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Abstract
The long-term health effects of concussion and sub-concussive impacts in sport are

unknown. Growing evidence suggests both inflammation and neurodegeneration are piv-

otal to secondary injury processes and the etiology of neurodegenerative diseases. In the

present study we characterized circulating brain injury and inflammatory mediators in

healthy male and female athletes according to concussion history and collision sport partici-

pation. Eighty-seven university level athletes (male, n = 60; female, n = 27) were recruited

before the start of the competitive season. Athletes were healthy at the time of the study (no

medications, illness, concussion or musculoskeletal injuries). Dependent variables included

29 inflammatory and 10 neurological injury analytes assessed in the peripheral blood by

immunoassay. Biomarkers were statistically evaluated using partial least squares multivari-

ate analysis to identify possible relationships to self-reported previous concussion history,

number of previous concussions and collision sport participation in male and female ath-

letes. Multiple concussions were associated with increases in peripheral MCP-1 in females,

and MCP-4 in males. Collision sport participation was associated with increases in tau lev-

els in males. These results are consistent with previous experimental and clinical findings

that suggest ongoing inflammatory and cerebral injury processes after repetitive mild head

trauma. However, further validation is needed to correlate systemic biomarkers to repetitive

brain impacts, as opposed to the extracranial effects common to an athletic population such

as exercise and muscle damage.

Introduction
Concern regarding the potential negative health impact of concussions and collision sport par-
ticipation has led to an increased demand to delineate the pathophysiological mechanisms
mediating long-term outcomes [1]. Our current conceptual understanding of concussion
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pathophysiology consists of an acute disturbance of neurobehavioral function together with
damage to neuronal and glial cells [2]. Symptoms are commonly short-lived and self-limited,
resolving within a span of days to weeks [3–5]; however, recent objective advances in neuroim-
aging and analytical biomarker assessment have documented underlying functional and struc-
tural abnormalities persisting beyond symptom resolution [6–8]. Furthermore, evidence is
now emerging that suggests concussion, as well as the repetitive head impacts that commonly
occur in collision sport participation, may contribute to negative health outcomes such as
chronic traumatic encephalopathy (CTE) [9–14]. However, our current understanding of these
pathophysiological processes in humans is limited.

Inflammation is an important contributor to both repair and neurodegenerative processes
after neurotrauma [15–17]. Resident microglial cells and central nervous system (CNS) invad-
ing peripheral immune cells facilitate the acute repair and regeneration of damaged brain tissue
via the release of neurotrophic factors and scavenging of debris [18–20]. However, chronic
inflammation may also exacerbate neuronal and glial cell injury, leading to further cellular
degeneration and culminating in the deposition of neurofibrillary tangles and amyloid plaques
[18]. In view of this, human studies have found prolonged neuroinflammation persisting for
months to years after moderate and severe traumatic brain injury (TBI) [21–24], and experi-
mental evidence suggests these maladaptive processes may occur through the interaction of
inflammatory mediators and glutamate receptors in the CNS [25–28]. Moreover, multiple
head impacts may worsen these processes by priming microglial cells, leading to an exaggerated
inflammatory reaction upon subsequent trauma [18,29].

Inflammation post-concussion is difficult to characterize due to practical limitations such as
the inability to access tissue proximal to the site of injury, and the invasive nature of cerebral
spinal fluid (CSF) acquisition [30]. Nevertheless, peripheral blood samples have the potential
to provide meaningful information regarding inflammatory processes both in the CNS and
periphery in response to brain injury, in a relatively cost-effective, non-invasive manner
[18,30,31]. In view of this, recent evidence has shown that increased circulating C-reactive pro-
tein levels post-injury are associated with persistent post-concussive syndrome symptoms [32],
and coated platelet levels, an inflammatory correlate, are elevated in mild TBI patients up to 9
years post-injury [33].

Historically, one of the limitations in concussion research has been the lack of consideration
for potential sex differences. Specifically, there has been a paucity of concussion research on
females [34]. Yet, available evidence suggests that females may be at a greater risk for concus-
sion [35,36], report more symptoms post-concussion [35,37], and take longer to recover
[35,38]. In addition, it is known that males and females display distinct immunological
responses; women exhibit stronger cellular and humoral immune responses, are more prone to
many autoimmune diseases, but are less susceptible to various of bacterial, viral, and fungal
infections [39,40]. Therefore, the possibility exists that inflammatory related processes occur-
ring chronically after concussion may have sex-specific pathological sequelae.

Thus, in this study we set out to examine a panel of systemic brain injury markers and
inflammatory mediators in a sample of male and female athletes to characterize the relation-
ship between these biological indices, concussion history, and collision sport participation.

Methods

Participants
Participants were recruited from University of Toronto intercollegiate “varsity” athletic teams
between August 2014 and December 2015. A member of the research team provided an over-
view of the study and requested consent to obtain blood samples and use the Sport Concussion
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Assessment Tool 3 (SCAT3) results for research purposes. Medical history was obtained by the
team’s therapist/trainer, followed by administration of the SCAT3. Sixteen teams (8 male, 8
female) were contacted for research purposes, including the following sports: basketball, base-
ball, field hockey, football, ice hockey, lacrosse, rugby, soccer, wrestling and volleyball. Athletes
were excluded if they suffered from seasonal allergies, cold, infection, disclosed any inflamma-
tory-related health conditions, were taking any medications other than birth control at the
time of the study, or had musculoskletal injuries (9 subjects). Study procedures were approved
by the Health Sciences Research Ethics Board, University of Toronto (protocol reference #
27958), and all participants provided written informed consent prior to the study.

Measures
Sport Concussion Assessment Tool 3 (SCAT3): The SCAT3 combines aspects of several previ-
ously published concussion tools into eight components designed to assess concussion symp-
toms (number endorsed and severity), cognition (Sideline Assessment of Concussion or SAC
and Maddocks questions), balance (firm conditions of the Balance Error Scoring System or
BESS), Glasgow Coma Scale (GSC) and neurological signs (physical signs, coordination) [41].
Each of the eight components are scored and recorded. The symptom score is comprised of a
22-item post-concussion symptom scale using a seven-point Likert scale rating. Symptom
severity is obtained by summing the rated symptom score for each symptom [39]. This symp-
tom scale has been shown to be reliable and valid for the assessment of both symptom presence
and severity [37,41,42].

Blood Sample Collection
Venous blood samples were drawn from athletes after consent was obtained and prior to the
beginning of the competitive varsity season. Samples were drawn into a 10-mL K2EDTA (with
4mM sodium metabisulfite [Na2S2O5]) or 4-mL non-additive (Vacutainer, Becton Dickinson,
NJ, USA) tube. Within one hour, specimens were centrifuged at 1600 x g for 15 minutes at 4°C,
and the plasma supernatant was aliquoted and frozen at -70°C until analysis.

Biomarker Analysis
Twenty-eight of the thirty-nine markers were analyzed using MSD1 96-Well MULTI-AR-
RAY/-SPOT1 V-plex Human Immunoassay Kits purchased fromMSD (MD, USA), and run
on a Meso-Scale Discovery (MSD1) Sector imagerTM 6000 with Discovery Workbench soft-
ware (version 3.0.18). A prototype assay panel of eleven additional neuroinjury markers includ-
ing total tau, glial fibrillary acidic protein (GFAP), s100 calcium-binding protein (s100) B,
neuron specific enolase (NSE), Neurogranin (NRGN), creatine kinase-BB isoenzyme (CKBB),
visinin-like protein (VILIP)-1, vonWillebrand factor (vWF), brain derived neurotrophic factor
(BDNF), peroxiredoxin (PRDX)-6, and monocyte chemoattractant protein (MCP)-1, was
assessed by multiplexed immunoassay [43].

Statistical Analyses
Demographic and descriptive statistics were completed on male and female athletes by stu-
dent’s independent t-test Mann Whitney U, or χ2, where appropriate. For dichotomized analy-
sis of collision vs. non collision sports, collision sports were delineated as sports with
purposeful contact as an inherent part of the game, and included men’s ice hockey, football,
rugby, lacrosse, and women’s rugby [44]. All other sports, including those where inadvertent
contact may occur (soccer, basketball), were considered non-collision sports [44]. For all

Blood Biomarkers and Repetitive Head Impacts

PLOS ONE | DOI:10.1371/journal.pone.0159929 July 26, 2016 3 / 14



analyses, individual biomarker values were excluded if they were above or below the manufac-
turers’ recommended level of quantitation for each analyte, or displayed a coefficient of vari-
ance>25% between duplicates. Because multiple 96-well plates were analyzed, inter-plate
variance was accounted for; plates were only included in the statistical analysis if the inter-plate
variance was<20%, calculated from internal control samples acquired on each plate. Biomark-
ers were not included in the multivariate analysis if>30% of the data points were missing in
any group. Multivariate analysis was conducted using a partial least squares discriminant
(PLS-DA). PLS-DA is a supervised technique used to objectively characterize the covariance
between a set of predictor variables and binary response variables [45,46]. A PLS-DA output
provides model prediction accuracy (Accur) and posterior probability (PProb). Briefly, these
indices measure how accurately a fitted model can predict a binary outcome based solely on
predictor variables. Accur is evaluated by assigning each subject to the outcome group with the
most similar mean PLS score; 1 = correctly predicted, and 0 = incorrectly predicted. This pro-
vides a simple, robust metric of prediction, which does not depend on a specific probability
model. PProb is the likelihood of the PLS model identifying the correct outcome conditional
on the observed subject scores, under a Gaussian noise model. This provides an alternative
probabilistic measure that accounts for uncertainty in the PLS model and observed data. With
numerous response variables, the PLS analysis yields the fraction of variance explained. Frac-
tion of variance reflects the proportion of total inter-subject variability in biomarker data that
is described by the PLS component of interest. In the current study, covariance between
peripheral blood biomarkers (predictor variables) and both concussion history and collision
sport participation (response variables) was assessed separately in male and female athletes.
Missing biomarker values were imputed using the k-means nearest-neighbour method [47],
and were rank-transformed to ensure robustness against non-normality. Significant biomarker
loadings were identified by performing bootstrap resampling on subjects (1000 iterations) to
obtain empirical p-values, which were then corrected for multiple comparisons at a false dis-
covery rate (FDR) of 0.05. For PLS plots, variable loadings are represented as bootstrap ratios
(i.e., the bootstrapped mean / standard error), which are z-scored statistics reflecting the reli-
ability of variable contributions. Descriptive and univariate statistics were completed using
Stata Version 14.1 (StataCorp, TX, USA). Multivariate analyses were conducted using in-house
software developed for Matlab, Version R2015b (Matworks, Natick MA). All data were visual-
ized using GraphPad Prism Version 6.0f (GraphPad Inc., CA, USA).

Results

Demographics and Clinical Characteristics
A total of 87 athletes were included in the study (male, n = 60; female, n = 27). Athlete charac-
teristics and concussion history are listed in Table 1. Briefly, athletes were of similar age, and
we observed no significant differences in medical history and SCAT3 symptoms at the time of
the study. There were no differences between male and female athletes regarding concussion
history, number of previous concussions, and days since last concussion. As expected, a signifi-
cantly higher proportion of males played in collision sports as compared to their female coun-
terparts (63.9% vs. 7.4%, respectively).

Systemic inflammatory marker analysis
A list of all biomarkers with corresponding median values and the percent of samples detect-
able in the plasma for each analyte are listed in Table 2. No significant differences were identi-
fied between male and female athletes who did not participate in collision sports or who had
no previous history of concussion (data not shown).
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Multivariate analysis. PLS analysis of the covariance between peripheral blood biomark-
ers and athlete characteristics is shown in Fig 1. No individual biomarkers were significantly
correlated to previous concussion history in either male (model PProb = 0.50, Accur = 0.48) or
female (model PProb = 0.41, Accur = 0.35) athletes (Fig 1A). Similarly, when further stratified,
compared to athletes with no concussion history, athletes with one previous concussion dis-
played no significant differences in biomarker levels (males–model PProb = 0.47, Accur = 0.46;
females–model PProb = 0.46, Accur = 0.46) (Fig 1B). However, in athletes with multiple previ-
ous concussions vs. those with no previous concussions (males–model PProb = 0.53,
Accur = 0.51; females–model PProb = 0.43, Accur = 0.44), female athletes had significantly
higher MCP-1 (median conc.; 96.4 vs. 69.3 pg/mL) levels, while male athletes had significantly
higher MCP-4 (median conc.; 48.3 vs. 26.1 pg/mL) (Fig 1C). See S1 Table. for plasma concen-
trations of all biomarkers according to concussion history.

PLS analysis of the covariance between systemic biomarkers, and both collision sport partic-
ipation and previous concussion history in males is shown in Fig 2. Only collision sport partici-
pation significantly co-varied with increases in tau (median conc; 33.9 vs. 20.8 pg/mL in non-
collision sport athletes). See S2 Table. for plasma concentrations of all biomarkers according to
collision sport participation.

Discussion
In this study we identified differences in the systemic biomarker profiles of male and female
athletes who sustained multiple previous concussions, and in males who participate in collision
sports. We included blood samples from athletes with no inflammatory-related conditions,
musculoskeletal injuries or concussion symptoms prior to the start of the competitive season.

Table 1. Athlete demographics and characteristics.

Characteristic Male (n = 60) Female (n = 27) P value

Age (years) 19.5 ± 2.0 19.5 ± 1.8 0.86

Concussion history–n (%) 23 (38.3) 12 (44.4) 0.55

Days since last concussion–median (IQR) 793 (420–1249) 552 (375.5–714.5) 0.170

Number of previous concussions 0.64 ± 1.0 1.1 ± 1.7 0.619

0 –n (%) 37 (61.7) 15 (55.6)

1 –n (%) 12 (20.0) 5 (18.5)

2 –n (%) 8 (13.3) 3 (11.1)

� 3 –n (%) 3 (5.0) 4 (14.8)

Collision sport participation–n (%) 39 (65.0) 2 (7.4) <0.001

Medical history–n (%)

Migraines 2 (3.3) 0 (0.0) 0.156

Learning disability 1 (1.7) 0 (0.0) 0.203

Depression/Anxiety or other psychiatric disorders 1 (1.7) 2 (7.4) 0.226

Family history of psychiatric illness 12 (20.0) 7 (25.9) 0.247

SCAT3 symptom scores

Total symptoms 3.4 ± 3.6 3.8 ± 3.0 0.350

Symptom severity 5.4 ± 7.0 6.0 ± 4.7 0.15

Unless otherwise stated, results are reported as the mean ± standard deviation (SD).

Demographic and characteristic differences between male and female athletes were assessed by χ2, Mann-Whitney U, or independent student’s t-test,

where appropriate.

doi:10.1371/journal.pone.0159929.t001
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Table 2. List of biomarkers analyzed.

Markers (pg/mL)* %Quantifiablea Median (IQR)

Cytokines

IL-1α 27.6 —

IL-1β 0 —

IL-2 0 —

IL-4 1.1 —

IL-5 0

IL-6 2.3 —

IL-7 59.8 2.6 (2.0–3.7)

IL-10 6.9 —

IL-12p40 97.7 121.4 (93.1–146.2)

IL-12p70 0 —

IL-13 0 —

IL-15 100 2.3 (2.0–2.7)

IL-16 70.1 259.2 (198.5–369.0)

IL-17A 1.1 —

TNF-α 96.5 1.8 (1.5–2.2)

TNF-β 0 —

GM-CSF 0 —

VEGF 87.3 36.5 (28.0–55.6)

IFN-γ 16.1 —

Chemokines

Eotaxin 91.9 77.7 (62.7–94.3)

Eotaxin-3 69.3 22.2 (18.5–31.3)

IP-10 77.0 202.6 (159.7–257.1)

IL-8 82.8 1.9 (1.5–2.7)

MCP-1 96.6 86.8 (72.4–109.4)

MCP-4 94.2 26.5 (19.5–38.3)

MDC 98.8 807.2 (706.3–989.1)

MIP-1α 4.6 —

MIP-1β 95.4 37.9 (30.3–49.6)

TARC 88.5 43.1 (27.3–55.5)

Neuroinjury Markers

s100B 85.0 707.1 (603.0–896.1)

GFAP 59.8 75.6 (63.2–98.1)

NSE (ng/mL) 100 1.5 (1.2–2.1)

Neurogranin (ng/mL) 100 7.8 (4.5–11.8)

CKBB 11.5 —

VILIP-1 8.0 —

Tau 98.8 24.0 (18.5–32.9)

vWF (μg/mL) 96.5 38.2 (23.3–53.5)

BDNF 100 856.4 (566.4–2022.7)

PRDX-6 (ng/mL) 100 26.4 (18.6–33.2)

Interleukin (IL)-1α, -1β, -2, -4, -5, -6, -7, -10, -12p40, -12p70, -13, -15, -16, -17A, tumor necrosis factor (TNF) -α, -β, granulocyte macrophage colony-

stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), interferon-gamma (IFN-γ), eotaxin, eotaxin-3, interferon gamma-induced protein

(IP) -10, IL-8. monocyte chemoattractant protein (MCP)-1, -4, macrophage derived chemokine, (MDC), macrophage inflammatory protein (MIP)-1α, -1β,

thymocyte- and activation-regulated chemokine (TARC), s100 calcium binding protein beta (s100B), glial fibrillary acidic protein (GFAP), neuron specific

enolase (NSE), creatine kinase-BB isoenzyme (CKBB), visinin-like protein (VILIP-1), von Willebran factor (vWF), brain derived neurotrophic factor (BDNF),

peroxiredoxin (PRDX) -6.

* = all markers reported as pg/mL unless otherwise stated
a = Biomarkers were included if replicates had less than a 25% CV, were within the LLOQ and ULOQ, and had an inter-plate variance of less than 20% as

measured by internal controls.

“—” = below assay quantitation in�50% of samples analyzed.

doi:10.1371/journal.pone.0159929.t002
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To our knowledge, this is the first report to combine an array of brain injury-related and
inflammatory indices chronically after sport concussion in male and female athletes.

We found healthy female athletes with a reported history of multiple concussions had ele-
vated blood MCP-1 levels, while males had elevations in MCP-4. Chemokines are important
facilitators of peripheral immune cell migration to the CNS after injury [17], and may contrib-
ute to BBB breakdown [48]. Treatments aimed at alleviating inflammation after TBI by inhibit-
ing chemokine recruitment to the brain have been successful in reducing cerebral damage and
cognitive deficits in animals [49,50]. Furthermore, MCP-1 and MCP-4 levels are elevated
acutely after moderate and severe TBI in humans, and correlated to poor patient outcome
[51,52]. While systemic chemokines have not been assessed chronically after concussion, these
results are consistent with previous evidence of persistent inflammation months after mild TBI
in both animals [31,53] and humans [33]. Admittedly, it is difficult to speculate whether these
findings represent detrimental or reparative processes, as chemokines may also aid in neuronal
repair and regenerative axonal sprouting [17,54]. Furthermore, it is unclear if MCP-1 and
MCP-4 share overlapping or distinct biological actions in response to brain injury. While both
molecules are involved in leukocyte recruitment, they may differ in their ability to stimulate
other inflammatory mediators; for example, MCP-4 but not MCP-1 is responsible for mediat-
ing the production of chemokines IP-10 and the platelet derived chemokine ligand -5, during
atherogenesis [55]. Hence, further research is needed to elucidate both the biological sequelae
and health consequences of elevated systemic chemokine levels after multiple concussions in
males and females.

A second important finding was tau concentrations were higher in male athletes who partic-
ipate in collision sports compared to non-collision sport athletes. Additionally, when assessed
in conjunction with collision sport participation, previous concussion history became a non-
significant contributor to biomarker variance. This suggests that the repetitive sub-concussive

Fig 1. Biomarker covariance with concussion history in athletes. brain injury markers: s100 calcium-binding protein B (s100B), neuron specific
enolase (NSE), Neurogranin (NRGN), tau, vonWillebrond factor (vWF), brain derived neurotrophic factor (BDNF), peroxiredoxin (PRDX)– 6;
inflammatory markers: interleukin (IL) -12p40, -15, tumor necrosis factor (TNF) -α, IL-8, monocyte chemoattractant protein (MCP)-1, -4, interferon
gamma induced protein (IP) -10, macrophage derived chemokine (MDC), macrophage inflammatory protein (MIP)-1β, thymus and activation
regulated chemokine (TARC), eotaxin. Blood biomarker contributions are displayed on the x-axis for males, and y-axis for females, in (A) healthy
athletes with vs. without a history of concussion, (B) healthy athletes with a single previous concussion vs. no history of concussion, and (C)
healthy athletes with multiple previous concussions vs. no history of concussion. Dots represent z-scores derived from individual bootstrapped
loadings divided by the standard error of the mean. FDR = 0.05.

doi:10.1371/journal.pone.0159929.g001
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impacts associated with collision sport participation may elicit a greater biological response
than reported concussion, and could have a distinct pathology. Concern regarding collision
sport participation and the potential link to neurodegeneration has been highlighted in recent
years as tau-laden plaque depositions have been identified in the brains of post-mortem [11]
and living [9] former collision-sport athletes. We found collision-sport participation in male
athletes was associated with a 62% increase in peripheral tau levels compared to males who par-
ticipate in non-collision sports. Previous studies have also found elevated plasma and CSF tau
levels in ostensibly non-concussed male boxers [56,57] and in military personnel who sustain
multiple mTBI’s during deployment [58]. Regarding the latter, tau levels were elevated in sol-
diers with a self-reported history of concussion, and similar to the current study, participants
were sampled within a time-frame of 3 months to 3 years post-injury [58]. While it is unclear if
systemic tau is pathologically related to neurodegeneration or cerebral injury, recent findings
have specifically identified plasma exosomal tau as a potential CTE biomarker in former pro-
fessional athletes [59], and have detected associations between plasma tau and clinical condi-
tions such as Alzheimer’s Disease [60,61] and mTBI [62]. Taken together our results are

Fig 2. Covariance between biomarkers and head injury characteristics in male athletes. brain injury markers: s100 calcium-binding
protein B (s100B), neuron specific enolase (NSE), Neurogranin (NRGN), tau, vonWillebrond factor (vWF), brain derived neurotrophic factor
(BDNF), peroxiredoxin (PRDX)– 6; inflammatory markers: interleukin (IL) -12p40, -15, tumor necrosis factor (TNF) -α, IL-8, monocyte
chemoattractant protein (MCP)-1, -4, interferon gamma induced protein (IP) -10, macrophage derived chemokine (MDC), macrophage
inflammatory protein (MIP)-1β, thymus and activation regulated chemokine (TARC), eotaxin. Bars represent z-scores derived from individual
bootstrapped loadings divided by the standard error of the mean. FDR = 0.05.

doi:10.1371/journal.pone.0159929.g002
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consistent with these previous works, and suggest that systemic tau may be related to repetitive,
sub-concussive impacts in male collision-sport athletes.

Brain-borne biomarkers may travel from the CNS into the periphery in at least two distinct
fashions, through a disrupted/leaky blood brain barrier (BBB) [48,63], or via the glympathic
system [64,65]. Regarding the latter, alterations to glymphatic function caused by clinical mala-
dies including TBI and sleep deprivation, may attenuate the movement of proteins from the
brain to the blood [55]. Yet, this process does not affect the passage of molecules across a leaky/
damaged BBB [65], and while the athletes evaluated in the current study were not concussed,
repetitive head impacts may alter BBB integrity and increase permeability [66,67]. Hence, it is
plausible that the biomarkers we identified peripherally may be related to ongoing biological
processes linked to repetitive head impacts [68,69].

An important question stemming from these findings is how the observed elevations in
these indirect peripheral measures may relate to the biological consequences of repetitive head
trauma, as opposed to the effects of confounding factors common to an athletic population
such as exercise and/or peripheral injury. We recognize numerous inflammatory mediators,
including MCP-1, may be elevated in both the plasma and skeletal muscle for hours after a sin-
gle bout of exercise [70,71]. Although the time after the last exercise bout and duration/inten-
sity were not recorded, this study was conducted during pre-season training, and we can
therefore assume that all athletes (collision and non-collision) had been physical active within
72 h of blood sampling. Hence, any potential confounding effects of exercise are likely common
to both groups of athletes. Furthermore, while our study design intentionally excluded athletes
with musculoskeletal injuries, the physical demands of collision-sport participation may have
the potential to influence biomarker concentrations. For example, tau is expressed in extracra-
nial rat tissues [72], and in the muscle fibers of patients with inflammatory myopathy [73,74].
As tau is released from neurons as a by-product of cell death [75], muscle damage/turnover
may result in the extracellular release of tau. Hence, despite being sampled before the onset of
the competitive season in athletes absent overt musculoskeletal injuries, we cannot rule out the
effect of pre-season training. Future studies are needed to evaluate potential extracranial release
of these biomarkers, particularly from damaged/injured muscle tissue.

Though we did not identify differences in a number of previously identified TBI inflamma-
tory markers such as IL-1β, IL-6 and IL-10, these markers have typically been evaluated in the
acute stages after severe TBI [52,76–78]; conversely, our cohort was ostensibly healthy, and the
median time from last concussion was approximately two years (Table 1). Furthermore, while
numerous cytokines have been found elevated for up to three months after severe TBI [79], few
studies have evaluated the chronic inflammatory response after concussion. Yet, Prodan and
colleagues found platelet activation in previously concussed military personnel ranging from 6
months to 9 years post-injury [33], and in a follow-up study, identified a positive correlation
between this inflammatory correlate and the number of concussions sustained [80]. While
these previous works evaluated military personnel and included mechanistically distinct blast-
related concussion, the results are consistent with our findings, and suggest that biological per-
turbations resulting from multiple head injuries are evident systemically up to years after
injury.

In the current study, the differences identified in biomarker signatures between male and
female athletes after multiple concussions is supportive of the previously noted sex-differences
in immunobiology [39,40], and aligned with prior evidence of sex-differences in concussion
recovery [3,35,38]. Although it is difficult to speculate on the biological basis of these findings,
the potency of male and female sex hormones to differentially mediate inflammatory responses
represents a plausible explanation [81]. The sexually dimorphic neurochemical composition of
the brain may contribute to divergent responses to brain injury [82], leading to a different
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complement of proteins appearing in the blood. However, in addition to the pleiotropic effects
of systemic inflammatory indices, and chemokines in particular, the gap in sex-based inflam-
mation research in TBI makes interpretation of our results difficult. Yet, these findings necessi-
tate sex-stratification in future concussion study cohorts, as potentially distinct mechanisms
mediating the long-term effects of multiple head impacts may exist.

A limitation of the study was the cross-sectional design, therefore, we lacked the ability to
evaluate inflammatory marker levels prior to injury in the athletes with a history of concussion.
Furthermore, a larger sample size with additional female athletes who participate in collision
sport (i.e., rugby) would allow the evaluation of biomarkers in collision vs non-collision sports.
As previously identified, we were unable to control for the potential confounding effects of
exercise on biomarker levels; while the homogeneity of our population suggests both collision
and non-collision sport athletes were presumably similar in their exercise habits, the ability to
quantify the duration and intensity of exercise and how this may have affected any of the mark-
ers assessed would have strengthened our results. Finally, while the SCAT3 is the most utilized
evaluation tool in the sport context, it is a crude measure of cognitive abilities, and we recog-
nize its comparative limitations to more advanced neuropsychological tests. However, despite
these limitations, our results demonstrate potentially sex-specific systemic inflammatory alter-
ations in athletes with multiple previous concussions, and in males who participate in collision
sports.

Conclusion
Collision sport participation in male athletes is associated with alterations in brain injury-
related and inflammatory blood biomarkers. Specifically, multiple previous concussions are
associated with elevations in MCP-1 in female athletes, and MCP-4 in male athletes. Further-
more, collision sport participation displays a greater covariance with systemic biomarkers com-
pared to that of concussion history, and is specifically associated with increases in tau. Future
studies are required to identify the source and biological relevance of systemic biomarkers in
athletes who have sustained repetitive head trauma and who participate in collision sports, in
order to better understand and characterize the potential health consequences. Particular atten-
tion should be paid to sex differences, as well as extracranial sources of biomarkers related to
muscle damage and exercise.
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