155, a
miniTn5 plasmid with mScarlet-I RFP cargo, gifted from Mitja
Remus-Emsermann (Addgene plasmid # 118545; http://n2t.net/
addgene:118545; RRID:Addgene_118545) [44].

Conjugation with the Tn5 mScarlet-I RFP plasmid was per-
formed as follows: E. coli 4chiA recipient was grown on Luria-
Bertani (LB) (Lennox; Sigma Aldrich) agar supplemented with
50 mg L�1 kanamycin media for 24 h. Donor strain E. coli S17-1
was streaked and cultured overnight on LB solidified with 1.5%
agar (Difco, BD) supplemented with 100 mg L�1 Ampicillin (Sigma
Aldrich) to maintain the pMRE-Tn5 plasmid. Freshly grown bacte-
ria were harvested and resuspended in 1� phosphate buffered sal-
ine (PBS) to reach an OD600 nm of 1.0 by spectrophotometer
(Genesys20, Thermo Scientific). Donor and recipient strains were
mixed in a 1:1 ratio and concentrated by centrifugation (4000g,
Room temperature, 5 min) to reach an estimated OD600 nm of 20.
The bacterial mix was drop spotted on Luria-Bertani (LB) agar
and incubated for 18 h at 37 �C. After incubation, the cells were
harvested and resuspended in 1 mL 1� PBS. The E. coli S17 strain
is an auxotroph for Proline and Arginine [44], so MOPS minimal
media [45] agar supplemented with 0.2% glucose and 50 mg L�1

kanamycin (Sigma Aldrich) was used to select for mScarlet-I RFP
transformed E. coli 4chiA. This selection was carried out four addi-
tional times and colony fluorescence was assessed by fluorescent
plate scans conducted in a FluorChemQ (ProteinSimple) fluores-
cent imaging cabinet. Highly fluorescent colonies were selected
and cultured in LB with 50 mg L�1 kanamycin and prepared as
10% glycerol stocks for long term storage at �80 �C.

We engineered reporter strain bRE007 by transposon insertion
of a fluorescent protein reporter into strain Pseudomonas fluo-
rescens SBW25. The reporter cassette consists of a superfolder
GFP gene (sfGFP) translationally fused to a chlorampenicol actetyl-
transferase gene (cmR) expressed from a highly efficient constitu-
tive promoter (apFAB46). Briefly, to generate the strain we
transformed a nucleoprotein complex of hyperactive Tn5 trans-
posase (EZ-Tn5, Lucigen) and a PCR-amplified sfGFP-cmR cassette
that includes the inverted repeat sequences recognized by Tn5.
We prepared electrocompetent cells by growing SBW25 to OD
0.4 and washing multiple times in pre-chilled 10% glycerol. The
cells were electroporated (1800 V, 200 O, 25 mF) with 100 ng of
the amplified cassette in a 1 mm gap cuvette, recovered in LB broth
at 30 �C for 2 h, and plated on LB agar supplemented with
34 lg mL�1 chloramphenicol. Highly fluorescent colonies identi-
fied by blue-light transillumination were plated onto fresh LB agar
plates supplemented with 34 lg mL�1 chloramphenicol to obtain
isogenic colonies. To identify the sfGFP-cmR insertion site, the iso-
lated genome (DNeasy, Qiagen) was subjected to Nextera fragmen-
tation (Illumina) followed by paired end Illumina sequencing
(SNPSaurus, Oregon, USA). De novo assembly of sequence reads
that did not match the SBW25 genome via Geneious was used to
verify the presence of the sfGFP-cmR cassette and the insertion
location. The reporter cassette inserted within gene PFLU_RS22785
(locus 5127878) is in a reverse orientation.

2.3.2. Coculture experiments
Bacterial strains were cultivated for 24 h in 5 mL of LB broth

without antibiotics for wild type strains and either 20 mg L�1 chlo-
ramphenicol or 50 mg L�1 kanamycin for P. fluorescens SBW25
mNeonGFP or E. coli 4chiA mScarlet RFP, respectively. To prepare
culture chambers, silicon 4 well micro-inserts (Ibidi) with well
dimensions of 2.0 � 1.5 � 4.2 mm (w � l � h) were secured to
25 � 75 mm, #1 (~0.13–0.17 mm) float glass coverslips (Chemglass
Life Sciences) and wrapped in foil before autoclaving for 30 min,
121 �C. Next, chitin beads were fluorescently stained and prepared
for microcosm incubations as follows: 100 mL of chitin resin (New
England Biosciences) in 20% ethanol suspension was transferred to
a 1.7 mL Eppendorf tube and centrifuged at room temperature (RT)
for 2 min at 4000g (5810 R, Eppendorf). The supernatant was
removed, and the chitin resin was resuspended in 20% Calcofluor
White (Sigma Aldrich) in 1� PBS. The resin was stained in the dark
at RT for 30 min, buffer exchanged twice, and diluted with enough
filter sterilized MOPS minimal media to achieve ~10 beads (each
bead ~50–120 mm) per mL as assessed by 10� light microscopy
(MicroStar, American Optical). For the microcosms receiving
homogenous carbon substrates, either the chitin monomer N-
acetyl glucosamine (Sigma Aldrich), or pentaacetyl-chitopentaose
(Megazyme) which is a chitin oligomer composed of only 5 N-
acetyl glucosamine monomers, were prepared as 0.2% (w/v) in
MOPS minimal media and filter sterilized with Millex 0.22 um
PES syringe filters (Millipore). To set up the C substrate explicit
microcosms, 1 mL of Calcofluor White stained chitin beads in MOPS
minimal media was dispensed into each well followed by as addi-
tional 7 mL MOPS media. For the homogenous substrate cul-
tures, 8 mL of 0.2% pentaacetyl-chitopentaose or 0.2% n-acetyl
glucosamine in MOPS minimal media was dispensed into wells.
The microcosm chambers were then wrapped in Parafilm (Bemis
Company, Inc) until inoculation. To prepare the inoculum, 10 or
2 mL P. fluorescens and E. coli cultured to of 0.40 OD600 nm (3.2� 108-
cell mL�1) were centrifuged (6000g at RT) to pellet cells. Spent
media was removed and cells were resuspended in 3.2 mL of fresh
MOPS minimal media. Cell suspensions were then mixed in a 1:1
ratio and microcosm were inoculated with 1 mL of cell suspension

2.3.3. Microscopy imaging
For confocal laser scanning microscopy, co-culture chips were

placed onto a Leica DMI6000 microscope equipped with a CSU 10
Confocal scanning unit (Yokogawa Corporation of America, Sugar
Land, TX). Approximately 10 random fields for each culture were
selected for imaging as follows: Calcofluor White stained chitin
beads (355 nm Ex; 460/50 m Em), GFP (488 nm Ex; 525/50 m Em)
and RFP (561 nm Ex; 595/30 m Em) with a Leica Plan APO 20/0.7
objective using a Coolsnap HQ2 (Photometrics, Tucson, AZ) controlled
by MetaMorph version 7.7.8.0 (Molecular Devices, Sunnyvale, CA)
software. The images were further processed in MetaMorph.
3. Results and discussion

3.1. Spatiotemporal simulation of interaction-specific microbial
assembly

Using the agent-based model described in the previous section,
we simulated the dynamic growth of two interacting microorgan-

http://n2t.net/addgene%3a118545
http://n2t.net/addgene%3a118545


Table 1
Test performance of the top 5 in plain CNN configurations and the top 3 in ResNet
configurations.

Training
Dataset

Validation
Dataset

Test Dataset

Avg. MSE Avg. MSE Avg. MSE Avg. R2

Plain CNN (Top 5) 3.066 � 10�4 0.057 0.059 0.828
ResNet (Top 3) 2.269 � 10�4 0.051 0.053 0.844
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isms in a two-dimensional space of 100 mm � 100 mm size, over
which all parameters were assumed to be invariant. The datasets
generated under this configuration were used as a main source
for training deep learning networks (Section 3.2). This size range
was selected because at the scale of 100 mm, microbial interactions
are known to play a key role as a primary driver of population
structure and dynamics [5].

Previous studies have shown that cooperative organisms
develop stronger intermixed spatial patterns while competitive
relationships lead to spatial segregation [25,27]. Consistent with
these findings, we also obtained distinct spatial patterns for three
representative interaction types (competition, cooperation, and
exploitation) (Supplementary Fig. S3), the intermixing levels of
which were in the following order:
cooperation > exploitation > competition (Supplementary
Fig. S4). These results suggest that specific spatial patterns can be
considered as ecological signatures of microbial interactions,
although we recognize they may also be affected to a degree by
other parameters (e.g., basal growth rates) that are not directly
associated with interactions. Not surprisingly, spatial patterns
become more interaction-specific as the population density
increased with time, as indicated by the fact that the differences
in the intermixing levels among different interaction types were
initially smaller but became progressively larger (Supplementary
Fig. S4).

3.2. Microbial assembly governed by spatially homogeneous
parameters

We evaluated the performance of deep learning models in infer-
ring the interactions of two co-evolving organisms under a previ-
ously described simple configuration. For this purpose, we
iteratively performed 5000 dynamic simulations using the agent-
based model. In each simulation, we randomly determined the
parameter set and collected multiple in silico images of two organ-
isms with time such that the total population density (in collected
images) ranged from 10 to 70%.

The simulation results in the previous section indicated that
spatial images with higher population densities will be more infor-
mative than those with lower densities and that deep learning net-
works could be best developed using the images with the
maximum highest available density. This gave rise to the following
fundamental questions in implementing deep learning for actual
applications: 1) ‘‘What is a threshold of population density, above
which a reasonably good performance of deep learning networks is
ensured?”; 2) ‘‘Will the deep learning networks trained using high
density data be generalizable to infer interactions from lower den-
sity data?”, and 3) ‘‘Alternatively, what is the best training strategy
for handling data with varying levels of population densities?”.
These questions are systematically examined in the following
sections.

3.2.1. Accurate prediction of interaction coefficients by deep learning
networks trained by snapshot images

We illustrate the procedures of developing and evaluating deep
learning networks when they are trained and tested with one-time
snapshot image data with a similar population size (i.e., 70%).
Developing deep learning networks requires the pre-
determination of hyperparameters (i.e., parameters to determine
model architectures such as the topology and size of neural net-
works and other options associated with the selection of optimiza-
tion algorithms and regularization methods). Depending on the
choice of network architectures and other hyperparameters, we
considered 28 cases (i.e., eight CNN and six ResNet models opti-
mized using two alternative optimization algorithms: mini-batch
GD vs. Adam). Following a typical practice, we iteratively split
5000 datasets into 4000 (80%) for training and 1000 (20%) for test-
ing. Among all plain CNN models, CNN#6 showed the best perfor-
mance regardless of the choice of optimizers (Supplementary
Tables S3 and S4). Interestingly, the CNN#6 features are relatively
less deep but have a wider network structure (i.e., with 16, 32, and
64 channels) compared to other models. This is understandable
considering that plain CNNs with increased depth tend to show
higher training errors due to the difficulty in finding optimal
parameters [33]. ResNet models had smaller validation errors than
CNN models on average (Supplementary Table S5). Overall, the
performance of deep learning networks was shown to be fairly
good: the average R2 values of top 5 plain CNNs and top 3 ResNets
for test datasets were 0.83 and 0.84, respectively (Table 1).
3.2.2. Enhanced performance by incorporating temporally evolving
spatial images

In the previous section, we trained and tested deep learning
networks against datasets with the same size of populations, but
in reality, the population sizes may vary among images. This
means that the population size in new images from which one
attempts to extract interactions may not match with the ones that
were used for training deep learning networks. Therefore, we
examined to what extent deep learning networks trained with a
specific level of population size (i.e., 70%) can be generalizable to
different population sizes, ranging from 10 to 70%. As shown in
Fig. 2(a), the performance of deep learning networks (as measured
in terms of average RMSE and R2 scores) was the highest when
applied to the images with population densities of 70% and became
progressively worse as the density level decreased. Notably, R2 val-
ues became negative for the images with �30% densities, implying
that deep learning networks performed worse than the null model.
This result indicates that deep learning networks trained with a
high-density data may be extended to the analysis of lower density
data to a certain level but cannot be generalizable beyond that.

To expand the range of population densities that can be ana-
lyzed for inference, we tested two approaches. First, we indepen-
dently trained deep learning models for each of the density
levels between 10 and 70% and applied the resulting density-
specific models only to the datasets with the corresponding same
size of population. In comparison to the previous case above, the
use of density-specific models led to improved inference (Supple-
mentary Fig. S5). While the performance was still poor for popula-
tion densities <20%, this may be ascribed to an intrinsic limitation
in handling sparse data because such low population data will not
provide sufficient spatial contexts to infer interaction coefficients.
Despite improved performance, the use of density-specific models
gave rise to an increased computational burden and inconvenience.
In the example here, we had to develop seven individual deep
learning networks (i.e., for population densities of 10~70%), the
number of which increases if the population densities in new
images do not match with any of the previously considered levels.
One may handle this case by devising an additional heuristic – for
instance, if the density level in a new image was 45%, one could
average out the inference results obtained from 40% and 50%-
density models. It should be realized, however, that this requires



(a) 

(b)

Fig. 2. Effect of the cell density on the prediction performance of deep learning
models: (a) test performance of the best-performing models (chosen through
rigorous hyperparameter optimization) for different cell density levels when
trained using the images with the 70% cell density; (b) performance improvement
of the ResNet models when trained using the images with the entire range of cell
densities. In both (a) and (b), box plots describe the performance results of the best
models and the red dots represent the performance results of the ensemble model
in each cell density level. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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additional efforts to optimize these heuristics, which is often not
straightforward.

In the second approach, we developed deep learning networks
(using the top 3 ResNet models) by expanding the training dataset
to include the entire range of population sizes from 10 to 70%.
Interestingly, this new model (that was trained with a single set
of datasets collecting all images across all population densities
even though the size is seven times larger than the previous cases)
achieved a comparable performance to the case with density-
specific models (Fig. 2(b)). The performance was particularly high
for the 40 ~ 60% range of density levels, while being poor again
when the density was below 20%. A potential reason for this
improved performance is that temporal evolution of spatial pat-
terns allows deep learning networks to extract additional informa-
tion on microbial interactions, which could not be deducible from
stagnant snapshot images. We therefore further improved the per-
formance by employing a randomization-based ensemble
approach [46]. That is, we aggregated the outputs from the top
three ResNet models and took their averages as the final estima-
tions. The ensemble approach produced a better predictive perfor-
mance than individual models, even the best one in each cell
density (Fig. 2(b)). Due to its more robust and accurate predictions
we applied this approach in combination with the ensemble esti-
mation in all subsequent cases.

3.3. Microbial assembly governed by spatially heterogeneous
parameters

We extended our analysis to a larger-size domain where the
previous assumption that interaction and growth parameters are
invariant in space may not hold. For this purpose, we considered
a 450 mm � 450 mm size domain and additionally performed 50
dynamic growth simulations by accounting for spatial heterogene-
ity of the parameter set in the agent-based model. We divided the
computational domain into five subdomains such that the growth
and interaction dynamics in each subdomain is governed by inde-
pendent parameter sets; in each simulation, we randomly assigned
five sets of model parameters (see Section 2.1.3 and Supplemen-
tary Fig. S1). This configuration sets up simple proof-of-concept
simulations for the extended testing of deep learning models.
The heterogeneous agent-based model properly generated com-
posite spatial patterns as configured using distinct parameter sets
in subdomains (Fig. 3(a)). Depending on how the parameters (ran-
domly determined) were partitioned, both population densities
and spatial patterns across subdomains may or may not be
distinctive.

Our goal was to infer spatial variation of interactions using the
previously developed top three ResNets without any additional
training. This requires a special approach because deep learning
networks were trained using the data generated under a com-
pletely different configuration. Thus, we extracted local interac-
tions from a predefined 100 mm � 100 mm-sized window that
slides through the space to scan the entire domain (see Sec-
tion 2.2.5). With the step size of 25 mm, the 450 mm � 450 mm
domain is filled with 225 (=15 � 15) smaller windows (e.g.,
Fig. 3(b)). Due to overlapping among windows, each grid is
assigned with multiple values of interaction parameters (inferred
from deep learning networks). We determined the grid-specific
interaction parameters by taking an average of a set of values
obtained from neighbor windows.

The sliding window approach successfully inferred interaction
parameters from composite spatial patterns (averaged R2: 0.79)
(Supplementary Fig. S6). The ability to predict the spatial variation
of interaction parameters was remarkable considering that deep
learning networks were never previously fed with those data.
Comparison of interaction parameter distributions demonstrates
the performance of our approach in a more dramatic way. The
example shown in Fig. 4 includes four different types of interac-
tions: amensalism (subdomains 1 and 5), parasitism (subdomain
2), commensalism (subdomain 3), and competition (subdomain
5), all of which were correctly inferred from the sliding window
method. Our approach also enabled visually identifying the border-
lines across subdomains that are governed by distinct sets of
parameters because they are characterized by relatively higher
variations of predicted interaction coefficients as shown in Fig. 4.
The performance of deep learning networks was consistently veri-
fied through all other examples (Supplementary Fig. S7).

3.4. The shifts in microbial interactions inferred from real microscopic
images

To demonstrate the applicability of the deep learning method
for real microscopy images, we co-cultured GFP tagged P. fluo-



Fig. 3. Illustration of (a) an example of the assembly patterns governed by a composite set of 5 different interaction parameters and (b) the sliding windows of image
size = 450 (ni = 100, ns=25). There are 225 sliding windows in 15 rows and 15 columns. (c) shows the heatmaps of true interaction distributions when the step size is 25. The
orange box and green box in (a) represent the sliding window (ni � ni) and the grid block (ns � ns), respectively. (c) shows the heatmap of averaged interactions (left) and
standard deviations of neighboring interactions (right). aGR and aRB represent the effect of R(red) on G(green) and the effect of G on R, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. An example of interaction heatmaps, systematically built by aggregating all prediction results from the sliding window estimation, which represented the interaction
governing a locally assembled community at microscale (See 2.2.5). Each grid (an overlapping block) can represent (a) the averaged interactions of the neighboring windows
and (b) their standard deviations. The original assembly pattern was shown in Supplementary Fig. S9 and the left panels of (a) show the boundaries of five subdomains
governed by different interactions. This visualization facilitates intuitive inspection how similar the target and predicted interaction patterns are. The grid locations of the
interaction heatmaps in (a) and (b) corresponds to the coordinate of the input image. Each grid in (a) and (b) respectively shows the average values and standard deviations of
interaction coefficients of the neighboring sliding windows that overlie the corresponding grid.
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Fig. 5. Interaction heatmaps automatically predicted from species level assembly patterns (i.e., real microscopy images) influenced by various trophic dynamics. These
images were taken from the co-culture experiments of P. fluorescens (Green fluorescent) and E. coli 4chiA (Red fluorescent) in (a) chitin beads and (b) chitin monomer N-
acetyl glucosamine (See 2.3). (a) Indicates that, when cultured with chitin, P. fluorescens positively affects E. coli 4chiA growth since the heatmap in the bottom right panel
shows a reddish color that stands for the strong positive interaction of the P. fluorescens on E. coli. In contrast, the top right panel of (a) shows E. coli has no significant effect on
P. fluorescens growth (interaction coefficients reside between �0.2 to +0.2). In (b), the negative effects of P. fluorescens (aRG) became a bit stronger than its counterpart in the
left side. However, as it went to the right, the negative effects of E. coli (aGR) did get much stronger than the other. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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rescens and RFP tagged E. coli4chiA (chitinase gene chiA null) with
either a chitin polymer or N-acetyl glucosamine and captured
images after 36 h of incubation by fluorescent confocal microscopy
(see Section 2.3). These substrates were chosen because chitin
polymers must first be enzymatically hydrolyzed to oligomers
and monomers before the sugar can be utilized for energy and
growth and is thus ideally suited for studying metabolic co-
dependencies between populations. Because E. coli 4chiA is inca-
pable of degrading chitin, E. coli will depend on the chitinolytic
activity of P. fluorescens to acquire chitin hydrolysis products (e.g.
monomers and oligomers of N-acetyl glucosamine) in the micro-
cosms supplied with chitin as the sole supplied carbon source.
Therefore, resource accessibility would be determined by the spe-
cies spatial organization in a given environment (Supplementary
Fig. S8(a)). On the other hand, both species will compete for
resources in the microcosms fed with the readily accessible chitin
monomer, N-acetyl glucosamine (Supplementary Fig. S8(b)).

Using the sliding windowmethod described in the previous sec-
tion, we were able to extract the local variation of interaction
parameters from real images (because it is difficult to assume that
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spatial distributions of nutrient concentrations and population
densities are perfectly uniform), while the level of their variation
was insignificant in our experimental settings (Fig. 5). Overall pre-
dictions were consistent with our expectations, i.e., the deep learn-
ing networks predicted a degrader-cheater relationship between P.
fluorescens and E. coli4chiA when grown on chitin polymers (Fig. 5
(a)), but a competitive relationship when grown on their hydrolysis
products (Fig. 5(b)). The latter case was clearly indicated by nega-
tive values of interaction coefficients, both aGR (the influence of
E. coli on P. fluorescens) (right top panel of Fig. 5(b)) and aRG (the
influence of P. fluorescens on E. coli) (right bottom panel of Fig. 5
(b). In the case of growth on chitin polymers, the influence of
E. coli on P. fluorescens was predicted to qualitatively vary in space
(i.e., positive in the upper area; negative in the bottom area) (right
top panel of Fig. 5(a)), while the effect of P. fluorescens on E. coliwas
predicted to be positive throughout the entire domain (right bot-
tom panel of Fig. 5(a)). While local, the prediction of the positive
influence of E. coli on P. fluorescens aGRð ) in the upper area mis-
matched our expectation. Unlike Fig. 5(b), the image in Fig. 5(a)
shows that P. fluorescens is predominant while the presence of
E. coli is minor. Thus, two possibilities are indicated: 1) our deep
learning network was not sufficiently trained against those situa-
tions, or 2) images (dominated by one species) pose an intrinsic
challenge in accurately predicting the influence of the minor spe-
cies on its partners. Despite this uncertainty, we stress that our
deep learning model demonstrated unprecedented performance
in inferring microbial interactions with acceptable accuracy, while
predicting specific interspecies interactions from snapshot images
is far from intuitive.
4. Conclusions

Here, we proposed supervised deep learning as a new network
inference method to predict interspecies interactions from non-
conventional data, i.e., spatial patterns of microorganisms. Due to
the unsuitability of real image data for training deep learning mod-
els, we employed agent-based models for data generation. Agent-
based modeling is commonly used to simulate the self-
organization of interacting microorganisms in space and time as
governed by specific interaction and growth rules. Our use of the
agent-based model was exactly the opposite, i.e., we used their
simulation results to train deep learning network models for com-
putational inference of interspecies interactions (i.e., for reverse
modeling). Through case studies considered in this work, we
demonstrated that: 1) agent-based modeling can serve as an effec-
tive source of in silico images (for training deep learning network
models); 2) in combination with the sliding windows technique,
the deep learning network trained on spatially homogeneous envi-
ronments can extract local variances of interaction parameters in
heterogeneous environments; and 3) in the application to real
images, the resulting deep learning network can correctly differen-
tiate context-dependent microbial interactions.

Challenges could arise in extending the developed computa-
tional method to predict interspecies interactions in complex, nat-
ural microbial communities that contain diverse microbial species
including microeukaryotes as well as bacteria, which are mostly
unculturable. For example, the predictive power of deep neural
networks is dependent on the accuracy of in silico data, which is
an intrinsic issue with all machine learning methods that use
model-generated data for training. Currently, reliable simulation
of spatial patterns formed by multiple interacting species remains
challenging, often due to the lack of fundamental knowledge of
growth characteristics of individual species in environmental com-
munities. However, this gap is expected to be minimized through
rapid advancement in simulation methods [47,48], as well as culti-
vation techniques [49,50] that enable building structurally tract-
able synthetic consortia derived from complex communities to
provide molecular omics data that can inform agent-based model-
ing for more accurate simulations.

Our work provides a generalizable pipeline for developing deep
learning models from image data, which can serve as a basic plat-
form for further development by combining with strategic data
generation through robust design of experiments and transfer
learning and fine-tuning using pre-trained models [51] (e.g., to
overcome lack of experimental image data [22]). Co-design of
experimental and modeling studies following the procedures pro-
posed in this work is our key contribution that can facilitate to
reveal key but previously unknown interaction mechanisms in
complex microbial communities that have been underexplored to
date.
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