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More than 15 years after the first human cases of influenza A/H5N1 in

Hong Kong, the world remains at risk for an H5N1 pandemic. Preparedness

activities have focused on antiviral stockpiling and distribution, develop-

ment of a human H5N1 vaccine, operationalizing screening and social

distancing policies, and other non-pharmaceutical interventions. The plan-

ning of these interventions has been done in an attempt to lessen the

cumulative mortality resulting from a hypothetical H5N1 pandemic. In

this theoretical study, we consider the natural limitations on an H5N1 pan-

demic’s mortality imposed by the virus’ epidemiological–evolutionary

constraints. Evolutionary theory dictates that pathogens should evolve to

be relatively benign, depending on the magnitude of the correlation between

a pathogen’s virulence and its transmissibility. Because the case fatality of

H5N1 infections in humans is currently 60 per cent, it is doubtful that the

current viruses are close to their evolutionary optimum for transmission

among humans. To describe the dynamics of virulence evolution during

an H5N1 pandemic, we build a mathematical model based on the patterns

of clinical progression in past H5N1 cases. Using both a deterministic

model and a stochastic individual-based simulation, we describe (i) the dri-

vers of evolutionary dynamics during an H5N1 pandemic, (ii) the range of

case fatalities for which H5N1 viruses can successfully cause outbreaks in

humans, and (iii) the effects of different kinds of social distancing on virulence

evolution. We discuss two main epidemiological–evolutionary features of this

system (i) the delaying or slowing of an epidemic which results in a majority

of hosts experiencing an attenuated virulence phenotype and (ii) the strong

evolutionary pressure for lower virulence experienced by the virus during a

period of intense social distancing.
1. Introduction
Transmission of influenza A subtype H5N1 from poultry to humans has been a

major public health concern since the emergence in 2002 and 2003 of H5N1 geno-

types that are highly pathogenic in both humans and terrestrial poultry [1,2].

The most immediate risk arising from these avian influenza viruses is that

they will evolve the capacity for sustainable human-to-human transmission,

the potential evolutionary pathways of which have recently been described in

a ferret model [3,4]. Sustainable human-to-human transmission significantly

increases the probability of an influenza pandemic, and this risk has prompted

the development of national and international pandemic preparedness plans

over the past 10 years. Response strategies generally include minimizing

general-population transmission through isolation/quarantine and social dis-

tancing (SD) measures, minimizing hospital transmission, use of antiviral

drugs, and vaccination [5–13]. Pandemic preparedness plans can be evaluated
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only hypothetically, with mathematical models, but data are

available from drug [14–16] and vaccine trials [17,18] as well

as past pandemics [19–21] that help us narrow down the par-

ameter ranges corresponding to the effectiveness of some of

these interventions.

One aspect of pandemic preparedness planning that has

been ignored is the potential of changing or evolving viru-

lence during the course of the pandemic [22]. Although

virulence can be measured in many ways, in this paper we

focus on the case-fatality rate in humans as the main viru-

lence phenotype of interest. Abundant evidence exists

showing the potential for virulence evolution in both

avian [23–27] and human [28,29] influenza viruses. However,

it is not known how experimental evidence from animal

models translates to infections in humans [30]. Empirical evi-

dence for virulence evolution in influenza virus exists from

the 1918 pandemic, whose case fatality attenuated from

more than 2.5 to less than 0.1 per cent [31]. The potential

for virulence evolution of H5N1 in humans is unknown.

A key feature of H5N1 infections that differs from pre-

vious influenza pandemics is the extreme case fatality in

humans, currently estimated at 60 per cent [32]. It has been

recently debated whether there are missing cases in the

denominator of this calculation and whether the true case

fatality of H5N1 infections is much lower than that observed

from severe infections alone [33–38]; nevertheless, the current

prevailing opinion leans towards this high 60 per cent esti-

mate. This high case fatality makes it likely that virulence

will attenuate during the course of a pandemic, but the

more immediate question is whether a virus with this case

fatality could successfully invade a human population and

cause a sustainable outbreak. Therefore, in analysing viru-

lence evolution of H5N1 in humans, we aim to describe

two biological features of this system (i) the range of case

fatalities that can sustain transmission in a human population

and thus enable the evolutionary emergence [39,40] of H5N1

viruses and (ii) the pattern of virulence evolution during the

course of the pandemic.

Classical evolutionary theory suggests that pathogens

should evolve to be relatively benign, as killing the host has

a negative impact on the pathogen’s fecundity (transmission).

In the 1980s and 1990s, a body of literature emerged explain-

ing how a pathogen’s evolutionary path to intermediate

virulence—as opposed to zero virulence—could be caused

by a positive association between transmissibility and viru-

lence [41–45]. This work was later placed in the context of

life-history trait evolution, and both the timing of and the

correlation between transmission and virulence were identi-

fied as key elements determining a pathogen’s evolutionary

optimal virulence [46]. Non-equilibrium approaches were

subsequently introduced to allow for the analysis of transient

dynamics of virulence evolution [47,48], and these methods

illustrate that virulence and transmission should evolve

upwards during the upswing of an epidemic—when evol-

ution places a premium on reproduction (transmissibility)

over survival (infection duration)—and downwards during

the downswing of an epidemic when survival is selected

for more strongly than reproduction.

In this article, we construct a mathematical model of

virulence evolution during an H5N1 pandemic using the

quantitative-genetic strain structure introduced by Day &

Gandon [48] and Boni et al. [49]. The clinical phenotypes

of the different H5N1 strains in our model are based on
data from known cases of human H5N1 infections [50–58],

which often progress to severe infection, hospitalization

and death. We build into the model two key phenotypic fea-

tures of H5N1 viruses: their high replicative ability [59], and

their high relative affinity for a2,3-linked sialic-acid receptors

over a2,6-linked sialic-acid receptors [60,61]; both of these

phenotypes are allowed to evolve in the model. In general,

avian influenza viruses are adapted to a2,3 receptors, while

human influenza viruses are adapted to a2,6 receptors.

As the human upper respiratory tract (URT) contains predomi-

nantly a2,6 receptors, and the human lower respiratory tract

(LRT) contains both a2,3 and a2,6 receptors [60–63], viruses

evolving from a2,3 affinity to a2,6 affinity will simultaneously

shift the viral burden from LRT to URT and become more

infectious. In our model, the total viral burden in the LRT

is positively associated with disease severity and case fatal-

ity [50,64]; thus, the phenotype of interest that we follow is

the degree of LRT infection. In addition, we assume that

infections with a higher LRT burden progress more rapidly

to severity and death; hence, our model contains the same

classic trade-off as previous virulence evolution models

where higher mortality is associated with a shorter period of

infectiousness [45,46].

The invasion of a virus across a species boundary is a much

more difficult phenomenon to model, as this stochastic set of

events is almost impossible to parametrize. Using estimates

from the literature and, in the absence of data, the most reason-

able ranges based on known aspects of the system’s biology,

we build a stochastic individual-based version of our math-

ematical model and test the success of viral invasion across a

range of parameter values. These results are presented to

give a general idea of the allowable range of invading case

fatalities and the factors that influence this process.
2. Material and methods
(a) Deterministic compartmental model
We begin with a compartmental, deterministic differential-

equations model, based on a classic SEIR-model in a closed

population with no influx of additional susceptible hosts from

other populations. Our model has additional classes for sympto-

matic individuals that have been placed under isolation (Q),

severely infected individuals (V ) and hospitalized individuals

(H ). Hosts in class I are infected and infectious. The basic flow

diagram is shown in figure 1.

An evolutionary model is integrated into the basic

population-dynamic model, as in previous models of evolution-

ary epidemiology [49,65], but with a two-dimensional phenotype

space. Each strain in the model is indexed by j and k, with j ¼
1, . . . ,J and k ¼ 1, . . . ,K. The index j describes the degree of affi-

nity for a2,6 receptors, with increased affinity corresponding to

an increase in j; as j increases the viral phenotype is better able

to colonize the epithelium of the URT of humans and is more

easily transmissible. The index k corresponds to the virus’ intrin-

sic replicative ability, with higher k corresponding to higher

replication. Influenza strains in phenotype space mutate via

nearest-neighbour, reversible mutation; i.e. strain ( j, k) can

mutate to strain ( jþ 1, k) or ( j, kþ 1), but not both. Because

only hosts and not individual viruses are followed in the

model, a strain mutation corresponds to an individual host’s

entire viral population shifting, for example, from the ( j, k)

phenotype to the ( j 2 1, k) phenotype. Thus, the mutation pro-

cess describes the appearance of a new mutant and its rise to a

high enough frequency that it will be the likely strain to be
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Figure 1. Class diagram for the model. Individuals can be susceptible (S),
exposed (E), infectious (I ), infectious with severe disease (V ), isolated (Q)
and hospitalized (H ). Each infected individual is infected with a particular
strain ( j,k), which corresponds to a rate of progression and probability of
recovery for that individual. Note the distinction between fractions and rates
among the parameters.
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transmitted upon an infection event. These are the same assump-

tions as in other models of evolutionary epidemiology [48,49,65].

Hosts can only be infected with one viral phenotype at a time.

Once individuals become infectious, they enter the I class.

A fraction q of I individuals will be placed under isolation (Q).

Thereafter, a fraction vj,k of individuals in I and Q can progress

to severe disease, and these individuals are classified as severely

infected (V ) or severely infected and hospitalized (H ), respect-

ively. All isolated patients progressing to severe infection are

hospitalized, and a fraction h of I individuals progressing to

severe disease are hospitalized. A fraction vj,k of severely infected

individuals will die. Therefore, the strain-specific case fatality in

the model is vj,k
2 .

Note that the vj,k denotes both the fraction of infecteds that

progress to severity and the fraction of severes that do not sur-

vive. As the future evolution of the severity phenotype of any

pandemic influenza virus is completely unknown, we do not

know if virulence attenuation will occur by lowering the prob-

ability that cases become severe, lowering the probability that

severe cases progress to death, or both. For simplicity, we have

assumed that these two probabilities are the same.

The basic transmission processes are governed by the par-

ameters aj and bk. The a parameters range from 0 to 1, and

describe the degree of affinity for a2,6 receptors, and hence ability

to colonize the URT and be transmitted; this is similar to the

within-host parametrization used by Reperant et al. [66]. The par-

ameter a1 is equal to zero, indicating that none of these strains

is able to replicate in the URT, while aJ ¼ 1, indicating that

viruses of this phenotype are fully competent at invading the

upper epithelium through a2,6-type receptors. Transmissibility

is, therefore, directly proportional to aj. The parameter bk is the

basic transmission parameter in the model, which saturates

non-linearly with k as

bk ¼
a0 k

a1 þ k
: ð2:1Þ

The force of infection of each strain is proportional to the

product ajbk.
The parameters n and nv represent the minimum recovery

rates for infected individuals and severely infected individuals,

respectively. Hosts in the I and Q classes progress to severity at

rate nþ pj,k, where pj,k is a parameter describing the increase in

recovery rate for individuals infected with different strains in

the model; pj,k increases with k and decreases with j as infections

with high replication in the LRT are the ones most likely

to progress to severity quickly. Hosts in the V and H classes

progress to death or recovery at rate nvþ rj,k; again, rj,k intro-

duces variation in the duration of severity for individuals

with severe disease. The parameter rj,k increases with k and

decreases with j, as infections with high LRT burden are most

closely associated with rapid progression to death. To simplify

and focus the analysis, we define a variable describing the

viral burden in the LRT as a fraction of maximal possible viral

burden in the LRT. The variable,

B j;k ¼ ð1� ajÞ
k
K
þ a2

k
K

� �c� �
� 1

1þ a2
; ð2:2Þ

is bounded between zero and one; the expression a2 /(1þ a2 ) is

the fraction of receptors in the LRT that are of the a2,6 type,

which in humans is the majority. The term (k/K )c describes the

increased LRT burden owing to high-replication phenotypes

entering cells through both a2,3 and a2,6 receptors in the LRT.

Note that when aj ¼ 1 and k is low, Bj,k can be close to zero.

In this situation, Bj,k can be interpreted as the LRT burden

caused by a low-replication human-adapted phenotype. The

parameter c is unknown.

Finally, we introduce several necessary control parameters.

The mutation rate is m. Within-host viral populations can

mutate one unit in phenotype space in either the j or k dimen-

sion; the mutation rate between any neighbouring pair of

points in phenotype space is m/4. A fraction h of infected

hosts (not under isolation) will be hospitalized. A fraction q of

symptomatic hosts will be isolated, with t21 being the time

from infectiousness to isolation. t21 depends on both the public

health measures taken to reduce transmission as well as the dur-

ation of pre-symptomatic transmission that would be occurring

for a hypothetical H5N1 variant circulating among humans.

To write the full dynamical equations of the model com-

pactly, we introduce two compound parameters, gj,k and fj,k.
The g parameters describe how quickly hosts flow out of the I
class; this rate is the harmonic mean of the recovery/progression

rate and the isolation rate. We have

g j;k ¼
1� q

nþ p j;k
þ q

t

� ��1

:

The dimensionless compound parameter fj,k describes the

fractional flow of hosts from the I class to the Q class (note that

q is the fraction of hosts that are isolated, but the fraction of the

total flow out of I is higher, because isolation occurs more

quickly than recovery or progression to severity). We have

qt
ð1� qÞðnþ p j;kÞ

¼
f j;k

1� f j;k
:

Note that f j;k = t=ðtþ nþ p j;kÞ; unless q ¼ 0.5. The extra algebra

is necessary as hosts can leave the I class at different rates. The

full dynamical equations are

_S ¼ �S
X

j;k

L j;k ð2:3Þ

_Ej;k ¼ SLj;k � ð1þ mÞEj;k þ
m

4

� �
Ej+1;k+1 ð2:4Þ

_I j;k ¼ 1E j;k � ðg j;k þ mÞI j;k þ
m

4

� �
I j+1;k+1 ð2:5Þ

_Qj;k ¼ fj;kgj;kIj;k � ðmþ nþ pj;kÞQj;k þ
m

4

� �
Qj+1;k+1 ð2:6Þ
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Figure 2. Contour plots in phenotype space showing (a) R0 value and (b) log10 case fatality for the different phenotypes in the model. The axes show affinity for
a2,6 receptors ( j index, horizontal axis) and level of viral replication (k index, vertical axis) and are scaled from 0 to 1. The basic reproductive number R0 is calculated
from equations (2.3) – (2.8) (see the electronic supplementary material), and the case fatality is calculated from equation (2.9). The white circles in the top-left of
each graph (a,b) show the approximate phenotypic position of current H5N1 viruses, low affinity for a2,6 receptors and a high level of viral replication. The white
circles in the right of each graph (a,b) show the approximate phenotype position of seasonal human influenza viruses (i.e. subtypes H3N2 and H1N1); these viruses
have a high affinity for a2,6 receptors and what we surmise to be an average level of viral replication. The white arrow in (a) shows the probable evolutionary path
under the assumption that R0 is a good proxy for viral fitness. The white arrow in (b) shows the optimal evolutionary path from a public health perspective, i.e. the
path that results in the most rapid virulence attenuation. R0,max ¼ 1.82.
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_V j;k ¼ ð1� hÞð1� f j;kÞv j;kg j;kI j;k � ðmþ nv þ r j;kÞV j;k

þ m

4

� �
V j+1;k+1 ð2:7Þ

and

_Hj;k ¼ hð1� fj;kÞvj;kgj;kIj;k þ vj;kðnþ pj;kÞQj;k

� ðmþ nv þ rj;kÞHj;k þ
m

4

� �
Hj+1;k+1; ð2:8Þ

with the force of infection of virus ( j, k) defined as

L j;k ¼
ajbk

N
½zI j;k þ zqQ j;k þ zvV j;k þ zhH j;k�:

The z parameters describe the relative levels of mixing or circula-

tion in the general population for the infected classes I, Q, V and

H. Typically, we set z ¼ 1. When SD is implemented, the par-

ameters z and zv are reduced by a constant factor. N is the host

population size.

The rates of disease progression, nþ p j;k and nv þ r j;k, are two

of the epidemiologically relevant phenotypes that will be evolving

in the model. Both of these are linked significantly to the disease

burden in the LRT. Hence, we define the relationships below

nþ p j;k ¼ n � ð1þ sIB j;kÞ

and nv þ r j;k ¼ nv � ð1þ sVB j;kÞ:

The parameters sI and sV determine the amount of allowable vari-

ation for the recovery/progression rates in the model. The v

parameters are fractions that describe the proportion of individuals

progressing from infection to severity, and from severity to death.

In the flow from the I class to the V class, only a fraction v progress

to severity, while a fraction 1 2 v recover. Note that if the flow out

of the I class is nþ p j;k (assuming q ¼ 0 for simplicity), the fraction

recovering is not equal to n=ðnþ p j;kÞ.
The case fatality for a given virus is v2

j;k, and the v

parameters are defined by

v j;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B j;k � CFmax

q
; ð2:9Þ

where CFmax is the maximum allowable case fatality in the

model. Thus, we assume that case fatality is directly proportional

to LRT burden. Figure 2 shows the case fatality and R0 values in
phenotype space, the optimal evolutionary path of the virus, and

the optimal evolutionary path from a public health perspective.

In these two phenotype-space maps, we see that aj has the big-

gest impact on the invading virus’s R0, and thus that evolution

should favour more rapid change in aj than in bk. From a

public health perspective, evolutionary change in both the

a- and b-dimensions would be optimal as this would result in

the most rapid reduction in case fatality. The white arrows

in these graphs show, in phenotype space, the directions of

maximal change in R0 and maximal change in case fatality.

(b) Stochastic individual-based model
Details of the implementation of a stochastic individual-based

model, paralleling equations (2.3)–(2.8), are contained in the

electronic supplementary material.

(c) Parameters
Unless otherwise noted, the following parameters were used for

simulations. Phenotype space has J ¼ 10 evenly spaced classes for

receptor specificity [67], and K ¼ 40 classes for viral replicative abil-

ity. The maximum R0 in phenotype space was set to R0,max ¼ 3.5;

when this parameter is changed, all R0 values for the 400 pheno-

types in phenotype space are rescaled by the same amount. For

variation in infection/severity durations, we set sI ¼ sV ¼ 4:0.

Time from infectiousness to isolation t21 was set to 2.2 days, with

2 per cent of all cases being isolated (q). The hospitalization fraction

h was set to a constant value of 0.50, indicating that the pandemic

did not overwhelm the health system. The parameter a2 was set

to 1.75, corresponding to 64 per cent of epithelial cell receptors in

the LRT having a2,6 linkage; this parameter is unknown [68].

Other parameters are set as in table 1.
3. Results
(a) Theory
To simplify analysis of the dynamical system in

equations (2.3)–(2.8), we set m ¼ 0 and remove the exposed

class (E), so that the dynamical equation for Ij,k has the



Table 1. Model parameters. N/A designation is used for a and b parameters that span all of phenotype space as well as compound parameters.

parameter description assumed value/range evidence

aj affinity for a2,6 receptors of strain ( j,k); 1 2 aj is interpreted as

the affinity for a2,3 receptors

0 � aj � 1:0 N/A

bk transmissibility parameter for strain ( j,k) defined by bk ¼ a0 k=ða1 þ kÞ N/A

a0, a1 transmission saturation parameters for strain with

replicative ability k

a1 ¼ 4.0; a0 set such that 0 � R0 � R0;max none

R0,max maximum possible R0 value in phenotype space 1:3 � R0;max � 3:5 none

m mutation rate 0.05 none

n, nv minimum recovery rates for infected and severely infected

individuals, respectively

n21 ¼ 9.0 days [50 – 58]

n v
21 ¼ 15.0 days

sI amount of phenotypic variation in the progression rate of infected

individuals (I and Q); progression rate can vary ð1þ sIÞ-fold

from minimum rate n

1:0 � sI � 4:0 [50 – 58]

sV amount of phenotypic variation in the progression rate of severely

infected individuals (V and H ); progression rate can vary

ð1þ sVÞ-fold from minimum rate nv

1:0 � sV � 4:0 [50 – 58]

a2 a2=ð1þ a2Þ is the fraction of receptors in the LRT with a2,6

linkage

1.75 none

c concavity parameter describing effect of high viral replication on

LRT burden Bj,k

10 none

1�1 duration of exposed but uninfectious period 1.4 days [69,70]

t21 days from infectiousness to isolation 1:0 � t�1 � 3:0 [71,72]

q fraction of all cases that are isolated; will vary widely depending

on virulence and context

0:01 � q � :0:50 [72]

h fraction of non-isolated cases that will be hospitalized upon

progression to severity; will vary widely depending on public

health system

0:20 � h � 1:00 none

zq, zv, zh relative mixing levels in population of isolated, severe and

hospitalized individuals, respectively

zq ¼ zh ¼ 0.05

zv ¼ 0.80

none

CFmax maximum case fatality across all strains 0.90 none

gj,k compound parameter describing the rate at which individuals

flow out of the I class

defined by

g�1
j;k ¼ ð1� qÞðnþ p j;kÞ�1 þ qt�1

N/A

fj,k compound parameter describing the fractional flow of hosts from

the I class to the Q class

defined by

f j;k ¼ qt=ðð1� qÞðnþ p j;kÞ þ qtÞ
N/A
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form dI j;k=dt ¼ SL j;k � g j;kI j;k. We use the uppercase variable

X to describe infected individuals of any severity or

hospitalization/isolation status: X ¼ I þ Q þ V þ H and

X j;k ¼ I j;k þQ j;k þ V j;k þH j;k. We will write down the

dynamical equations for the strain frequencies

x j;k ¼
X j;k

X
:

For convenience, we define i j;k ¼ I j;k=X, q j;k ¼ Q j;k=X,

v j;k ¼ V j;k=X and h j;k ¼ H j;k=X, so that

x j;k ¼ i j;k þ q j;k þ v j;k þ h j;k:

We will denote the sums of the frequencies in the four dif-

ferent infected classes by lowercase boldface variables, e.g.

i ¼
P

i j;k ¼ I=X. We have iþ qþ vþ h ¼ 1.
We use the uppercase variable Y to denote the mixing-

weighted number of infected individuals: Y j;k ¼ zI j;kþ
zqQ j;k þ zvV j;k þ zhH j;k, and we define y j;k ¼ Y j;k=X. Then,

w j;k ¼ y j;k=x j;k represents the proportion of any given strain

that is currently in circulation; 0 � w j;k � 1.

Using these frequency variables above and making the

appropriate substitutions from equations (2.3)–(2.8), we can

write down

dx j;k

dt
¼ x j;k �

S
N
� ajbk

y j;k

x j;k

� �
�
X

ajbky j;k

� �

� ð1� vj;kÞð1� fj;kÞgj;kij;k þ xj;k � i � ð1� vÞð1� fÞg½I�

� ð1� v j;kÞðnþ p j;kÞq j;k þ x j;k � q � ð1� vÞðnþ pÞ½Q�
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�ðnv þ rj;kÞðvj;k þ hj;kÞ þ xj;k � ðvþ hÞ � nv þ r½VþH�;

ð3:1Þ

where the bars indicate means, and the bracketed subscripts,

e.g. [Q], show that means are taken over only certain

population classes.

From the first line, we see that the product ab should

always evolve upwards. When all the z parameters are

equal to one, the expression in the square brackets of the

first line of (3.1) reduces to ajbk � ab, corresponding to the

standard population-genetic result that a strain’s frequency

will increase if its ab-value is larger than the mean ab-

value in the population at the time. From the second and

third lines of the above equation, we see that there is selec-

tive pressure on the ‘progression to severity’ parameters,

(ð1� vÞð1� fÞg and ð1� vÞðnþ pÞ), to evolve downwards.

Because there is a negative sign in front of the first term on

each line (which describes the strain-specific progression

rate from infection to severe infection) and a positive sign

in front of the second term (the mean progression rate

across individuals in a particular population class), a strain

whose progression rate is faster than average will be selected

against as these two terms will add to a negative value in the

dx j;k=dt equation. Therefore, the two progression rates evolve

downwards, and v is under selection to evolve upwards.

However, vj,k is also positively correlated with pj,k and gj,k,

which places it under selection pressure to evolve down-

wards. Thus, a complex set of selection pressures operates

in the I and Q classes of our structured model. In these two

classes, selection favours more severe phenotypes because a

higher probability of progressing to severity prolongs the

infection; however, selection also acts against more severe

phenotypes because they are more likely to induce patient

death and shorten the infectious period. The fourth line can

be interpreted the same way as the second and third lines.

However, because there is no (1 2 v) term on the fourth

line, v is under pressure to evolve downwards as this extends

the duration of infection in these classes and reduces the

probability of death. Note that when means and frequencing

are computed only for certain population classes, this indi-

cates that evolution is being driven by competition among

viral phenotypes in only these classes of hosts.

To track the evolution of v, the square root of the case

fatality, we define

�v ¼
X

v j;kx j;k;

and we have

d �v

dt
¼ S

N
Covðv;abwÞ

� i � ½Covðv;ð1�vÞð1� fÞgÞ½I� þð1�vÞð1� fÞg½I�ð�v½I���vÞ

�q � ½Covðv;ð1�vÞðnþpÞÞ½Q� þð1�vÞðnþpÞ½Q�ð�v½Q���vÞ�

�Covðv;nvþrÞþðqþ iÞ½vðnvþrÞ½IþQ���vnvþr½IþQ��:
ð3:2Þ

The dynamical equation above is written in the classical

structure of the Price equation [73,74], with the first line
showing that the covariance between a case-fatality proxy

(v), and a transmission proxy (abw) is the primary driver

in the evolutionary dynamics of virulence in the system.

The covariance between v and a is negative, whereas the
covariance between v and b is positive, meaning that

the term on the first line can push the case fatality in either

direction; this will depend on which of these two charac-

teristics currently has more phenotypic variation in the

population. Note that w will be a scalar value when

the mixing parameters in the four different infected classes

are equal.

On the fourth line of equation (3.2), the positive covari-

ance between v and nv þ r indicates that the association of

rapid disease progression and high case-fatality should

drive case fatality down in the long term (classical trade-

off ). However, note that the term on the second half of this

line dampens this effect because rapid progression in the I
and Q classes is associated with a lower probability of recov-

ery, and can be associated with a prolonged total infection

time. Thus, selection pressures in this model are highly struc-

tured and operate differently in different clinical states. When

we consider hosts in only the I and Q classes (early phase of

infection), prolonged infections can be associated with both

higher and lower severity, complicating the effects of the clas-

sical trade-off between virulence and infection duration.

Assuming mixing and shedding patterns do not change

during the course of an infection, the evolutionary optimal

behaviour of the virus is to prolong the infection period with-

out increasing the case fatality, but the relationship between

duration and severity is not monotonic. Thus, life-history

characteristics of the virus are critical for analysis of a

multi-stage infection with varying degrees of severity [46].

The non-monotonic relationship between duration and

severity is seen clearly on the second and third lines of

equation (3.2), where the (1 2 v) terms show that higher case

fatality can be associated with longer durations of infection.

The main evolutionary–epidemiological effect to note in

equation (3.2) is the product of the number of remaining sus-

ceptibles S/N and the covariance between case fatality and

transmissibility. In the early phases of the epidemic, this

interaction will have a strong effect on positively selecting

for higher transmission; as the epidemic progresses, the

strength of this effect will wane and strains with longer infec-

tion durations will be selected. The second effect we expect to

see is a bottleneck effect, if the parameter w is suddenly

reduced through a public health intervention such as SD; if

the reduction in w is large, selection pressures for longer

viral survival and lower virulence will intensify.
(b) Criteria for invasion
The ability of H5N1 phenotypes to invade was assessed with

an individual-based stochastic model in a population of one

million individuals. Figure 3 shows how often invasions were

successful for different phenotypes in ( j, k) space. The main

determinant for invasion is the parameter aj, describing a

strain’s ability to colonize the human URT. In addition, viruses

with low replication (low k) cannot invade owing to poor trans-

missibility, and viruses with very high replication (high k) are

poor invaders owing to their association with rapid progression

to severity and death. Successful invaders are associated with

a wide range of case fatalities, illustrating a core problem in

attempting to determine the case-fatality phenotype of a

successfully emergent H5N1 variant in humans.

In figure 3, 40 000 simulations were run for each plot, 100

for each ( j, k) pair. Approximately 16 000 simulations

resulted in successful invasions for realistic levels of isolation
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(q ¼ 0.01 and q ¼ 0.10), and 2635 simulations resulted in suc-

cessful invasions when the isolation fraction was set to 50 per

cent, an unattainable level in most public health contexts. The

median invading case fatality for q ¼ 0.01 and q ¼ 0.10 was

5.5 per cent (IQR 2.5–11.1%), and the median invading

case fatality for q ¼ 0.50 was 5.7 per cent (IQR 2.6–12.1%).

This suggests a small effect of isolation fraction on the

early phases of virulence evolution. More detailed study is

needed on this topic as it is also likely that ability to isolate

patients will be correlated with clinical presentation and

severity, a feature that is not included in our model.

To determine which other parameters correlate with prob-

ability of successful invasion a sensitivity analysis [75] was

done on 13 parameters, including the initial values of j and

k for the starting viral phenotype (for details see the elec-

tronic supplementary material). Partial rank correlation

coefficients were computed between the parameters and the

probability of a successful invasion. The initial value of j
(PRCC ¼ 0.875) and the value of R0,max (PRCC ¼ 0.830) had

the largest effects on this probability. As figure 3 suggests,

a higher j value for an initial invading strain will have a

large effect on generating a successful epidemic. Likewise,

increasing the R0,max has a large effect as this inflates the R0

values in all of phenotype space and makes it more likely that

a mutation will find a phenotype with R0 . 1. The parameter

with the third largest effect was the mixing rate zq ¼ zh for iso-

lated/hospitalized individuals (PRCC ¼ 0.197), showing that

the effects of severity, hospitalization and reduced mixing
play an important role in determining if a particular phenotype

will have the right characteristics to invade.

For the simulations that do result in a successful invasion,

we computed the ‘invading case fatality’ by recording

the mean case-fatality phenotype after the epidemic had

reached 1000 cases. The invading case fatality correlated

most strongly with the initial value of k (PRCC ¼ 0.957)

and the convexity parameter c (PRCC ¼2 0.824). Probability

of invasion is highly dependent on a virus being able to enter

epithelial cells through a2,6 receptors; therefore, for an invad-

ing virus to be associated with a high case fatality, it must

also be a fast replicator to induce a high viral burden in the

LRT through a2,6 receptors in the LRT. For this reason,

we see strong partial correlations with the parameters k
and c, as these parameters determine the ability of a

URT-adapted virus to induce significant viral burden in

the LRT. The partial correlation with c is negative because

strong convexity means that only the most rapid replicators

maximize the LRT burden. The next strongest partial corre-

lation was with the parameter a2 (PRCC ¼20.183) which

describes the abundance of a2,6 receptors in the lower respirat-

ory tract. Likewise, this parameter describes an a2,6-adapted

virus’s ability to induce significant burden in the LRT. Taken

together, these PRCC values mean that when a2,6-adapted

viruses are able to induce a significant LRT burden, the case

fatality associated with an invading virus should be high. All

PRCC values are plotted in the electronic supplementary

material, figure S2.
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Figure 4. Example of effects of social distancing (SD), simulated from equations (2.3) – (2.8) in a population of N ¼ 107 individuals, showing infected individuals
(red) and mean case fatality phenotype (blue). The left panels show pandemic progression with no SD. The middle and right panels show a SD policy, triggered at
100 cases, that reduces contact rates by one third. In the right-hand panels, the SD policy is relaxed on the downswing of the pandemic and contact rates return to
their previous levels. (a) Show pandemic dynamics in time. (b) Show pandemic dynamics on the ‘suscetpibles’ axis, (N 2 S(t))/(N 2 Sfinal), describing the fraction
of individuals that have already been infected. The grey lines show the case-fatality curves from the other two panels. (b) Show that the majority of individuals
experience the same case-fatality phenotype as the epidemic dynamics are fast relative to the evolutionary dynamics. The middle panels show that the main
beneficial effect of SD comes from delaying peak epidemic dynamics (DEL) which, in these simulations, allow the case fatality to attenuate from 6.0 to 4.5%.
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(c) Virulence dynamics and social distancing
As expected from the model construction and parametriza-

tion, virulence attenuates in the model. Figure 4a (left)

shows a typical epidemic curve with R0,max ¼ 2.5, with case

fatality attenuating from approximately 7 to 6 per cent

during the epidemic. The other panels in figure 4 show the

effects of an SD policy that lasts the entire duration of the epi-

demic (middle panels) and an SD policy that is relaxed when

incidence has begun to decrease (right panels). The first con-

sequence of SD is that peak epidemic dynamics are delayed,

giving the virus more time to attenuate and resulting in a

lower per capita case fatality during the epidemic wave. In

theory, every SD policy will introduce a delay (DEL) in epidemic

dynamics, and an SD policy with the right level of contact

reduction implemented for the right amount of time may drive

the system close to the epidemiological optimum (EPO) of infect-

ing exactly 1 2 1/R0 individuals without over shooting (the ‘soft

landing’) [19,20]. If the epidemic has not removed enough

susceptible hosts from the population, a second epidemic

wave will occur if SD measures are relaxed too early; this effect

is shown in the right-hand panels of figure 4. The intermediate

SD policy that guides the system to the EPO is more optimal

than a stronger SD policy that extinguishes the epidemic in

its early phases, as the strong-SD strategy will leave too many

susceptibles in the population (Reffective . 1), making the popu-

lation vulnerable to a reintroduction of the virus and a delayed

but full-sized epidemic wave.
Although the blue virulence curves in the top panels of

figure 4 look somewhat similar in time, they are experienced

completely differently by the host population because an SD

policy delays the epidemiological dynamics in relation to

the evolutionary dynamics. Figure 4b displays evolutionary

dynamics on the ‘susceptibles’ axis instead of the time axis,

showing that the virulence levels experienced by the majority

of infected people are very different when SD is implemen-

ted. Note that the virulence curves show ‘kinks’ or ‘cusps’

when there are abrupt changes in transmission or mixing,

either due to implementation/relaxing of an SD policy or

the natural dynamics of the system. This is a result of the

complex effects of transmission, mixing and infectivity par-

ameters on pathogen evolution which act both to (i) change

selective pressures and (ii) alter the rate of evolution [49].

In addition to the observed DEL and EPO behaviours, the

system may have an evolutionary optimum (EVO), whereby

a SD policy with an extremely high contact reduction forces

the viral population through a bottleneck and drives the viru-

lence down very quickly. A sudden extreme reduction in

contact rates acts to immediately reduce the effective size of

the susceptible population, possibly lowering the reproduction

number R below 1; as a result, each virus has difficulty finding

a new susceptible host and selection strongly favours longer

viral survival which is correlated with lower case fatality.

The EVO can be seen in figure 5, where we consider

different durations of SD, with longer SD durations having
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more modest reductions in contact rates. In each scenario, we

consider w weeks of SD with host contact rates reduced by a

percentage p, and we keep the product pw constant. The

analysis reveals two local minima for the number of deaths

during the course of the epidemic, and these are marked by

EVO and EPO in the middle panel of figure 5. In between

the EVO and EPO behaviours, an SD policy is not intense

enough to drive down the virulence phenotype and it is

not sustained for long enough to guide the epidemic to a

soft landing; in this situation, we simply have a delayed

full-sized epidemic (DEL). Varying the maximum R0 in the

model shows that the relative number of deaths at the EVO

and EPO optima can change quite dramatically. For low R0,

a public health strategy aimed at an epidemiological soft

landing (EPO) is the better choice as there is very little bottle-

necking effect from intense SD. For high R0, the bottlenecking

effect is quite strong, while aiming for a soft landing risks

implementing an overly weak social distancing (WSD)

policy resulting in almost no reduction in cases or deaths.
4. Discussion
Our study is intended to be read as a theoretical treatment of

influenza’s possible evolutionary pathways during an H5N1

pandemic. To the best of our knowledge H5N1 virulence

evolution models in humans have not been analysed before,

and our initial investigation of this topic led us to a problem

that required the integration of epidemiological modelling,

quantitative genetics and clinical science. We were able to
take advantage of a growing literature of quantitative-genetic

epidemiological models [48,49,65,76], but had to extend the

analysis in these models from one-locus to two-locus systems.

Despite the obvious benefits of being able to understand

virulence evolution and its relationship to public health

interventions, this and other models designed to analyse

H5N1 virulence evolution have major limitations, because

we have never seen an H5N1 variant successfully circulating

among humans. We do not know if the means and ranges for

infection duration will be the same as those we have observed

in previous human H5N1 cases. We do not understand

whether we have a linear or nonlinear effect of viral replica-

tion on LRT burden (parameter c). We do not know the

number of different phenotypic variants we expect to see

during a period of human adaptation and virulence evol-

ution. We have no information on the mutation rates among

these hypothetical phenotypes. And, we do not know the rela-

tive values of the mixing parameters for severely infected

individuals or isolated/hospitalized individuals. All of these

aspects of virus genetics, clinical presentation and human be-

haviour are critical to determining the evolutionary path of a

human-adapted H5N1 virus. We have chosen the most plaus-

ible estimates and ranges in the analysis presented here, but

much uncertainty remains.

One strength of our model is that the clinical design is

based on severity patterns, infection durations and hospitaliz-

ation times of past H5N1 infections. These clinical phenotypes

were linked to what we believed were the two key causative

viral phenotypes: the overall viral replication rate and the affi-

nity for a2,3 and a2,6 receptors in the human URT and LRT. The
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observed clinical phenotypes of H5N1 infections over the past

decade seemed to have normal progression to severity, rather

than rapid progression to severity, indicating possibly that

sI�s V. In addition, one feature of H5N1 infections that was

not included in our model was the observation of a significant

number of recovering cases after a long period of severe dis-

ease. The current model formulation assumes the classical

trade-off from the theory of virulence evolution, that virulent

phenotypes are associated with more rapid progression to

both death and recovery. This is important because in classical

models, virulence attenuates because virulent phenotypes are

associated with shorter durations of infectiousness. The

known clinical pattern of H5N1 cases, however, is closer to

variable progression to death and slow progression to recov-

ery. When recovery is slow, low case-fatality phenotypes

would have an even greater selective advantage, but only if

we were to assume that viruses continue to be transmitted

throughout the whole course of severe disease. However, it is

not clear if these prolonged recovery periods will be observed

in a human-adapted H5N1 virus, as a partial switch in receptor

preference that establishes human-to-human transmissibility

may also be associated with the normal recovery patterns

seen in URT influenza infections.

The timing of transmission during the course of an infec-

tion is an epidemiological variable not included in the current

model. For non-H5 human influenza cases, transmission is

believed to occur mainly in the early stages of infection [77],

suggesting that human-adapted influenza viruses should not

experience a fitness cost from high virulence. For human-

adapted H5N1, it is impossible to say at this stage what the

pattern of shedding or transmission would be, but reproduc-

tion in the respiratory tract may occur longer than for typical

human influenza viruses [57]. Isolation of virus from stool in

past severe cases suggests an additional non-respiratory route

for transmission [51,52].

In our analysis, successful viral invasion in both the deter-

ministic and stochastic simulations did not occur for case

fatalities close to 60 per cent. A large majority of invading

viruses in the simulations were associated with case fatalities

below 15 per cent, suggesting that the current circulating

viruses may be too virulent to spread in human populations.

One recent paper showing adaptation and mammal-to-

mammal transmission in a ferret model is consistent with

this finding, as it demonstrated lower case fatality after initial

adaptation [3]. In light of this, the current situation in Egypt

where a unique clade causes sporadic infections in humans

with a significantly lower case fatality (36%, n ¼ 168) than

observed in Indonesia (83%, n ¼ 190) and Vietnam (50%,

n ¼ 123) is worrying [32], although this difference in case

fatality may be caused by earlier implementation of treatment.

The public health benefit of understanding virulence

evolution is clear. Knowledge of the interaction between epi-

demiological and evolutionary dynamics helps us assess the

potential outcomes of public health interventions. The soft

landing EPO described here and elsewhere [19,20] is the

ideal intervention in the absence of any evolutionary effects.

The possibility of virulence evolution creates a second opti-

mum (EVO) at high R0 values, where intense SD selects

very strongly for longer-surviving low-virulence viruses

and allows the majority of the population to experience the

low-virulence phenotype. If both factors are being taken

into account, a decision must be made whether resources

will be focused on maintaining modest SD for a longer
period or implementing more intense SD for a shorter dur-

ation—an influenza holiday—during which time the virus

could attenuate significantly or go extinct. In a connected

world, this later strategy may be quite risky. For a pathogen

as serious and deadly as H5N1, perhaps more public health

resources should be allocated to make SD policies both long

and intense. Self-induced SD, potentially induced by panic,

should also be considered when evaluating public health

response in pandemics [78].

Despite the potential public health benefits, there is cur-

rently not enough data to warrant giving detailed advice in

a scenario of an emerging or circulating H5N1 virus. Better

evidence can be gathered through further animal experiments

that have so far showed that (i) H5N1 needs few mutations

and few cycles of infection to become transmissible in mam-

mals [3,4] and (ii) adaptation to mammals was associated

with a favourable clinical outcome for the host [3]. These

and additional data coming from further animal and ex vivo
cell culture passaging experiments should give incentive for

continued sampling of the animal reservoir, and of human

cases to monitor the emergence of these and other mutations.

In addition, these results and our model suggest that careful

monitoring of the clinical phenotype in sporadic and cluste-

red cases combined with sequencing of viruses is especially

important, but unfortunately more difficult, in clinically less

severe cases as that is the expected phenotype of an adapting

virus. Continuation of sequencing of human and animal iso-

lates, repeat seroepidemiological studies in high-risk cohorts

in endemic areas, and active human case-finding around

animal outbreaks will be required to provide more infor-

mation on the true range of phenotypic variation of human

H5N1 cases.

Finally, models will need to be extended to include the

geographical structure that is critical to analysing accurate

and representative pandemic scenarios, as this allows us to

obtain a realistic set of timings and delays for the pandemic

in different locations. Modelling pandemic spread among

different countries will also tell us the benefit associated

with a certain public health strategy when other countries

or regions are pursuing a different strategy [79]. For example,

a precisely-timed SD policy may have little effect if neigh-

bouring countries have not implemented anti-pandemic

measures and are continually exporting viruses. Relaxing

SD policies can be dangerous in this context. In addition,

migration is likely to be associated with low virulence, result-

ing in the selection of lower virulence phenotypes seeding

epidemics in new locations. As this serial bottlenecking

could have a beneficial public health outcome, modelling

efforts should focus on analysing response strategies that can

take advantage of or perhaps amplify this effect. In addition

to global geographical structure, local/city structure should

be added to pandemic virulence models, as intervention

strategies will undoubtedly focus on schools and hospitals.

Models on potential H5N1 virulence evolution will also

need to look at the effects of drugs and vaccines [10–12],

especially because antivirals can shorten the transmission

period and select for a certain range of viral phenotypes [80].

Natural immunity should also be considered as the back-

ground in vivo immunity against other influenza viruses by

humoral and cellular immune responses will have an effect

on shedding patterns [66], invasion, pandemic progress and

evolution. Host and age factors should also be considered

for these types of model as some types of individual may
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experience influenza more severely than others. The most

critical missing piece for which we would need to obtain

data is the structure of phenotype space and the range of

clinical presentations and transmissibilities therein. With no

data describing the basic viral fitness landscape, we are still

at a stage of making conjectures about the adaptation of

H5N1 viruses to sustained transmission among humans.
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