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Abstract: Self-assembled monolayers (SAMs), molecular structures consisting of assemblies formed
in an ordered monolayer domain, are revisited to introduce their various functions in electronic
devices. SAMs have been used as ultrathin gate dielectric layers in low-voltage transistors owing to
their molecularly thin nature. In addition to the contribution of SAMs as gate dielectric layers, SAMs
contribute to the transistor as a semiconducting active layer. Beyond the transistor components,
SAMs have recently been applied in other electronic applications, including as remote doping
materials and molecular linkers to anchor target biomarkers. This review comprehensively covers
SAM-based electronic devices, focusing on the various applications that utilize the physical and
chemical properties of SAMs.

Keywords: self-assembled monolayers (SAMs); organic materials; gate dielectrics; SAMFETs; dop-
ing; biosensors

1. Introduction

Self-assembled monolayers (SAMs) have been used extensively because of their great
advantages, which include molecular assembly, spontaneous formation, and formation
by immersion of the substrate in a solution with the precursor molecules [1–3]. SAMs
are composed of a head group that binds to the surface, an end group that determines
the surface’s characteristics after SAM treatment, and a spacer group that connects the
head and end groups. The head group includes silane, phosphonic acid, and thiol, and
the end group includes amine, methyl, and thiol. The spacer group mainly consists
of alkyl carbon chains. Through molecular assembly, SAMs form an extremely strong
molecule–substrate interaction, whereby chemical bonds are clearly formed at the interface.
Owing to these powerful chemical interactions, SAMs can be used in several applications,
especially in electronics that require an ordered domain of chemical components. Electronic
devices have been developed comprehensively. To functionalize electronic devices, surface
treatments are used to alter the interface between the layers to produce hydrophobic,
hydrophilic, or specific molecular surfaces. This review provides an overview of the key
contributions of SAMs to electronic devices taking into consideration three main aspects:
(1) dielectrics, dielectric interfaces, or the semiconductor itself; (2) dopants to control the
device’s properties; and (3) linkers to anchor analytics for biosensors.

2. SAMs as Basic Elements of the Device

In the first section, we comprehensively recapitulate the important advances of SAMs
in organic thin-film transistors (OTFTs) [4–8]. Since 1990, OTFTs have emerged as soft
electronic devices with functional properties that include mechanical flexibility [9–13]
and a solution-processed, facile manufacturing process [14,15]. However, the organic
semiconductors in OTFTs are vulnerable to charge traps [16–18] and leakage current, which
frequently occur in oxide dielectrics (i.e., silicon dioxide (SiO2) [19–21], aluminum oxide
(Al2O3) [22,23], and hafnium oxide (HfO2) [24]). Owing to the strong susceptibility of
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organic semiconductors to charge traps, OTFTs suffer from instability, which causes current–
voltage sweep hysteresis [25–27], shifts in the threshold voltage (VTH) [28,29], and bias
stress effects [30–33]. To address these issues, the treatment of the hydroxylated surfaces
of dielectrics is crucial. SAMs exhibit appropriate properties to resolve these hydroxyl
dielectric–organic semiconductor interface limitations. As SAMs have a Janus structure,
a head group on one side and a tail group on the other [34], reactions with SAMs enable
a dramatic change in the properties of a film surface. For example, a silane-based SAM
contains a Si-O-H head group that can react with a hydroxyl group on the substrate,
forming a covalent R-Si-O-substrate bond [35,36]. Through this mechanism, the dielectric
surface can be altered to one that is desirable for the stable and robust operation of OTFTs.
Furthermore, SAMs act as dielectrics or semiconductors in OTFTs.

2.1. SAM Treatment on SiO2 Gate Dielectrics

SiO2 has a large energy bandgap of ~9 eV and is used as a gate dielectric in most
electronic devices owing to its excellent insulating properties. However, the many hydroxyl
groups present on the surface of SiO2 can act as traps at the interface with the semiconductor
layer. Therefore, if the gate dielectric SiO2 film is not controlled, the electrical hysteresis
caused by the trap can lead to problems, such as operation failures of the electronic device,
which must be solved. Based on this, many researchers have studied the use of SAMs as a
surface treatment for SiO2.

Ku et al. fabricated a graphene field effect transistor (FET), in which several functional
group SAMs were applied as buffer layers, and analyzed the effect of each SAM (Figure 1a) [37].
Among them, the graphene FET on 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDTS)-treated
SiO2 showed a p-doping effect, whereas for the (3-aminopropyl) triethoxysilane (APTES)-
treated SiO2, an n-doping effect was observed. These results suggest that it is important to
control the influence of the SAM dipole in the fabrication of graphene FETs. Wang et al.
reported that the performance of an n-type polymer pSNT transistor was improved by
treating the SiO2 surface with [3-(N,N-dimethylamino) propyl] trimethoxysilane (NTMS),
an amine-tailed SAM (Figure 1b) [38]. The SiO2 surface treatment improved the low on/off
current ratio characteristic due to the hole current in the off state by a factor of 10. Lei et al.
studied the optimal surface treatment for SiO2 used in OFETs by using octyltrichlorosilane
(OTS), octadecyltrichlorosilane (ODTS), and phenyltrichlorosilane (PTS) as treatments
(Figure 1c) [39]. When using the ODTS treatment, high mobility characteristics appeared,
but a low on/off current ratio was observed owing to the high off current. In contrast,
when using the OTS and PTS treatments, high on/off current ratio characteristics but
low mobility characteristics were obtained. Therefore, a combination of ODTS, with high
mobility characteristics, and OTS or PTS, with a high on/off current ratio, was applied.
As a result, both high mobility characteristics and high on/off current ratio characteristics
were achieved. Kang et al. reported the p-type and n-type doping of black phosphorus (BP)
films on SiO2 substrates treated with ODTS and APTES, respectively (Figure 1d) [40]. They
suggested that this is because the energy band structure of BP was changed by the dipole
of the APTES and ODTS functional groups. In addition, the APTES and ODTS functional
groups affected the optical characteristics. For the BP transistor on the APTES-treated
SiO2, the photocurrent generated under light irradiation was reduced compared to that
on the untreated SiO2. In contrast, for the BP transistor on the ODTS-treated SiO2, the
photocurrent increased.
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Figure 1. SAM treatment on SiO2 gate dielectrics. (a) Various SAMs on the SiO2 surface (adapted from [37] with permission 
from the Royal Society of Chemistry). (b) Structure of a pSNT transistor with NTMS-treated SiO2 and the chemical struc-
ture of NTMS (adapted from [38] with permission from John Wiley and Sons). (c) Transfer characteristics of a poly(3-
hexylthiophene) (P3HT) transistor before/after various silane-based SAM treatments on SiO2 (adapted from [39] with per-
mission from the Royal Society of Chemistry). (d) BP transistor with ODTS- and APTES-treated SiO2 gate dielectric and 
the energy band diagram before/after each SAM treatment (adapted from [40] with permission from the American Chem-
ical Society). 
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been reported. Jang et al. treated the hydrophilic surface of Al2O3 with various phosphonic 
acid SAMs and compared the characteristics based on the alkyl chain length and func-
tional end groups of the SAMs (Figure 2a) [41]. The longer the alkyl chain length, the more 
hydrophobic the surface, resulting in greater contact angle characteristics. The character-
istics of phosphonic acid SAM according to functional end-groups were identified as 
phosphonohexadecanoic acid (PHDA), 12-mercaptododecylphosphonic acid (MDPA), 
12-pentafluorophenoxydodecylphosphonic acid (PFPA), and 11-hy-
droxyundecylphosphonic acid (HUPA). Among these phosphonic acid SAMs, only PFPA, 
which has a non-polar functional end-group, exhibited hydrophobic properties similar to 
alkyl phosphate SAMs. It was established that PHDA, MDPA, and HUPA have high sur-
face energy characteristics because their functional end-groups are polar. Aghamoham-
madi et al. investigated the relationship between the gate dielectric thickness and the 
threshold voltage of n-octadecylphosphonic acid (ODPA)- and 
12,12,13,13,14,14,15,15,16,16,17,17,18,18,18-pentadecylfluoro-octadecylphosphonic acid 
(FDPA)-treated Al2O3 in DNTT transistors (Figure 2b) [42]. In the case of FDPA, when the 
Al2O3 thickness increased, the threshold voltage showed an inverse relationship with the 
dielectric capacitance. In contrast, for the ODPA-treated Al2O3, the threshold voltage was 
determined only by the SAM, regardless of the thickness of the Al2O3. Therefore, they 
suggested that the shift in threshold voltage for the SAM-treated gate dielectric was re-
lated not only to the dipole of the SAM material, but also to the interface between the SAM 

Figure 1. SAM treatment on SiO2 gate dielectrics. (a) Various SAMs on the SiO2 surface (adapted from [37] with permission
from the Royal Society of Chemistry). (b) Structure of a pSNT transistor with NTMS-treated SiO2 and the chemical
structure of NTMS (adapted from [38] with permission from John Wiley and Sons). (c) Transfer characteristics of a poly(3-
hexylthiophene) (P3HT) transistor before/after various silane-based SAM treatments on SiO2 (adapted from [39] with
permission from the Royal Society of Chemistry). (d) BP transistor with ODTS- and APTES-treated SiO2 gate dielectric
and the energy band diagram before/after each SAM treatment (adapted from [40] with permission from the American
Chemical Society).

2.2. SAM Treatment on Al2O3 Gate Dielectrics

In addition to the SAM treatment on SiO2, many advances of SAM-treated Al2O3 have
been reported. Jang et al. treated the hydrophilic surface of Al2O3 with various phosphonic
acid SAMs and compared the characteristics based on the alkyl chain length and functional
end groups of the SAMs (Figure 2a) [41]. The longer the alkyl chain length, the more
hydrophobic the surface, resulting in greater contact angle characteristics. The charac-
teristics of phosphonic acid SAM according to functional end-groups were identified as
phosphonohexadecanoic acid (PHDA), 12-mercaptododecylphosphonic acid (MDPA), 12-
pentafluorophenoxydodecylphosphonic acid (PFPA), and 11-hydroxyundecylphosphonic
acid (HUPA). Among these phosphonic acid SAMs, only PFPA, which has a non-polar
functional end-group, exhibited hydrophobic properties similar to alkyl phosphate SAMs.
It was established that PHDA, MDPA, and HUPA have high surface energy character-
istics because their functional end-groups are polar. Aghamohammadi et al. investi-
gated the relationship between the gate dielectric thickness and the threshold voltage
of n-octadecylphosphonic acid (ODPA)- and 12,12,13,13,14,14,15,15,16,16,17,17,18,18,18-
pentadecylfluoro-octadecylphosphonic acid (FDPA)-treated Al2O3 in DNTT transistors
(Figure 2b) [42]. In the case of FDPA, when the Al2O3 thickness increased, the threshold
voltage showed an inverse relationship with the dielectric capacitance. In contrast, for the
ODPA-treated Al2O3, the threshold voltage was determined only by the SAM, regardless of
the thickness of the Al2O3. Therefore, they suggested that the shift in threshold voltage for
the SAM-treated gate dielectric was related not only to the dipole of the SAM material, but
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also to the interface between the SAM material and the semiconductor layer. Kawanago
et al. analyzed the changes when ODTS-treated Al2O3 was applied as the gate dielectric
of an oxide semiconductor-based transistor (Figure 2c) [43]. After the ODTS treatment, as
the density of the trap between the channel and the gate dielectric decreased, the carrier
mobility and on/off current ratio increased. Cai et al. used an ODPA-treated Al2O3 gate for
the low-voltage operation of MoS2 [44]. The gate leakage current was significantly reduced
by the ODPA treatment (Figure 2d).
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2.3. SAM Treatment on HfO2 Gate Dielectrics 
As another high-k dielectric layer, HfO2 dielectric was applied by SAM treatments. 

Acton et al. showed that the performance of a low-voltage OTFT can be controlled by 
adjusting the carbon chain length of the alkyl PA SAM on the HfO2 insulating layer (Fig-
ure 3a) [45]. It was suggested that the high carrier mobility was determined by the balance 
between the SAMs that exhibited sufficient thickness and the disordered SAMs to prevent 
adverse effects in the high-k gate dielectric. Kim et al. introduced hydrophobic properties 
on the hydrophilic HfO2 surface by incorporating OH groups through OTS, ODTS, and n-
dodecylphosphonic acid (DDPA) (Figure 3b) [46]. With this, they produced a poly-(2,5-

Figure 2. SAM treatment on Al2O3 gate dielectrics. (a) Chemical structures of various phosphonic acid SAMs. [1: Hexylphos-
phonic acid (HPA), 2: dodecylphosphonic acid (DDPA), 3: octadecylphosphonic acid (ODPA), 4: 16-phosphonohexadecanoic
acid (PHDA), 5: 12-mercaptododecylphosphonic acid (MDPA), 6: 12-pentafluorophenoxydodecylphosphonic acid (PFPA), 7:
11-hydroxyundecylphosphonic acid (HUPA)] (adapted from [41] with permission from Springer Nature). (b) Schematic of a
DNTT transistor to compare the effect of two phosphonic acid SAM treatments for the thickness of Al2O3 gate dielectrics
(ODPA, FDPA) (adapted from [42] with permission from the American Chemical Society). (c) Transfer characteristics of an
IGZO transistor with and without ODTS on Al2O3 (adapted from [43] with permission from John Wiley and Sons). (d) Com-
parison of the gate leakage current with or without the ODPA treatment of Al2O3 (adapted from [44] with permission from
AIP Publishing).

2.3. SAM Treatment on HfO2 Gate Dielectrics

As another high-k dielectric layer, HfO2 dielectric was applied by SAM treatments.
Acton et al. showed that the performance of a low-voltage OTFT can be controlled by
adjusting the carbon chain length of the alkyl PA SAM on the HfO2 insulating layer
(Figure 3a) [45]. It was suggested that the high carrier mobility was determined by the
balance between the SAMs that exhibited sufficient thickness and the disordered SAMs
to prevent adverse effects in the high-k gate dielectric. Kim et al. introduced hydropho-
bic properties on the hydrophilic HfO2 surface by incorporating OH groups through
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OTS, ODTS, and n-dodecylphosphonic acid (DDPA) (Figure 3b) [46]. With this, they
produced a poly-(2,5-bis(2-decyltetradecyl)-3-(3”,4′-difluoro-[2,2′:5′,2′′-terthiophen]-5-yl)-
6-(thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4-(2H,5H)-dione) (PDPP2DT-T2)-based organic
transistor capable of low voltage operation (<−4 V) with reduced trap density. Ting et al.
studied the effects of SAMs containing different binding groups, such as ODPA, 4,5-
dioctadecyl-benzene1,2-diol (C36C), 4-Octadecyl-benzene-1,2-diol (C18C), and stearic acid
(SA) [47]. Among the four SAMs, the ODPA treatment resulted in a low leakage current
density and the largest contact angle with water. In addition, dialkylcatechol showed
similar properties to ODPA, indicating that a catechol-based SAM is suitable for HfO2
surface treatment. Finally, they demonstrated a pentacene TFT capable of operating under
−1.5 V with an improved on/off current ratio through HfO2 surface treatment (Figure 3c).
Acton et al. fabricated a poly (2,5-bis(3-tetradecyl-5-(3-tetradecylthiophen-2-yl)thiophen-
2-yl) thiazolo [5,4-d] thiazole) (PTzQT-14) TFT that is flexible and capable of low voltage
operation using an ODPA-treated HfO2 insulating film [48]. The ODPA treatment reduced
the gate leakage current (Figure 3d), and, above all, the flexible TFT can possibly be applied
as a flexible and wearable low-voltage device capable of low voltage operation owing to
the extreme thinness of the SAM material.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 17 
 

 

bis(2-decyltetradecyl)-3-(3″,4′-difluoro-[2,2′:5′,2″-terthiophen]-5-yl)-6-(thiophen-2-yl) pyr-
rolo [3,4-c] pyrrole-1,4-(2H,5H)-dione) (PDPP2DT-T2)-based organic transistor capable of 
low voltage operation (<−4 V) with reduced trap density. Ting et al. studied the effects of 
SAMs containing different binding groups, such as ODPA, 4,5-dioctadecyl-benzene1,2-
diol (C36C), 4-Octadecyl-benzene-1,2-diol (C18C), and stearic acid (SA) [47]. Among the 
four SAMs, the ODPA treatment resulted in a low leakage current density and the largest 
contact angle with water. In addition, dialkylcatechol showed similar properties to ODPA, 
indicating that a catechol-based SAM is suitable for HfO2 surface treatment. Finally, they 
demonstrated a pentacene TFT capable of operating under -1.5 V with an improved on/off 
current ratio through HfO2 surface treatment (Figure 3c). Acton et al. fabricated a poly 
(2,5-bis(3-tetradecyl-5-(3-tetradecylthiophen-2-yl)thiophen-2-yl) thiazolo [5,4-d] thiazole) 
(PTzQT-14) TFT that is flexible and capable of low voltage operation using an ODPA-
treated HfO2 insulating film [48]. The ODPA treatment reduced the gate leakage current 
(Figure 3d), and, above all, the flexible TFT can possibly be applied as a flexible and wear-
able low-voltage device capable of low voltage operation owing to the extreme thinness 
of the SAM material. 

 
Figure 3. SAM treatment on HfO2 gate dielectrics. (a) Chemical structure of phosphonic acid SAMs with various carbon 
chain lengths; n-hexylphosphonic acid (HPA), n-octylphosphonic acid (OPA), n-decylphosphonic acid (DPA), n-do-
decylphosphonic acid (DDPA), n-tetradecylphosphonic acid (TDPA), n-hexadecylphosphonic acid (HDPA), and n-octa-
decylphosphonic acid (ODPA) (adapted from [45] with permission from the American Chemical Society). (b) Water con-
tact angle of pristine HfOx and HfOx treated with OTS, ODTS, and DDPA, respectively (adapted from [46] with permission 
from Elsevier). (c) Comparison of transfer characteristics with or without the ODPA treatment of HfO2 (adapted from [47] 
with permission from the American Chemical Society). (d) Comparison of the leakage current for SiOx, bare HfOx, and 
ODPA-treated HfOx (adapted from [48] with permission from AIP Publishing). 
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Since several SAMs themselves have good insulating properties, a low-voltage oper-

ation of the transistor by the SAM gate dielectric without an oxide dielectric was achieved. 
Halik et al. applied (18-phenoxyoctadecyl)trichlorosilane (PhO-OTS), a silane-based SAM 
material, as the gate dielectric of a pentacene TFT [49]. They applied the SAM gate dielec-
tric in both a bottom-gate bottom-contact structure and a bottom-gate top-contact struc-
ture. In addition, the SAM gate dielectric, which is 2.5 nm thick, makes it possible to op-
erate at voltages of less than 2 V. They also suggested that the SAM gate dielectric is ca-
pable of low-voltage and low-power operation, even in organic devices. A solution-pro-
cessed poly(3-hexylthiophene) (P3HT) polymer transistor using a docosyltrichlorosilane 

Figure 3. SAM treatment on HfO2 gate dielectrics. (a) Chemical structure of phosphonic acid SAMs with various
carbon chain lengths; n-hexylphosphonic acid (HPA), n-octylphosphonic acid (OPA), n-decylphosphonic acid (DPA),
n-dodecylphosphonic acid (DDPA), n-tetradecylphosphonic acid (TDPA), n-hexadecylphosphonic acid (HDPA), and n-
octadecylphosphonic acid (ODPA) (adapted from [45] with permission from the American Chemical Society). (b) Water
contact angle of pristine HfOx and HfOx treated with OTS, ODTS, and DDPA, respectively (adapted from [46] with per-
mission from Elsevier). (c) Comparison of transfer characteristics with or without the ODPA treatment of HfO2 (adapted
from [47] with permission from the American Chemical Society). (d) Comparison of the leakage current for SiOx, bare HfOx,
and ODPA-treated HfOx (adapted from [48] with permission from AIP Publishing).

2.4. SAM as Gate Dielectrics

Since several SAMs themselves have good insulating properties, a low-voltage opera-
tion of the transistor by the SAM gate dielectric without an oxide dielectric was achieved.
Halik et al. applied (18-phenoxyoctadecyl)trichlorosilane (PhO-OTS), a silane-based SAM
material, as the gate dielectric of a pentacene TFT [49]. They applied the SAM gate dielectric
in both a bottom-gate bottom-contact structure and a bottom-gate top-contact structure.
In addition, the SAM gate dielectric, which is 2.5 nm thick, makes it possible to operate
at voltages of less than 2 V. They also suggested that the SAM gate dielectric is capable
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of low-voltage and low-power operation, even in organic devices. A solution-processed
poly(3-hexylthiophene) (P3HT) polymer transistor using a docosyltrichlorosilane (DCTS)
SAM dielectric was demonstrated (Figure 4a) [50]. Kälblein et al. prepared a top-gate struc-
ture ZnO nanowire transistor in which ODPA, a phosphonic acid-based SAM material, was
applied as the gate dielectric [51]. To confirm whether ODPA is effective as a gate dielectric,
the electrical characteristics of the metal-semiconductor FET (MESFET) structure without
the ODPA gate dielectric and the metal-insulator-semiconductor FET (MISFET) structure
with the ODPA gate dielectric were compared (Figure 4b). The electrical characteristics of
the MESFET structure without the ODPA gate dielectric and the MISFET structure with
the ODPA gate dielectric were compared. The MESFET structure without the ODPA gate
dielectric exhibited a high gate leakage current flow. However, the presence of the ODPA
gate dielectric greatly reduced the gate leakage current, which improved the on/off current
ratio. Therefore, the dielectric properties of ODPA were confirmed, and because of the thin
thickness of the SAM, it was possible to operate the ZnO nanowire transistor at 1 V.
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2.5. Self-Assembled Monolayer Field Effect Transistor (SAMFET)

A self-aligned structure of SAMs enabled their operation as a semiconductor active
layer through the π–π overlap in the molecular packing. Cernetic et al. fabricated a
p-type SAMFET with (11-(5′′′-(4-(methylthio)butyl)-[2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-5-
yl)undecyl)phosphonic acid (MTB4TC11) and (12-(5′′′-(4-(methylthio)butyl)-[2,2′:5′,2′′:5′′,2′′′-
quaterthiophene]-5-yl) dodecyl) phosphonic acid (MTB4TC12), which are phosphonic
acid-based SAMs [52]. Figure 5a shows the schematic of the fabricated SAMFET. They
improved the contact characteristics with the Au electrode by applying methylthiobutyl as
a functional terminal group. In addition, the bonding between the SAM and the electrode
was strengthened through annealing, so that the carrier mobility could be increased by
more than 100-fold. By applying these optimized conditions, a SAMFET capable of low-
voltage operation through a HfO2 gate dielectric was produced. Zhao et al. implemented
two organic inverters using a SAMFET [53]. First, after fabricating an ambipolar transistor
with a semiconducting SAM and a complementary semiconductor, they established a
CMOS-like inverter with two anti-ambipolar transistors. Second, a CMOS inverter was
produced by fabricating a benzothieno [3,2-b] [1] benzothiophene (BTBT)-PA-based p-
type SAMFET and a 3,4,9,10-perylene tetracarboxylic diimide (PTCDI)-PA-based n-type
SAMFET (Figure 5b). They presented the possibility of developing organic circuits by
producing the aforementioned SAM-based organic inverters over a large area for the first
time. Gholamrezaie et al. suggested that semiconducting SAMs can be grown on organic
dielectrics and that charge transport is possible even at micrometer distances [54]. They
also reported the use of a 4-bit code generator incorporating over 100 SAMFETs (Figure 5c).
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Andringa et al. reported the application of Fe(TPP)Cl as an NO receptor to a SAMFET and
used it as a gas sensor (Figure 5d) [55]. They suggested that a very thin SAMFET channel,
approximately one molecule thick, is suitable for use as a sensor.
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3. SAMs as Dopants

In the second section, the effects of SAMs acting as dopants on the device’s properties
are introduced. In the last decade, promising semiconductor materials, including transition
metal dichalcogenides (TMDs) [56–60], oxides [61–65], and polymers [66–70], have emerged
as next-generation semiconductors. However, the conventional doping techniques (i.e., ion
implantation) used in silicon-based fabrications degrade and damage these semiconductors;
thus, there is a need for the development of alternative methods to control the electrical
properties of the semiconductors. To meet these demands, unusual SAM-based doping
techniques have been attempted [71–80]. Owing to the ordered domain and large area
coverage of SAMs, uniform and controllable doping was achieved. An expansive overview
of SAM-based doping into oxides and TMDs is presented in this section.

3.1. Doping Effects of SAMs in Oxide Semiconductors

In recent years, the use of SAMs as a layer of remote doping material for prefabricated
transistors, not as an insulating film or a semiconductor, has been attempted. As an
example of this doping technique of an SAM on a metal oxide semiconductor, Cai et al.
treated an IGZO surface with ODTS to form a passivation layer (Figure 6a), which greatly
increased the carrier mobility [79]. In addition, without the passivation layer, the device
significantly deteriorated after 1 year, whereas the device containing the passivation layer
maintained its performance after 1 year (Figure 6b). This indicates that the passivation
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layer introduced through the SAM treatment protected the device from oxygen derivatives
from the air over an extended period. Wan et al. improved electron mobility and the
on/off current ratio through the 4-chlorobenzoic acid (PCBA) treatment of ZnO transistors
(Figure 6c) [81]. They extracted the trap concentration from the electrical characteristics of a
pristine ZnO transistor and a PCBA-treated ZnO transistor and found that it decreased by
about 10-fold after PCBA treatment. Lee et al. studied the surface treatment of IGZO TFTs
with SAMs [78]. The results showed that by selecting a SAM with an appropriate functional
group polarity and alkyl chain length, the electron transport could be improved and the
hysteresis reduced (Figure 6d). In addition, it was shown that the contact resistance can be
controlled by the alkyl chain length when using the same functional group. A similar result
was achieved by Xiao et al. for IGZO TFTs [75]. Xiao et al. analyzed the effect of passivating
the surface of an IGZO TFT with triethoxysilane (TES)-based SAMs. In addition, three
types of TESs containing different carbon chain lengths, namely methyltriethoxysilane
(MTES), octyltriethoxysilane (OTES), and oxtadecyltriethoxysilane (ODTES), were used to
determine the effect of the alkyl chain length on the semiconductor characteristics. As a
result, the longer the alkyl chain length, the more improved all the electrical characteristics,
such as carrier mobility and hysteresis.
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from [79] with permission from the American Chemical Society). (b) Transfer characteristics of IGZO TFT immediately after
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(d) Hysteresis characteristics of IGZO TFT according to SAM (adapted from [78] with permission from the American
Chemical Society).

3.2. Electrical Doping Effect of SAMs in 2D Materials

The SAM doping techniques were attempted in 2D TMDs. Due to the atomically thin
nature of the TMDs, the SAM doping was more effective in improving device performance.
Kang et al. reported improved electrical properties for MoS2 and WSe2 transistors by
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doping with ODTS and APTES SAM materials (Figure 7a) [72]. When the MoS2 transistors
were doped with APTES and the WSe2 transistors with ODTS, the field-effect mobility
increased by approximately fivefold. In contrast, when doping the MoS2 transistor with
ODTS and the WSe2 transistor with APTES, the field-effect mobility deteriorated. As
ODTS and APTES exhibited p-doped and n-doped effects, the n-type MoS2 could be
improved by APTES doping, and the p-type WSe2 could be improved by ODTS doping.
They also suggested that the p-doping effect of the ODTS-doped WSe2 transistor was
owing to the functional group of the ODTS [73]. Due to the positive charges of the
methyl functional groups (-CH3) in ODTS, the electrons in WSe2 are attracted to the
junction with ODTS, which leads to a decrease in the concentration of electrons in the WSe2
channel and a p-doping effect (Figure 7b). Hasnain et al. studied the doping effect of (3-
aminopropyl)trimethoxysilane (APTMS) in ReSe2 transistors with n-type characteristics as
a function of the APTMS concentration (Figure 7c–e) [74]. They suggested that the electron
concentration in the ReSe2 channel increased because of the negative charges of the amine
functional groups (-NH2) of APTMS at the interface between APTMS and ReSe2. As a result,
the n-doping effect of APTMS reduced the effective barrier height between ReSe2 and the
electrode, and the threshold voltage shifted in the negative direction. After doping with
APTMS, these effects increased the photoresponsivity for all wavelength bands, not only in
terms of electrical characteristics, but also in terms of the photoresponsive properties.
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4. Biosensor Linkers Based on SAMs

Finally, we revisit the recent advances and studies in biosensors that use SAM-based
linkers. Recent viral diseases and pandemics have generated interest in various types
of sensors, such as electrochemical impedance spectroscopy (EIS) [82–84] and field-effect
biosensors (BioFETs) [85–89]. These devices can provide warnings on a patient’s dangerous
condition or offer daily monitoring information. Biosensors should exhibit crucial functions,
including fast detection and response [90], robust operation [91], and the detection of low-
concentration targets [92], for reliable detection systems. To realize these functions, a linker
with an ordered domain should be located between the active layer and the analytes to
anchor the analytes (i.e., target antibodies and enzymes). As molecular assemblies allow
SAMs to be tightly packed and oriented on the active layer, a dense domain of analytes can
be formed. In this section, we provide an overview of biosensors for antigen and biomarker
detection enhanced by using SAM-based linkers.

Kim et al. studied an extended gate FET (EGFET)-based biosensor for detecting
streptavidin–biotin protein complexes [93]. The sequence of immobilization of streptavidin
to the gate electrode is shown in Figure 8a. They used a C11-oligo(ethylene glycol)-
terminated (OEG) thiol SAM with thiol and hydroxyl groups to immobilize streptavidin
(SPV) on the Au gate electrode. The OEG thiol SAM head group thiols, was bonded to
the Au gate electrode to form a hydroxyl group on the surface. Then, streptavidin was
immobilized by combining the amine group of streptavidin with the surface’s hydroxyl
group. Similarly, Lee et al. demonstrated a biosensor based on a high electron mobility
transistor (HEMT) for C-reactive protein (CRP) detection by immobilizing the antibody on
the gate [94]. To immobilize the receptor, CRP, a carboxyl group was first formed on the
gate surface with 11-mercaptoundecanoic acid(11-MUA), and then a stable amine-reactive
product was formed with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochlo-
ride (EDC) and N-hydroxysuccinimide (NHS). Then, CRP-antibody immobilization was
completed. Figure 8b shows the AlGaN/GaN HEMT-based biosensor configuration for
CRP detection. They detected CRP by measuring not only the change in drain current
but also the change in the output voltage using a null-balancing circuit. In addition to
immobilizing the receptor on the gate electrode, a method of immobilizing the receptor on
the channel layer has also been reported. Liu et al. immobilized uricase on a ZnO nanowire
channel to fabricate a sensor that detects uric acid [88]. Figure 8c shows the process of im-
mobilizing uricase. First, the hydroxyl group on the ZnO nanowire surface was converted
into an amine group by silane-based APTES treatment. Then, the surface modification was
completed by linking the uricase and the amine group through glutaraldehyde. Gao et al.
demonstrated a tunnel field-effect transistor (TFET)-based biosensor capable of detecting
CYFRA21-1, a lung cancer biomarker [85]. They first formed amine groups on the Si
nanowire channel by APTES treatment. Subsequently, the amine group on the Si nanowire
surface was reacted with glutaraldehyde, and then the CYFRA21-1 antibody was immobi-
lized. When the CYFRA21-1 antigen and antibody were combined, the electrical properties
acting on the channel region was changed, influenced by the polarity of the biomolecule.
The energy band structure of the TFET and the tunneling current were also modulated
(Figure 8d). As a result, the presence of CYFRA21-1 antigen could be detected through
the change of the current of the TFET. Shin et al. demonstrated a biosensor for detecting
biomarkers related to liver health based on EIS [95]. Starting with the SAM treatment, the
antibody’s binding process to the Au electrode is shown in Figure 8e. The Au electrode
was treated with 11-MUA SAM, and NHS ester was formed through EDC/NHS. Then,
SPV was immobilized by reacting the surface with the amine group of SPV. Finally, it was
completed by immobilizing biotinylated antibodies (biot-Abs) to SPV. The detection of the
target in the fabricated sensor was achieved through the change in impedance as shown in
Figure 8f.
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Figure 8. SAMs as a linker in biosensors. (a) Schematic of the immobilization sequence of streptavidin and the interaction
between streptavidin and biotin (adapted from [93] with permission from Elsevier). (b) Measurement setup to detect
C-reactive protein (adapted from [94] with permission from MDPI). (c) Immobilization of uricase onto the ZnO NW surface
via the crosslinking surface modification method: (1) 2% APTES in ethanol; (2) 25 wt% GAD; (3) 5µL uricase (5 units/mL)
(adapted from [88] with permission from Elsevier). (d) Electrical characteristics of an SiNW-TFET based biosensor detecting
CYFRA21-1 (adapted from [85] with permission from Springer Nature). (e) Illustration of immobilizing antibodies onto the
microelectrodes and reacting with antigens (adapted from [95] with permission from John Wiley and Sons). (f) Nyquist
plots for different standard human albumin concentrations. Media refers to the treatment of cell culture media to prevent
the nonspecific binding of proteins (adapted from [95] with permission from John Wiley and Sons).

5. Summary

We first revisited examples of using SAM for the surface treatment of oxide gate
dielectrics in electronics. Oxide dielectrics had problems due to charge traps caused by
hydroxyl groups on the surface and problems with leakage current flowing in high-k



Micromachines 2021, 12, 565 12 of 17

dielectrics such as Al2O3 and HfO2. These problems in the oxide dielectric were addressed
by the SAM; the SAMs reacting with the hydroxyl groups on the dielectric surface were
treated. The increased hydrophobicity can improve device performance because it mini-
mizes the absorption of oxygen or water molecules that result in poor device stability and
performance degradation. As the SAM treatment reduced the charge trap by allowing the
hydrophilic surface to become hydrophobic. The decrease in trap density led to improved
electrical characteristics such as high on/off current ratio and the enhanced mobility of
the devices. Besides, several researchers have experimentally proven that there is also an
effect by the carbon chain of SAM. This is because the longer the carbon chain length is, the
better the SAM molecules can be ordered and the more hydrophobic the surface is.

Interestingly, SAMs themselves are also used as gate dielectrics or semiconductor
layers. Table 1 shows examples of applying SAMs to the gate dielectric surface treatment
and examples of using a SAM itself as a gate dielectric. The possibility of applying a
molecularly thin SAM as a gate dielectric mean that the device can be operated with
low voltage. Based on these research results, this has been demonstrated for SAM gate
dielectric- and SAMFET-based functional circuit-levels such as NANDs, ring oscillators,
and code generators. This shows that SAMs have great potential in electronics.

Table 1. Various types of self-assembled monolayers (SAMs) for gate dielectrics.

Name Type Head Group End Group Method Bottom
Layer

Operating
Voltage Ref.

NTMS Silane Trimethoxysilane
(-Si(OCH3)3)

Amine
(-NH2) Spin-coating SiO2

(285 nm) 80 V [38]

APTES Silane Triethoxysilane
(-Si(OC2H5)3)

Amine
(-NH2) Dipping SiO2

(285 nm) −40 V [40]

OTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) Dipping SiO2

(285 nm) −40 V [40]

PTS Silane Trichlorosilane
(-SiCl3)

Phenyl
(-C6H5) N/A SiO2

(N/A) −60 V [39]

MTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) N/A SiO2

(N/A) −60 V [39]

ODTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) Dipping SiO2

(300 nm) −80 V [37]

FDTS Silane Triethoxysilane
(-Si(OC2H5)3)

Trifluoromethyl
(-CF3) Dipping SiO2

(300 nm) −80 V [37]

HPA Phosphonic acid Phosphonic
(-PO(OH)2)

Methyl
(-CH3) Spin-coating Al2O3

(N/A) −4 V [41]

DDPA Phosphonic acid Phosphonic
(-PO(OH)2)

Methyl
(-CH3) Spin-coating Al2O3

(N/A) −4 V [41]

PHDA Phosphonic acid Phosphonic
(-PO(OH)2)

Carboxyl
(-COOH) Spin-coating Al2O3

(N/A) −4 V [41]

MDPA Phosphonic acid Phosphonic
(-PO(OH)2)

Thiol
(-SH) Spin-coating Al2O3

(N/A) −4 V [41]

PFPA Phosphonic acid Phosphonic
(-PO(OH)2) Pentafluorophenoxy Spin-coating Al2O3

(N/A) −4 V [41]

HUPA Phosphonic acid Phosphonic
(-PO(OH)2)

Hydroxyl
(-OH) Spin-coating Al2O3

(N/A) −4 V [41]

FDPA Phosphonic acid Phosphonic
(-PO(OH)2)

Trifluoromethyl
(-CF3) Dipping Al2O3

(5 nm) −2.5 V [42]

ODPA Phosphonic acid Phosphonic
(-PO(OH)2)

Methyl
(-CH3) Dipping Al2O3

(5 nm) −2.5 V [42]

ODPA Phosphonic acid Phosphonic
(-PO(OH)2)

Methyl
(-CH3) Dipping X 1.5 V [51]

PhO-OTS Silane Trichlorosilane
(-SiCl3)

Phenyl
(-C6H5)

Vapor-phase
deposition X −2.1 V [49]

DCTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) Dipping X -2 V [50]
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The utility of SAMs is not limited to basic elements of devices such as gate dielectrics
and semiconductors, but is also used as a dopant for devices. TMDs and oxide semicon-
ductors, emerging as next-generation semiconductor materials, have difficulty applying
the ion implantation process for doping conventional silicon semiconductors. As an alter-
native to the conventional doping method, which is difficult to apply, studies have been
conducted to provide a doping effect by placing a SAM on a fabricated device. We have
summarized examples of doping attempts using SAM in Table 2. The doping effect in oxide
semiconductors and TMDs is slightly different. In oxide semiconductors, the hydroxyl
group acting as a trap on the surface of the semiconductor layer decreases through reaction
with the head group of the SAM, thereby eliminating the trapping sites and increasing the
number of carriers in the channel, thereby improving the device performance [78]. On the
other hand, in TMDs, the characteristics of the TMD-based transistor are modulated due to
the effect of the tail group of the SAM facing the semiconductor layer, and the dipole of the
tail group applies an electric field to the channel [71].

Table 2. Self-assembled monolayers (SAMs) used as a dopant.

Name Type Head Group End Group Method Bottom Layer Doping Type Ref.

ODTS Silane Trimethoxysilane
(-Si(OCH3)3)

Methyl
(-CH3) Spin-coating Graphene P-type [71]

ODTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) Dipping WSe2 P-type [72,

73]

ODTS Silane Trichlorosilane
(-SiCl3)

Methyl
(-CH3) Spin-coating IGZO N-type [79]

OTES Silane Triethoxysilane
(-Si(OC2H5)3)

Methyl
(-CH3)

Vapor-phase
deposition ITZO N-type [76,

77]

APTES Silane Triethoxysilane
(-Si(OC2H5)3)

Amine
(-NH2)- Dipping MoS2 N-type [72]

APTMS Silane Trimethoxysilane
(-Si(OCH3)3)

Amine
(-NH2)- Dipping RSe2 N-type [74]

Finally, we dealt with the use of SAMs as a linker in biosensors. In biosensors, it is
necessary to have selectivity for the specific target to be detected, such as an antigen, and the
ability to detect if even a small concentration of the target is present is important. Therefore,
it is necessary to allow the maximum interaction between the target and the receptor to
occur. As a method, there is alignment by immobilizing receptors such as antibodies in a
specific direction. However, since not all receptors can be directly immobilized on various
substrates, SAMs are widely applied to connect and immobilize the substrate and the
receptor as a linker.

As there are many advantages, shown through various examples, of using SAMs,
further advances in electronics will be in progress. SAM-based electronic devices have
the following merits and directions for future research: (1) low-cost, (2) device flexibility,
(3) work-function modification, and (4) device stability enhancement. Owing to the solution
processability of SAMs, the SAM-based device process can be performed through simple
spin-coating or printing, which reduces the fabrication process complexity, and thus lowers
the cost. Furthermore, the low thermal budget of the SAM-based process enhances the
compatibility with flexible substrates (i.e., polyimide and polyethylene terephthalate).
These merits provide great ease in implementing flexible devices such as communication
devices and sensors [96,97]. In addition to the fabrication processing aspect, SAMs enable
the contribution towards device aspects. The work function modification can be achieved
by SAM surface treatment due to its molecularly thin thickness and assembly reaction.
This property ensures that the work function of the electrodes matches what can provide
the desired energy band junction for each device [98,99]. The SAMs also improve the
device stability. The SAM can control surface properties into hydrophobicity, minimizing
the absorption of oxygen or water molecules that act as charge trap sites. There are still
difficulties such as the improvement of the integration process, miniaturization, and pattern
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refinement in SAM-based electronics. However, the advantages and possibilities of the
aforementioned SAMs are expected to lead to the next generation of electronic devices.
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