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Background:Growing evidence points out that a disturbance of gut microbiota may also

disturb the gut–brain communication. However, it is not clear to what extent the alteration

of microbiota composition can modulate brain function, affecting host behaviors. Here,

we investigated the effects of gut microbiota depletion on emotional behaviors.

Methods: Mice in the experimental group were orally administered ceftriaxone sodium

solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test

were employed for the neurobehavioral assessment of the mice. Fecal samples were

collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone

were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry

method was used for the detection of brain-derived neurotrophic factor (BDNF) and

c-Fos protein.

Results: The gut microbiota for antibiotic-treated mice showed lower richness and

diversity compared with normal controls. This effect was accompanied by increased

anxiety-like, depression-like, and aggressive behaviors. We found these changes to be

possibly associated with a dysregulation of the immune system, abnormal activity of the

hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry.

Conclusions: The findings demonstrate the indispensable role of microbiota in the

gut–brain communication and suggest that the absence of conventional gut microbiota

could affect the nervous system, influencing brain function.

Keywords: gut microbiota, emotional behaviors, ceftriaxone sodium, anxiety, depression, aggressive behavior

INTRODUCTION

Gut microbiota, known as a reservoir of bacteria, not only plays an essential role in host digestion
and energy metabolism but shapes host immunity (Aleshukina, 2012; Antonopoulos and Chang,
2016; Thursby and Juge, 2017). Recently, evidence of its influence extends well-beyond the gut,
many studies have begun to report that the gut microbiota may be associated with the development
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and progression of diseases affecting multiple organ systems
such as liver, lung, and brain (Felix et al., 2018; Lee and
Jayaraman, 2019; Yuan et al., 2019). Researchers believe that
there is a potential connection between the gut and the central
nervous system (CNS). Additional studies have defined this
connection as a bi-directional communication covering multiple
connections, such as immune response, the vagus nerve, and
humoral components (Mayer et al., 2015). Recent evidence has
unlocked a novel pivotal member, gut microbiota, which plays an
important role in this communication. As a result, this concept,
now known as the microbiota-gut-brain (MGB) axis, has been
prompted and subsequently implicated in multiple disorders,
such as digestive, neurological, and psychiatric diseases (Scriven
et al., 2018; Iannone et al., 2019).

Antibiotics are one of the most commonly prescribed drugs
worldwide. There has been an increasing concern that variations
in the microbiota induced by antibiotics may have detrimental
consequences for health (Kim et al., 2017). A growing body of
evidence confirms the role of specific microbial compositions
in the modulation of brain functions as well as host behaviors.
To be specific, a complete absence of gut microbiota resulted in
alteration of blood–brain barrier (BBB) permeability and brain
neurochemistry with decreased social behaviors inmice (Braniste
et al., 2014).

While the whole brain is vulnerable to external stimuli, two
regions that influence stress responsivity and behavior have
been considered as the most likely targets for gut microbiota
(Luczynski et al., 2016). The first region is the amygdala,
which seems to be involved in many forms of negative
emotionality, including anxiety (Davis et al., 1994; Janak and Tye,
2015). After receiving input from disgust stimuli, the amygdala
projects to the regions or sub-regions regulating anxious and
defensive behaviors (Kovács, 2008). Usually, the activation of the
amygdala is measured by c-Fos expression (Kovács, 2008). The
second region, the hippocampus, is well-known as for emotion
regulation. In this study, germ-free (GF) mice exhibited more
anxiety-like behaviors, which were accompanied by higher brain-
derived neurotrophic factor (BDNF) levels in the dentate region
of the hippocampus (Sudo et al., 2004; Neufeld et al., 2011).
Here, we explored the contribution of gut microbiota to the
CNS via depleting bacteria with ceftriaxone sodium, a broad
spectrum antibiotic.

MATERIALS AND METHODS

Study Design
Male BALB/c mice (6–8 weeks; Institute of Laboratory Animals
of Sichuan Academy of Medical Sciences, Sichuan, China) were
maintained (ten mice per cage) under a specific-pathogen-free
(SPF) condition at 22–26◦C, 40–60% humidity, and 12-h light-
dark cycle. The mice were given 1 week to acclimate. All mice

Abbreviations: MGB, microbiota-gut-brain; SPF, specific-pathogen-free; OFT,

open-field test; TST, tail-suspension test; OTUs, operational taxonomic units;

ELISA, enzyme-linked immunosorbent assay; BDNF, brain-derived neurotrophic

factor; IL, interleukin; HPA, hypothalamic-pituitary-adrenal; CNS, central nervous

system; BBB, blood–brain barrier; LPS, lipopolysaccharide; GF, germ-free.

were fed with adequate food and clean water. At the end of
adaptive phase, all mice (initial weight 23.55 ± 1.49 g) were
randomly divided into two groups (n = 20 for each group) and
given either sterile saline solution (the control group was defined
as the CT group, 0.2 ml/d) or ceftriaxone sodium solution (Qilu
Pharmaceutical, Shandong, China) (the antibiotic group was
defined as the AB group, 250 mg/ml, 0.2 ml/d) intragastrically
once a day for 11 consecutive weeks (details about drug dosages
is included in Supplementary Materials). Mice were housed by
group (10 mice per cage) from the first day of gavage to avoid
interference between different groups. A battery of behavioral
tests was administrated weekly, with 1 h of rest between each test.

Eleven weeks after ceftriaxone treatment, the mice in the
AB group exhibited a remarkable difference in behavioral
parameters. On the second day after the last behavioral
experiment was performed, the mice were administered the final
gavage exposure, and 1 h later, fresh blood and stool was sampled.
The mice were inspected daily for changes in appearance
and body weight. All experiments followed the guidelines of
the Chinese Council on Animal Care and were approved by
the Animal Care Advisory Committee of Sichuan University,
Sichuan, China. The experimental design was shown in Figure 1.

Behavioral Tests
Two behavioral tests were carried out under following sequence
(from 8 a.m. to 5 p.m.): open-field test (OFT)→ tail-suspension
test (TST). The OFT, which involves a low stress level, preceded
the TST, which involves a high stress level (Di et al., 2017).
Prior to each behavioral test, mice were habituated for at least
1 h to the testing room (Champagne-Jorgensen et al., 2020).
The lighting condition was set at 15 lux for all behavioral tests
(Dere et al., 2004).

The Open-Field Test
The equipment of theOFTwas composed of a square arena 100×
100 cm with 40 cm walls. The floor was subdivided into a center
and periphery compartment with 25 squares. Mice were placed
alternatively in the open field for at least 30min and allowed
to explore undisturbedly before the first test (Champagne-
Jorgensen et al., 2020). In the formal test, mice were placed singly
in the center of the open field and allowed to freely explore for
5min. Relevant parameters (the total distance, the total time
in the periphery, and center of the open field) were recorded
by a video monitor. At the end of the test, mice were sent
back to their home cages, and the test box was cleaned with
70% ethyl alcohol and air dried. The OFT has been proven to
be efficient in detecting anxiety and selecting anxiolytic drugs
(Kraeuter et al., 2019).

The Tail-Suspension Test
Mice were suspended in an upside-down position by the tail,
so that they could not escape or touch nearby surfaces. The
rationale for the test is that mice are under enormous stress, and,
if they don’t have the desire to live, they will develop a motionless
posture quickly and maintain it for a longer period. The total
duration of quiescence and activity during 5min was scored,
respectively (Młyniec and Nowak, 2012).

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 June 2020 | Volume 10 | Article 258

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhao et al. Abnormal Gut Microbiota Influences Behaviors

Gut Microbiota Analysis
A TIANamp Bacteria DNA Kit (TIANGEN, China) was used
to extract fecal DNA. Then, the extraction was eluted using

elution buffer and stored at −80◦C until PCR amplification

detection by LC-Bio (Hangzhou, China). The V3-V4 region of

the prokaryotic 16S rRNA gene was amplified with primers

FIGURE 1 | Study design. After seven days of adaptation, the antibiotic (AB) group was given ceftriaxone and the control (CT) group was given saline by gavage once

a day. The open-field test (OFT) and tail-suspension test (TST) were given to mice once a week. After 11 weeks of oral gavage, significant behavioral differences were

noted between the groups. On the second day after the last behavioral experiment was performed, mice were administered the final gavage exposure, and 1 h later,

fresh blood and stool was sampled.

FIGURE 2 | Effect of ceftriaxone on body weight. AB, ceftriaxone administration for 11 weeks (n = 14); CT, saline treatment for 11 weeks (n = 18). AP: adaptive

phase. *P < 0.05, ***P < 0.001.
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FIGURE 3 | Diagram showing movement of (A) AB group mice and (B) CT group mice in the open field. AB, antibiotic group (n = 14); CT, control group (n = 18).

FIGURE 4 | Results of behavioral tests (A) in the open field test, (B) in the suspension tail test. AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05,

***P < 0.001.
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338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) (Fadrosh et al., 2014). The
detailed operation was performed as described previously (Li
et al., 2019).

Serum Cytokine Assay
Cytokines secretion is usually induced in an inflammation or
infection. Except for their effects on immunity, cytokines can
also affect brain function and modulate host behaviors (Köhler
et al., 2018). Research has suggested that serum IL-6 and IL-
10 levels are putative biomarkers for several mood disorders
(Wiener et al., 2019). Here, fresh blood was collected in sterile
tubes, coagulated at room temperature, and centrifuged at 1000
× g for 10min after the last ceftriaxone sodium treatment.
The serum was stored at −70◦C for later analysis. IL-6 and
IL-10 were quantified by enzyme-linked immunosorbent assay
(ELISA) (Neobioscience, Shenzhen Xinbosheng Biotechnology
Co., Ltd, China). The detection limit of the assay was about 1 pg
ml−1. According to the manufacturer’s protocol, the assay was
performed in triplicate.

Serum Corticosterone Assay
Corticosterone is the end product of the hypothalamus-pituitary-
adrenal (HPA) axis in rodents. Rising corticosterone levels
suggest increases in HPA axis activity (Hiroshi et al., 2006).
Serum corticosterone was measured by ELISA (Cusabio,Wuhan
Huamei Biotechnology Co., Ltd, China). The detection limit of
the assay was about 1 ng ml−1. The assay was performed in
triplicate according to the manufacturer’s protocol.

Immunohistochemistry
The immunohistochemistry was used to assess expression of
brain-derived neurotropic factor (BDNF) in the hippocampus

FIGURE 5 | Venn diagram of fecal bacteria. AB, antibiotic group (n = 14); CT,

control group (n = 18).

and c-Fos in the amygdala. The whole process consisted of brain
collection, sectioning, and immunolabeling. The details referred
to previous literatures (Gareau et al., 2011).

Each maker was quantified by staining intensity and extent.
We scored the staining intensity as follows: negative, weak,
moderate, and strong (on a scale of zero to four). The staining
extent was divided into five grades according to the percentage
of positive cells in the region: negative, 0–25, 26–50, 51–75, and
76–100% (on a scale of zero to four) (Liu et al., 2011).

Semi-quantification of BDNF was calculated by multiplying
the intensity score and fraction score in the CA1, CA3, and
DG (dentate gyrus) regions of the hippocampus (Olympus,
Tokyo, Japan, BX53). Similarly, semi-quantification of c-Fos
was performed by calculating the intensity score and fraction
score in the CeC, CeL, and CeM regions of the amygdala. The
immunohistochemical analysis was performed blind.

Statistical Analysis
Data were expressed as the mean± standard deviation or median
(IQR) and analyzed by one-way ANOVA or Wilcoxon rank sum
test in SPSS 22.0 software (SPSS Inc., Chicago, IL, USA). P-values
less than 0.05 were considered statistically significant.

RESULTS

The Effect of Ceftriaxone Treatment on
Body Weight
Mice in the AB group gained less weight than the CT group, with
this difference increasing progressively over time. After gavage
for 7 weeks, the weight of the AB group was significantly lower
than that of the CT group (p < 0.05) (Figure 2).

The Effect of Ceftriaxone Treatment on
Mice Behaviors
Mice Treated With Ceftriaxone Sodium Exhibited

Anxiety-Like Behaviors
OFT is usually performed to assess locomotor activity and
exploratory behavior (Kraeuter et al., 2019). The former was
represented by the total distance traveled throughout the 5min,
and no differences were observed between the two groups.
Previous studies suggest mice prefer staying close to the walls and
travel more in the periphery field can be described as showing
signs of anxiety (Crawley, 1985). Comparatively, mice with lower
anxiety tend to spend more time in the central field. In this study,
the AB group spent less time in the center as compared to the CT
group (p < 0.001) after gavage for 11 weeks. Meanwhile, the AB
group reduced movement in the center (p < 0.001) (Figures 3,
4A). For details of the 11-week behavioral data analysis, see
Supplementary Figure 1.

Mice Treated With Ceftriaxone Sodium Exhibited

Depression-Like Behaviors
TST was often used for evaluating the ability to cope with a
stressful situation (Kraeuter et al., 2019). Decreased duration of
activity is considered a sign of depressive behavior (Castagne
et al., 2011). In the test, the AB group showed decreased activity
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during the 5min and stopped escaping earlier than the CT group
(p < 0.05) after gavage for 11 weeks (Figure 4B).

Mice Treated With Ceftriaxone Sodium Exhibited

High Aggressive Behavior
Eight weeks after ceftriaxone administration, visible injuries were
observed in the AB group, suggesting that aggressive behaviors
had occurred. Four mice from the AB group were excluded
from the experiment 10 weeks later due to serious injuries
influencing mobility. In contrast, the CT group did not get
injured throughout the experiment.

The Effect of Ceftriaxone Treatment on Gut
Microbiota Composition
16S rDNA sequencing was used to identify alterations in gut
microbiota after gavage for 11 weeks. Ceftriaxone administration
induced a significant change in gut microbiota diversity. For
the Venn diagram (Figure 5), the number of shared and unique
OTUs indicate a similarity and difference of gut microbiota
between groups, respectively (Ren et al., 2018). Based on this,
there were 587 OTUs specific to the AB group and 1,570

specific to the CT group, accounting for 19.38 and 39.13% of
the total OTU richness, respectively. All samples shared 2,442
OTUs at 97% similarity. The alpha diversity analysis revealed
that the AB group had lower species diversity, richness, and
evenness than that of the CT group by plotting Chao1, Shannon,
Simpson, and Observed_species curves (Figure 6). A strong
antibiotic effect was observed in beta diversity analysis. The
PCA plot showed an appreciable separation between the two
groups, indicating they had low similarity in gut microbiota
composition. Likewise, the PCoA plot and MDS plot indicated
the microbiota of AB group clustered separately from CT
group (Figure 7).

According to abundance analysis, the dominant phyla
in AB and CT groups were Bacteroidetes and Firmicutes,
while the relative abundance of Firmicutes was lower
in the AB group than that in CT group. Significant
abundance differences were observed in the following phyla:
Proteobacteria increased while five phyla decreased (Firmicutes,
Actinobacteria, Candidatus Saccharibacteria, Deferribacteres,
and Candidatus_Melainabacteria) in the AB group (Figure 8A,
Table 1). At the genus level, ceftriaxone increased the

FIGURE 6 | Alpha diversity analysis for gut microbiota. (A) Chao1 curves for each group. (B) Shannon-Wiener curves for each group. (C) Simpson curves for each

group. (D) Observed_species curves for each group. AB, antibiotic group (n = 14); CT, control group (n = 18).
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FIGURE 7 | Beta diversity analysis for gut microbiota. (A) PCA plot of weighted UniFrac distances between samples. (B) PCoA plot of weighted UniFrac distances

between samples. (C) MDS plot of weighted UniFrac distances between samples. AB, antibiotic group (n = 14); CT, control group (n = 18).

proportion of Proteobacteria, Porphyromonadaceae_unclassified,
Escherichia, and Parabacteroides, while Lactobacillus,
Acetatifactor, Bacteroidetes_unclassified, Barnesiella,
Helicobacter, Prevotella, Alistipes, and Bacteroidales_unclassified
declined (Figure 8B, Table 2). Ten phyla and 21 genera
were clustered by heatmaps, which demonstrated the relative
abundance of species in different samples. In the CT group, the
samples got closer to each other, indicating a higher similarity
among them (Figure 9).

The Effect of Ceftriaxone Treatment on
Serum Cytokines and Corticosterone
Ceftriaxone induced increased IL-6 and IL-10 in the AB group
(IL-6: 51.82± 9.99 pg/ml and 43.21± 10.18 pg/ml for AB andCT,
respectively) (IL-10: 274.81 ± 95.59 pg/ml and 173.12 ± 55.31
pg/ml for AB and CT, respectively) (Figures 10A,B). In addition,
serum corticosterone was significantly higher in the AB group
than in the CT group (10.16 ± 4.97 ng/ml and 5.39 ± 4.03 ng/ml
for AB and CT, respectively) (Figure 10C).

The Effect of Ceftriaxone Treatment on
Hippocampal Cell Proliferation and Neural
Activity
A slight decrease of BDNF in the CA1, CA3, and DG regions
of the hippocampus was observed in the AB group compared to
the CT group (Figure 11, Table 3). Meanwhile, c-Fos expression
increased in the amygdala of the AB group without a statistically
significant difference (Figure 12, Table 3).

DISCUSSION

The gut, a vulnerable but vital organ, is affected by different
factors easily. Antibiotics are one of the common causes leading
to gut disturbance, especially given the broad spectrum of
antibiotics. Consistently, little is known about adverse effects
of these antibiotics on health except for drug resistance. But,
recently, medications with antibiotic have been reported to
enhance the risk of allergies, inflammatory bowel diseases,
obesity, and even mental diseases (Harris and Baffy, 2017;
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FIGURE 8 | Composition abundance of gut microbiota (A) at the phylum level and (B) the genus level. AB, antibiotic group (n = 14); CT, control group (n = 18).

TABLE 1 | Relative abundance of gut microbiota at the phylum level.

Phylum AB (%) CT (%) P-value

Candidatus_Saccharibacteria 0.00 0.27 0.006**

Actinobacteria 0.34 0.81 0.006**

Deferribacteres 0.00 0.15 0.008**

Bacteria_unclassified 1.17 2.62 0.005**

Candidatus_Melainabacteria 0.00 0.01 0.024*

Proteobacteria 4.89 4.13 0.034*

Firmicutes 36.51 46.12 0.047*

Bacteroidetes 56.97 45.58 0.064

Cyanobacteria 0.01 0.09 0.097

Tenericutes 0.11 0.23 0.379

AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01.

Torres-Fuentes et al., 2017; Guo J. et al., 2019; Slykerman
et al., 2019). Also, some investigators suggest that abnormal gut
microbiota or some intestinal infections may be responsible for
a series of metabolism or immunity-related diseases (Wang and
Wang, 2016). The impact of intestinal dysbacteriosis induced
by antibiotics on brain functions and behaviors piques interest
and is yet to be elucidated. Therefore, this study was designed
to determine whether long-term ceftriaxone exposure altered gut
microbiota and thus affected host behaviors.

Ceftriaxone administration caused significant weight loss in
the study. This is consistent with the previous finding that
the weight gain of mice was delayed significantly following
the ceftriaxone treatment (Miao et al., 2020). However, it was
contradictory with previous findings that antibiotics result in
weight gain in the animal production system (Angelakis, 2017).
The disparate findings imply that the growth of animals may be
impacted by the dosage, intervention time and, above all, types
and properties of antibiotics.

Ceftriaxone could result in a significant gut microbiota
dysbiosis by killing most of the normal flora and providing the
living space for other potential pathogens (Cheng et al., 2019).
The gut microbiota of mice was altered greatly in quantity and
quality by the oral administration of ceftriaxone in this study.
Similar to the result, other studies confirmed that oral ceftriaxone

TABLE 2 | Relative abundance of gut microbiota at the genus level.

Genus AB (%) CT (%) P-value

Porphyromonadaceae_unclassified 49.13 23.43 0.000***

Lachnospiraceae_unclassified 20.49 24.57 0.335

Bacteroides 4.32 7.07 0.082

Lactobacillus 1.86 9.23 0.028*

Ruminococcaceae_unclassified 4.21 3.45 0.408

Bacteroidales_unclassified 1.31 4.89 0.000***

Bacteria_unclassified 1.17 2.62 0.007**

Clostridiales_unclassified 1.80 2.03 0.673

Prevotella 0.10 3.14 0.010*

Escherichia 4.16 0.00 0.038*

Bacteroidetes_unclassified 0.32 2.65 0.000***

Clostridium XlVa 1.21 1.47 0.571

Helicobacter 0.24 1.93 0.029*

Oscillibacter 1.31 0.84 0.125

Alloprevotella 0.43 1.10 0.074

Acetatifactor 0.44 1.07 0.033*

Barnesiella 0.30 1.11 0.002**

Alistipes 0.00 1.00 0.000***

Parabacteroides 0.95 0.15 0.004**

Clostridium IV 0.40 0.40 0.953

AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01,

***P < 0.001.

significantly decreased the quantity of fecal microbiota (Cheng
et al., 2017, 2019; Guo et al., 2017; Miao et al., 2020). At the
phylum level, the microbiota diversity of the AB group decreased,
Proteobacteria became a dominant phylum, and the abundance
of Bacteroidetes, Firmicutes, Actinobacteria, and Deferribacteres
decreased. This result is supported by studies that ceftriaxone
could characteristically decrease the alpha-diversity of the fecal
microbiota accompanied with more Proteobacteria and less
Bacteroidetes (Cheng et al., 2017, 2019; Miao et al., 2020). In
some dysbiosis and related diseases, an increased Proteobacteria
is perceived as a diagnostic characteristic since it is closely related
to colon epithelial oxygenation as well as the disruption of the

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 June 2020 | Volume 10 | Article 258

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhao et al. Abnormal Gut Microbiota Influences Behaviors

FIGURE 9 | Heat maps of gut microbiota (A) at the phylum level and (B) the genus level. Red and blue colors indicate high and low values of the percent of reads

classified at that rank. AB, antibiotic group (n = 14); CT, control group (n = 18).

FIGURE 10 | Concentrations of (A) IL-6, (B) IL-10, and (C) corticosterone in serum. AB, antibiotic group (n = 14); CT, control group (n = 18). *P < 0.05, **P < 0.01.

gut anaerobic environment (Zhu et al., 2013; Shin et al., 2015;
Miao et al., 2020). Firmicutes has become a controversial strain as
some studies identified an increase in Firmicutes after ceftriaxone
treatment, but others have demonstrated a declined Firmicutes
in the ceftriaxone group (Cheng et al., 2017, 2019; Miao et al.,
2020). Evidence from clinics has suggested that patients with
depression often have decreased Firmicutes (Huang et al., 2018).
Experimental findings further revealed that decreased Firmicutes
led to a reduction in short-chain fatty acids, which are an
important physiological basis for low-level inflammation during
depression (Huang et al., 2018). Bacteroidetes, as an important
microbe for short-chain fatty acids, almost disappeared from
the feces of the mice during exposure to ceftriaxone (Miao
et al., 2020). Significant alteration of fecal microbiota was also
observed at the genus level: Porphyromonadaceae, Escherichia,
and Parabacteroides dominated the gut microbiota of the

AB group mice, while Lactobacillus, Clostridiales, Acetatifactor,
Bacteroidetes, Barnesiella, Helicobacter, Prevotella, Bacteroidales,
and Alistipes were lowered. In line with this, some researchers
have proposed that decreased Barnesiella after ceftriaxone gavage
is a common and sensitive gut microbiota of the BALB/c mice
and can be used as an indicator for assessing the balance of
the gut microbiota (Zhao et al., 2013). Bacteroidetes is closely
associated with digestion and interacts with the host’s immune
system, affecting the growth of other bacteria (Karlsson et al.,
2011). In addition, an increase in Escherichia prevalence after
oral antibiotic treatment has been reported for vancomycin and
imipenem (Stokes, 1949), amoxicillin, bismuth (Dawes and
Foster, 1956), and metronidazole (Paege and Gibbs, 1961). It
is difficult to discern whether an increase in Escherichia could
be beneficial or harmful as Escherichia is both a commensal
and pathogenic inhabitant of a host’s gastrointestinal tract. But
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FIGURE 11 | Immunohistochemical results of BDNF in the hippocampus of mice (×400). AB, antibiotic group (n = 14); CT, control group (n = 18). CA1, field CA1 of

hippocampus; CA3, field CA3 of hippocampus; DG, dentate gyrus.

TABLE 3 | Expression of BDNF in the hippocampus and expression of c-Fos in the amygdala.

BDNF c-Fos

Group n CA1 CA3 DG CeM CeL CeC

AB 14 1 (1.00–3.25) 3 (2.00–6.75) 3 (1.75–4.00) 6 (3.00–7.50) 6 (3.00–7.50) 2 (0.50–5.00)

CT 18 2 (1.00–4.00) 4 (2.25–8.25) 3 (2.00–4.00) 0 (0.00–4.50) 0 (0.00–4.50) 1 (0.00–9.00)

P-value 0.350 0.586 0.884 0.076 0.076 0.892

AB, antibiotic group; CT, control group; CA1, field CA1 of hippocampus; CA3, field CA3 of hippocampus; DG, dentate gyrus; CeM, central amygdaloid nucleus, medial division; CeL,

central amygdaloid nucleus, lateral division; CeC, central amygdaloid nucleus, capsular part.

most of the time, Escherichia is considered a potential pro-
inflammatory bacteria (Liu et al., 2019). Of particularly note,
increased Porphyromonadaceae associates with mental deficits
and cognitive disorders as well as anxiety-like behaviors in mice
(Scott et al., 2017). Lactobacillus is known as a protective species
against long-lasting metabolic disturbances and prevents gut
dysbiosis, but was suppressed by ceftriaxone (Robles-Vera et al.,
2018). Researchers also discovered that elevated Parabacteroide
relates to the etiology of depression (Cheung et al., 2019).
These results indicate, once again, that different bacteria may be
involved in different functions or biological pathways.

Alterations in gut microbiota were accompanied by behavioral
changes in the mice, including anxiety-like, depression-like,
and aggressive behaviors. These behavioral changes cannot
necessarily be a result of the direct toxic effect of ceftriaxone on
the brain, since ceftriaxone is a non-absorbable antibiotic and
usually given by injection. Previous studies have demonstrated
the complex interaction between gut microbiota and the CNS;
this is what is known as the MGB axis (Wang and Wang,
2016). Animal experiments support that absence or change in
gut microbiota affects the HPA axis answering to stress, anxiety,
and relevant behavior (Koopman and El Aidy, 2017; Lach et al.,

2018; Chen et al., 2019). In addition, the rodents infected with
intestinal pathogens showed anxiety-like behaviors, which can be
partly explained by the activation of vagal afferents (Klarer et al.,
2014). In one study of GF BALB/c with a high-anxiety level and
NIH Swiss mice with a high exploratory ability, when the two
groups exchanged each other’s microbiota, the donor behavioral
characteristics could be reproduced in recipients (Crumeyrolle-
Arias et al., 2014). On the other hand, clinical trials suggest
treatment with probiotics could control the stress response and
improve anxiety symptoms by restoring the gut microbiota (Liu
et al., 2015). Our further work will test whether probiotics could
improve the abnormal behaviors. At present, two major types of
probiotics are commonly used: Bifidobacterium and Lactobacillus
(Logan and Katzman, 2005; Rao et al., 2009; Silk et al., 2009).
According to Wang et al., Lactobacillus fermentum strain NS9
administration not only normalized the composition of gut
microbiota but reduced the anxiety-like behavior induced by
ampicillin (Wang et al., 2015). Furthermore, the antidepressant
effect of Bifidobacterium infantis has also been identified in the
rat separation model of depression (Desbonnet et al., 2010).

Immune dysregulation was demonstrated by high levels
of serum cytokines. This is supported by the evidence that
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FIGURE 12 | Immunohistochemical results of c-Fos in the amygdala of mice (×400). AB, antibiotic group (n = 14); CT, control group (n = 18). CeC, central

amygdaloid nucleus, capsular part; CeL, central amygdaloid nucleus, lateral division; CeM, central amygdaloid nucleus, medial division.

inflammatory factors associate with a profile of behavioral
changes (Capuron and Miller, 2011; Salim et al., 2012; Felger
and Lotrich, 2013). Vagal sensory neurons express receptors for
cytokines, so the inflammatory factors could directly activate the
vagal afferents (Reardon et al., 2018). One study proposes that
anxiety is related to inflammation; for example, mice infected
with Schistosoma mansoni showed a reduction in behaviors
such as exploration and grooming (Sulaiman et al., 1989). In
addition, abnormal emotions, such as anxiety and neophobia,
could happen following bacterial infection or as a response to
bacterial products (Capuron and Miller, 2011). Anxiety levels
increased when humans were exposed to lipopolysaccharide
(LPS) (Grigoleit et al., 2011). Of the numerous cytokines, IL-
6 is perceived as an atypical proinflammatory cytokine, having
been demonstrated to show elevated levels in depressed animals
and patients (Jiang et al., 2020; Lamers et al., 2020). In a study,
IL-6 knockout mice became resistant to the development of
depression-like symptoms (Monje et al., 2011). The underlying
mechanisms involve in two pathways, the HPA axis and
neurotransmitter metabolism, both of which are affected by
increased IL-6 in depression (Ting et al., 2020). Furthermore,
anxious patients also had higher serum levels of IL-6 than
common people (Tang et al., 2018; Zou et al., 2020). In addition
to impact on HPA axis activity, IL-6 could cross the blood–brain
barrier, as they affect the uptake and release of mood-relevant
neurotransmitters, including dopamine, 5-HT, noradrenaline,
and gamma-aminobutyric acid (Zalcman et al., 1994; Clement
et al., 1997; Anisman et al., 2008; Miller, 2009). IL-10, a
prototypical anti-inflammatory cytokine, was closely related to
depression (Li et al., 2020). Lower IL-10 has been observed
in depression, while IL-10 was elevated after antidepressant
treatment (Dai et al., 2020; Lee et al., 2020). In contrast,
studies have reported higher IL-10 in depressive patients and

decreased IL-10 after treatment for depression (Köhler et al.,
2018; Himmerich et al., 2019; Wang et al., 2019; Brunoni
et al., 2020). One explanation for increased IL-10 is that it
is an anti-inflammatory response to correct an inflammatory
activation caused by higher levels of proinflammatory cytokines
(Bhattacharya andDrevets, 2017). In this way, higher IL-10 levels,
as observed in our study, may be associated with the development
of abnormal patterns. On the other hand, previous studies found
a high dose of IL-10may induce anxiety in the OFT (Harvey et al.,
2006), two other behavioral tests for anxiety detection (Munshi
et al., 2019). Taken together with these experiment evidences,
the abnormal pattern of mice may be a direct result of increased
inflammatory mediators.

Elevated corticosterone, one marker of HPA axis activation,
was observed in the mice of the AB group (Borrow et al.,
2019). Several studies indicate that the disturbance of gut
bacteria affects the HPA axis. Specifically, adrenocorticotrophin
and corticosterone levels for GF mice were higher than of
mice bearing conventional microbiota (Crumeyrolle-Arias et al.,
2014). Besides, the hyperactivity of the HPA response in GF mice
could be partially reversed by gut microbiota transplantation
(Huo et al., 2017). Probiotics, such as Bifidobacterium species,
have been demonstrated to be efficient in restoring HPA axis
function (Moya-Pérez et al., 2017).

The BDNF level showed a decreasing trend in the
hippocampus of the AB group. According to the previous
study, BDNF can maintain and promote development,
differentiation and regeneration of neurons as well as affect
learning and memory (Bercik et al., 2011). The hippocampus
provides the brain with a spatiotemporal framework within
which various sensory, emotional, and cognitive components
are integrated (Yang and Wang, 2017). Literature has reported
that hippocampus degeneration with diminished BDNF leads
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to a decline in cognition (Deltheil et al., 2008). Recently, gut
microbiota is thought to directly affect BDNF expression.
The GF mice showed a decreased BDNF in the cortex and
hippocampus (Bercik et al., 2011). This coincides with the
thesis that reduction of BDNF after gut dysbiosis possibly
leads to impairment of cognitive function (Frohlich et al.,
2016). Contrary to the findings, some studies observed an
increased BDNF in the amygdala and hippocampus when gut
microbiota imbalance induced a decline in spatial memory
(Desbonnet et al., 2015). In addition, Bifidobaterium adolescentis
shows a promising anxiolytic and antidepressant property as
it up-regulated BDNF expression by restoring the balance of
gut microbiota (Guo Y. et al., 2019). A slight increase of c-Fos
was observed in the amygdala of the AB group. C-Fos serves
as a component of transcription factor AP-1 and biomarker of
neuronal activation, playing a major role in processing emotion
and motivation (Baulmann et al., 2000; Roberts et al., 2019).
Abnormal activation of c-Fos in the brain may be related to
gut disorders; for example, as compared to uninfected mice, a
significantly increased c-Fos was observed in mice infected with
Campylobacter jejuni (Goehler et al., 2008). Meanwhile, a study
indicated c-Fos activation following immune activation; this
finding was in accord with our findings that cytokines increased
with increasing c-Fos (Lyte et al., 2006).

CONCLUSION

In general, we found that mice exposed to 11 weeks of ceftriaxone
sodium treatment had a lower diversity and abundance of gut
microbiota and showed more behavioral changes as compared
to mice that were given normal saline. Dysregulation of the
nerve-endocrine-immunological network may be a potential
mechanism underlying abnormal behaviors induced by impaired
gut microbiota. The study revealed the unknown side effects of
antibiotics to a certain extent. Follow-up studies rebalancing the
gut dysbacteriosis are required to further confirm the relationship
between gut microbiota and brain function.
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