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Nuclear physics (of the cell, not the atom)
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ABSTRACT The nucleus is physically distinct from the cytoplasm in ways that suggest new 
ideas and approaches for interrogating the operation of this organelle. Chemical bond forma-
tion and breakage underlie the lives of cells, but as this special issue of Molecular Biology of 
the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and 
biophysicists.

THE NUCLEUS BACK THEN
Classical (pre-1950) biophysics (reviewed in Gratzer, 2011; Pederson, 
2014) did not worry much about differences between nucleus and 
cytoplasm, mainly because the focus of physiology was on the latter 
compartment (Needham, 1971) and in particular on actomyosin func-
tion (Hanson and Huxley, 1953). Francis Crick studied the viscosity of 
cytoplasm (Crick, 1950; Crick and Hughes, 1950), which is a still-in-
triguing issue. The nucleus sat in Crick’s field of microscope observa-
tion as a sideshow, its DNA waiting quietly for his future attentions.

The nucleus was of necessity destroyed in early DNA studies, in 
which pus-filled bandages were the source and harsh extraction 
conditions were applied (Portugal and Cohen, 1977), but subse-
quently, the organelle was isolated and studied (Pederson, 2011). It 
soon became apparent that nuclei, both isolated and studied within 
intact cells, had physical properties different from the cytoplasm. 
For example, the nuclear envelope can display a membrane resting 
potential of about −15 mV (Loewenstein and Kanno, 1962, 1963). 
Electrical and related osmotic responses of isolated (Anderson and 
Wilbur, 1952) and in-cell nuclei (Robbins et al., 1970), when differen-
tially responding to elevated extracellular Na+, clearly indicate a 
basal osmotic strength different from cytoplasm. These early studies 
illustrate the key fact that the nucleus is a distinct place not just in 
macromolecule populations but in basic physical properties.

THE MODERN AND POSTMODERN NUCLEUS
Electron microscopy of the 1950s presented the nucleus in high 
resolution, revealing that there are no internal membranes and 

that the chromatin, nucleolus, and other nuclear components are 
mixed together. This suggested that DNA replication, transcrip-
tion, RNA processing, and other nuclear functions occurred via a 
wild melee of molecular interactions. Later this was refined by the 
realization that many DNA-acting (and some RNA-acting) proteins 
are confined to nucleic acid by nonspecific interactions that pro-
vide efficient kinetic pathways to search for specific targets (von 
Hippel et al., 1974; Lin and Riggs, 1975). The notion followed that 
many nuclear functions may depend on the tethering of key fac-
tors to pre-existing entities.

The scheme of folding of the gigantic lengths of DNA (2 m in 
the human case) inside the interphase nucleus remains a deep 
puzzle. Even the question of the physiological relevance of the 
30-nm fiber observed in biochemical studies remains open (Joti 
et al., 2012). In at least most differentiated somatic cell nuclei, 
individual interphase chromosomes lie in close apposition to one 
or more others, occupying distinct territories (Cremer and 
Cremer, 2010). Mapping of contacts by chromosome conforma-
tion capture (Dekker et al., 2002) has suggested a space-filling 
“fractal globule” folding scheme with intriguing functional con-
sequences, most notably reduction of chromosome entangle-
ments relative to the “null hypothesis” of random coil-like poly-
mer organization (Lieberman-Aiden et al., 2009).

Meanwhile, in the nuclear space not occupied by the genome, 
RNAs move by diffusion (Mor et al., 2010; Pederson, 2011), or 
more precisely by anomalous subdiffusion (Saxton, 2007, 2012) 
arising from nuclear cul-de-sacs and short-lived contacts with 
chromatin. Here, in the interphase nucleoplasm between the 
chromosomes, various nuclear bodies are found and, in many 
cases, dynamically accrete and shed their parts (e.g., Deryusheva 
and Gall, 2004). All this choreography is encased within the nu-
clear envelope and its underlying lamina. After years of being per-
ceived as static, the nuclear lamina has recently become recog-
nized as one of the most dynamic regions of the nucleus (Shimi 
et al., 2008).
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crowding can influence such events (Zhou et al., 2008; Hancock, 
2014), and we would point to (bio)physical chemistry as a fertile 
ground for new explorations in the nucleus. In general, the problem 
of programmed self-assembly of nuclear structures, including the 
influence of nonthermal reactions, is one that merits increased ex-
perimental and theoretical study.

Another quite recent development has been the notion that 
some nuclear structures might arise by actual phase transitions 
(Toretsky and Wright, 2014). The first example of this new line of 
thinking arose in a study of the extrachromosomal, amplified nucle-
oli in the germinal vesicle (nucleus) of Xenopus oocytes in which the 
investigators observed these organelles to possess a liquid droplet-
like behavior and a size distribution indicative of a scale-free power 
law (Brangwynne et al., 2011; Marko, 2012). Subsequent studies 
have suggested that phase transition–based phenomena may be at 
play in the assembly of RNA–protein complexes in the nucleus, al-
though these latter biochemical studies still need to be related to 
the in vivo situation (Han et al., 2012; Kato et al., 2012; Weber and 
Brangwynne, 2012; reviewed by Brangwynne, 2013). A key finding 
by Kato et al. was that simple amino acid sequence repeats in the 
amyolateral sclerosis–implicated protein used in this study underlie 
the in vitro assembly of RNA granules, which raises the possibility 
that amyloid-like protein associations with RNA may be a factor in 
this and other neurodegenerative diseases. We suggest that, like 
macromolecular crowding, phase-transition principles need consid-
eration in current research on nuclear organization and dynamics.

THE NUCLEAR PERIPHERY
The nucleus is surrounded by a double membrane, the nuclear en-
velope, the outer membrane of which is contiguous with the endo-
plasmic reticulum, forming a structure of impressive complexity 
(what is the topological genus of the nuclear envelope–endoplasmic 
reticulum structure—how many “handles” does it have?). A plausi-
ble but unproven idea (Dolan, 2012; Dolan et al., 2002; Pederson, 
2013) is that the inner nuclear membrane of eukaryotic cells is an 
artifact of the cell membrane of an ancient protist, whose invasion of 
another anucleate cell triggered the evolution of the Eukarya. The 
inner and outer nuclear membranes are compositionally distinct, as 
are their physical properties. Lying beneath, on the nucleoplasmic 
side, is the nuclear lamina, an assembly of type V intermediate fila-
ment proteins. As mentioned above, the nuclear lamina was once 
thought to be relatively static but is now known to be highly dy-
namic and perhaps rather less dense than implied by the pictures in 
many cell biology textbooks. Stationed within the nuclear envelope 
are nuclear pores, more recently known as nuclear pore complexes 
due to their molecular complexity, through which pass RNA and 
proteins in either direction.

Given the enabling history of physics-oriented plasma mem-
brane research (Danielli and Davson, 1935; Frye and Edidin, 1970; 
Edidin and Weiss, 1972; Yguerabide and Stryer, 1971; Singer and 
Nicholson, 1972), the nuclear envelope is a domain of the nucleus in 
which thinking in terms of physics might have been anticipated to 
be especially lively. And yet, overall, this had not been the case. 
That said, recent studies illuminate how physics can be applied. In a 
creative study, tugging on the nuclear envelope with a glass har-
poon has been used to get a sense of its resistance to deformation 
(Rowat et al., 2006). But because the chromosomes themselves are 
attached to the nuclear envelope, it is not clear what components of 
nuclear structure underlie this observed resistance to deformation. 
Nonetheless, we believe that this is an important area for future 
work, because compressibility of the nucleus (as well as that of the 
cell itself) may be at play in a primary tumor cell’s passage through 

PHYSICAL BIOLOGY OF THE NUCLEUS
After this lightning review of nuclear biology, we turn to brief consid-
eration of physical perspectives concerning cell nuclei. To date, only 
occasional efforts along this line have been mounted (e.g., O’Brien 
et al., 2003), and it is most timely to take this up once again.

THE CHROMOSOMES
Like all objects at nonzero temperature, chromosomes are subject 
to random thermal motion (Marshall et al., 1997). Recombination 
and translocations are depicted in textbooks as neat deterministic 
processes, but the reality must be much more stochastic. The dis-
coveries that the DNA repair machinery (Houtsmuller et al., 1999) 
and the internucleosomal histone H1 (Lever et al., 2000; Misteli 
et al., 2000) display remarkably rapid exchange on and off the DNA 
revealed a highly dynamic molecular dance. This applies also to the 
conformation of chromatin itself, which must be undergoing thermal 
agitation of its shape. Remarkably, we still have only a rather poor 
understanding of the polymer properties of chromatin in vivo—
which may be related to the imbroglio of the 30-nm fiber structure—
isolated fibers may well behave very differently from fibers in a 
chromatin-crowded and highly reactive nuclear environment. Even 
poorer is our understanding of exactly how interphase chromatin is 
put into and maintained in its folded (fractal globule?) form—a form 
that requires control of distant site correlations. And how do SMC 
complexes and topoisomerases achieve the feat of mitotic chromo-
some compaction with such efficient individualization of chromo-
somes and resolution of sister chromatids within them in the con-
finement of the nucleus? These are compelling questions for physical 
biologists that might be addressed using single-molecule and mi-
cromanipulation approaches (Strick et al., 2004; Marko, 2008).

These issues bear on how genes might spatially congress or dis-
perse during embryonic development or a cell differentiation path-
way. A controversial claim that this involves an intranuclear motor 
has not been replicated (reviewed by Belmont, 2010). Yet it would 
seem that moving a pair of genes, residing on two chromosomes or 
within one, from distal to vicinal locations within a genome with 
regulated three-dimensional folding could not be left to diffusion 
alone—which would be a threat to the fractal architecture. After half 
a century of skepticism, actin and myosin have been now been con-
vincingly demonstrated in the nucleus (Gall, 2006; Pederson, 2008; 
Belin and Mullins, 2013; Belin et al., 2013), but the jury remains out 
on them having any role in gene relocation.

THE NUCLEOPLASM
The fluid viscosity of the nucleoplasm has been measured to be five 
times that of water (Wachsmuth et al., 2000), and as mentioned 
above, proteins and RNA move within the nucleoplasm by anoma-
lous diffusion. The nucleoli and histone locus bodies arise from ac-
tivity of proximal genes, with their activities producing proximal cy-
tological entities.

Cajal bodies, which are not always located near chromosomes, 
can be induced to form by artificially tethering their protein compo-
nents to a chromosomal site (Kaiser et al., 2008); indeed, various 
nuclear bodies can be nucleated by chromosome-tethered coding 
or noncoding RNAs (reviewed by Shevstov and Dundr, 2011). In a 
related study, it was demonstrated that one type of nucleoplasmic 
body, the paraspeckle, can be nucleated by a nascent RNA tran-
script (Mao et al., 2011), implying that the aforementioned experi-
ments targeting proteins or RNAs artificially to chromosomes are 
mimicking the in vivo situation. While it is possible that these nuclear 
body assembly processes involve solely second-order (molecular 
collision–dependent) kinetics, one is reminded of how molecular 
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the basement membrane to initiate metastasis, as well as in its sub-
sequent extravasation from the bloodstream. An analogous recent 
observation is that the composition of the nuclear envelope in neu-
trophils is related to the ability of these cells to transit constrictions 
that are an order of magnitude less than their own diameter (Rowat 
et al., 2013).

The nuclear envelope can be fusigenic in some cases, for exam-
ple, during syngamy, when the nuclei of an egg and sperm meet. 
Recently it was discovered that, in addition to the recognized ex-
port pathway of mRNA through nuclear pores, some mRNAs leave 
by a nuclear envelope budding process (Speese et al., 2012; Jokhi 
et al., 2013). These recently discovered mRNA-containing nuclear 
buds appear to be different in their design and propulsion than 
those that have been observed in the premature aging syndrome 
Hutchinson-Gifford progeria (Goldman et al., 2004, Funkhouser 
et al., 2013). Intriguingly, deep internal invaginations of the nuclear 
envelope have also been reported (Fricker et al., 1997). Cytoplasm 
incursions deep into the nucleus bear on issues of nucleo-cytoplas-
mic transport and make one wonder just how pure a nuclear fraction 
can be obtained from cells if such invaginations seal off during “nu-
clear” isolation. Because of the wealth of physical chemistry founda-
tions in membrane research, the nuclear envelope, and its dynamics 
particularly, await the input of physics going forward.

SUMMARY
Physics had arguably its greatest moment in biology in the applica-
tion of X-ray diffraction to biological molecules, first by Dorothy 
Crowfoot Hodgkin and later by legions of those who followed. Cell 
biology has had certain tributaries from physics (recall Francis Crick’s 
cytoplasmic viscometry), and the current momentum in the applica-
tion of physics to the cell is exciting to see. In this paper, we have 
presented a number of perspectives that convey our belief that the 
time is now at hand when considering the nucleus as a physical 
landscape can and will be exciting and enabling.
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