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Abstract

Background

Malaria burden in Uganda has declined disproportionately among regions despite overall

high intervention coverage across all regions. The Uganda Malaria Indicator Survey (MIS)

2014–15 was the second nationally representative survey conducted to provide estimates

of malaria prevalence among children less than 5 years, and to track the progress of control

interventions in the country. In this present study, 2014–15 MIS data were analysed to

assess intervention effects on malaria prevalence in Uganda among children less than 5

years, assess intervention effects at regional level, and estimate geographical distribution of

malaria prevalence in the country.

Methods

Bayesian geostatistical models with spatially varying coefficients were used to determine

the effect of interventions on malaria prevalence at national and regional levels. Spike-and-

slab variable selection was used to identify the most important predictors and forms. Bayes-

ian kriging was used to predict malaria prevalence at unsampled locations.

Results

Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITN) ownership had a signifi-

cant but varying protective effect on malaria prevalence. However, no effect was observed

for Artemisinin Combination-based Therapies (ACTs). Environmental factors, namely, land

cover, rainfall, day and night land surface temperature, and area type were significantly

associated with malaria prevalence. Malaria prevalence was higher in rural areas, increased

with the child’s age, and decreased with higher household socioeconomic status and higher

level of mother’s education. The highest prevalence of malaria in children less than 5 years

was predicted for regions of East Central, North East and West Nile, whereas the lowest
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was predicted in Kampala and South Western regions, and in the mountainous areas in

Mid-Western and Mid-Eastern regions.

Conclusions

IRS and ITN ownership are important interventions against malaria prevalence in children

less than 5 years in Uganda. The varying effects of the interventions calls for selective imple-

mentation of control tools suitable to regional ecological settings. To further reduce malaria

burden and sustain malaria control in Uganda, current tools should be supplemented by

health system strengthening, and socio-economic development.

Background

Malaria remains one of the leading public health burdens in the world despite the remarkable

achievements made towards its control and prevention since the beginning of the second mil-

lennium. Recent global estimates indicate that malaria is responsible for over 214 million cases

and over 438,000 deaths [1]. Most of this burden is concentrated in Sub-Saharan Africa (SSA)

region which accounts for 90% of the mortality burden, most of which occur among children

less than 5 years old [1]. However, malaria has gone down from first to fourth highest cause of

mortality in this age group during the last 15 years [1].

Uganda has the fourth highest number of Plasmodium falciparum infections [1] and some

of the highest reported malaria transmission rates in the world [2]. Ninety five percent of the

country has stable malaria transmission, with the rest having low and unstable transmission

with potential for epidemics. Malaria is responsible for 33% of all outpatient visits and 30% of

hospital admissions [3]. Ninety-nine percent of malaria cases are attributed to P. falciparum
species—Anopheles gambiae s.1 and An. funestus being the most common vectors [4].

Vector control tools, that is, Insecticide Treated Nets (ITNs), Indoor Residual Spraying

(IRS), and case management with Artemisinin-based Combination Therapies (ACTs) are at

the forefront of malaria control and prevention in Uganda [3]. Malaria Indicator Surveys

(MIS) are nationally representative surveys conducted every 5 years to estimate malaria preva-

lence among children of age less than 5 years and track the progress of coverage of control

interventions. The most recent MIS conducted in Uganda showed that overall prevalence of

malaria among children age less than 5 years was 19.0% [5]. Results also indicated that cover-

age of interventions was high across all regions. However, there were wide variations in

regional malaria prevalence, varying from less than 5% in Kampala and South Western regions

to over 25% in East Central, North East and West Nile regions [5]. Whether the differences in

the prevalence are due to variations in climatic, socio-economic, and demographic characteris-

tics, or as a result of intervention effects varying in space needs to be investigated empirically.

MIS have been used to analyse the effect of interventions on malaria prevalence using both

non-spatial and bayesian geostatistical methods. The latter give reliable estimates because they

take into account correlation of malaria prevalence in space arising from common exposures

affecting neighbouring areas similarly. Bayesian geostatistical models have been used in map-

ping of malaria burden [6] and recently in the analysis of MIS data in high endemic countries

of SSA, namely, Zambia [7], Angola [8], Tanzania [9], Senegal [10], Nigeria [11] and Burkina

Faso [12]. Despite comparable malaria transmission intensities in these countries, findings

showed varied effects of interventions on malaria prevalence among children less than 5 years.

For instance, a protective and non-protective effects were reported for ITNs and IRS
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respectively in Zambia [7], Angola [8] and Senegal [10]. On the other hand, no effects were

observed for the role of interventions in Nigeria [11], and Tanzania [9]. In Liberia [13] and

Burkina Faso [12], intervention effects were protective at sub-national level but had no effect

at country level.

In the current study, we analysed the Uganda MIS 2014–15 using bayesian geostatistical

models to: i) determine the effect of interventions on malaria prevalence in children less than 5

years adjusted for environmental, demographic and socio-economic characteristics, ii) assess

intervention effects at regional level, and iii) obtain spatially explicit estimates of malaria prev-

alence in this age group. A malaria risk map is a vital tool for efficient planning, resource

mobilisation, monitoring and evaluation. To date, the only map available for Uganda is the

one extracted from the new world malaria map [6] which is now out-dated since it does not

take into account contemporary effects of interventions, socio-economic status and climatic/

environmental conditions.

Methods

Country profile

Uganda is a land locked country located in East Africa, and shares borders with South Sudan

to the north, Kenya to the east, Democratic Republic of Congo to the west, and Tanzania and

Rwanda to the south. It lies between latitudes 10 south and 40 north of the equator, with alti-

tude ranging from 620 m to 5,111 m above sea level, and mean annual temperatures between

14˚C and 32˚C. It has two rainfall seasons in a year, a shorter one during March to May and a

longer season spanning September to December. A range of ecosystems cover the country

with the south dominated by tropical rain forests which gradually turn into savannah wood-

land and semi-desert in the north. The country is divided into 112 districts grouped into 10

regions and covers an area of about 241,039 square kilometres.

Uganda has a population of 35 million people living in 7.3 million households [14]. The

population is largely young with 50% of the population constituted with individuals of age

0–15 years. The proportion of population of children age less than 5 years is 17.7% [14].

Uganda MIS 2014–15

The 2014–15 MIS was based on a stratified two-stage cluster design [5]. In the first stage, 20

sampling strata were created and 210 clusters were selected with probability- proportional-to-

size sampling. At the second stage, using complete lists of households in the selected clusters,

28 households were chosen from each cluster with equal probability systematic sampling.

All women of age 15–49 years in the sampled households, who were either permanent resi-

dents or visitors in the household on the night preceding the survey, were eligible for inter-

view. Similarly, all children of age less than 5 years were eligible for malaria testing.

Blood samples were taken from fingers or heels of children age less than 5 years and tested

on-spot using Rapid Diagnostic Tests (RDTs). In addition, thick and thin blood smears were

prepared and tested by microscopy. Results were recorded as either positive or negative if

malaria parasites were found or not in the blood sample, respectively. In this study, micros-

copy results were considered because of the reduced sensitivity of RDTs in populations that

have recently been treated and cleared of malaria parasites due to the presence of the residual

HRP2 antigen [15].

Ethical approval

In this study we used secondary data that was made available by the Uganda Bureau of Statis-

tics (UBOS) and the Demographic Health Survey (DHS) MEASURE group based in the
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United States of America. According to survey protocols and related documents [5], the ethical

approval process was described as follows; The Institutional Review Board of International

Consulting Firm (ICF) of Calverton, Maryland, USA reviewed and approved the Uganda MIS

2014–15. This complied with the United States Department of Health and Human Services

requirements for the "Protection of Human Subjects" (45 CFR (Code of Federal regulations)

46).

The survey was also reviewed and approved by Makerere University School of Biomedical

Sciences Higher Degrees Research and Ethics committee (SBS-HDREC), and the Uganda

National Council for Science and Technology (UNCST).

An interview was conducted only if the respondent provided their verbal consent in

response to being read an informed consent statement by the interviewer. Also, verbal

informed consent for each parasitaemia test was provided by the child’s parent/guardian/care-

giver on behalf of children less than 5 years before the test was conducted. Verbal consent was

conducted by the interviewer reading a prescribed statement to the respondent and recording

in the questionnaire whether or not the respondent consented or assent was provided. The

interviewer signed his or her name attesting to the fact that he/she read the consent statement

to the respondent. Verbal consent was preferred over written consent because of low literacy

levels especially in rural areas of Uganda [5]

Predictor variables

Malaria transmission is known to be influenced by several factors including interventions

[16], environmental/climatic [17], socio-economic [18] and demographic factors [19].

Environmental/climatic proxy variables were extracted from remote sensing sources for the

period February 2014 –January 2015 (Table 1).

Demographic variables were captured on survey tools, namely, age of the child, residential

location of the household, and mother’s highest level of education.

Data on control interventions were captured on survey questionnaires including ownership

and use of ITNs, ACT use and IRS. The data on IRS coverage were collected at household

level, whereas that of ITN and ACT use was collected for each child in the selected household.

Intervention coverage indicators were generated following standard definitions of Roll Back

Malaria [20]. The ITN ownership indicators generated and used in the study were; proportion

Table 1. Sources, spatial and temporal resolution of environmental/climatic and population data.

Data Source Period Spatial

resolution

Temporal

resolution

Annual average Day and Night Land

Surface Temperature (LST)

MODIS February 2014-

January 2015

1x1km2 8 days

Annual average Normalized Difference

Vegetation Index (NDVI)

MODIS February 2014-

January 2015

1x1km2 16 days

Population data Worldpop 2014 0.1x0.1km2 na

Annual average Rainfall U.S. Geological Survey-Earth Resources

Observation Systems (USGSS)

February 2014-

January 2015

8x8km2 10 days

Altitude (Digital Elevation Model) Shuttle Radar Topographic Mission (SRTM) 2000 0.5x0.5km2 na

Water bodies MODIS - 0.5x0.5km2 na

Urban Rural extent Global Rural and Urban Mapping project February 2014-

January 2015

1x1km2 na

MODIS: Moderate Resolution Imaging Spectroradiometer

na: Not applicable

https://doi.org/10.1371/journal.pone.0174948.t001
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of households with at least one ITN (pro_1ITN), proportion of households with one ITN for

every two people (pro_1ITN4two), and proportion of population with access to an ITN within

their household (pro_itnaccess). ITN use indicators were; proportion of children less than 5

years who slept under an ITN on the night preceding the survey (pro_slept5itn), proportion of

population that slept under an ITN in the night preceding the survey (pro_sleptitn), and pro-

portion of ITNs used last night preceding the survey (pro_itnused).

ACT coverage was measured as the proportion of fevers reported in the last 2 weeks before

the survey that were treated with any ACTs. The indicator on IRS coverage was derived as the

proportion of households sprayed in the last 6 months.

The wealth index available in the data and calculated as a weighted sum of household assets

using principal component analysis [21] was used a proxy for socio-economic status.

Prior to bayesian model fitting, collinearity between all pairs of independent variables was

assessed using non-spatial regression methods based on values of Variance Inflation Factor

(VIF) and Tolerance Values (TR).

Bayesian geostatistical modelling

Three bayesian geostatistical logistic regression models were fitted to determine the geographi-

cal distribution of malaria prevalence in children less than 5 years in Uganda, assess the

adjusted effect of interventions on malaria prevalence, and estimate the effects of interventions

at regional level. The first model included only environmental predictors, the second com-

prised of environmental, demographic, and socio-economic factors, whereas the third was

modelled with spatially varying coefficients for interventions adjusted for the effect of environ-

mental, socio-economic status and demographic predictors. The third model assesses the

effects of interventions at regional level using spatially varying coefficients [13] and is formu-

lated assuming a conditional autoregressive (CAR) prior distribution [22] which introduces a

neighbour-based spatial structure for the regression coefficients for each intervention effect

[23]. Neighbours were defined as the adjacent areas for each region. This model was adjusted

for the effect of environmental/climatic, socio-economic status and demographic factors.

The outcome of interest was the parasitaemia test result of a child tested in a sampled

household.

To adjust for spatial correlation present in malaria data due to similar exposure effect in

neighbouring areas, cluster-specific random effects were added to each model. The cluster

random effects were assumed to arise from a Gaussian stationary process with a covariance

matrix capturing correlation between any pair of cluster locations as a function of their

distances.

To improve model fit and parameter estimation, bayesian geostatistical variable selection

was used to select the most important predictors and form in explaining variation in malaria

prevalence for the three models mentioned above. In model 1, selection consisted of introduc-

ing an indicator variable for every climatic predictor and estimating the probabilities of

excluding or including the predictor into the model in linear or categorical form. These proba-

bilities indicate the proportion of models including a given predictor out of models generated

from all combinations of predictors. Variables were categorized using predictor quartiles.

Only variables with an inclusion probability of more than 50% were used to predict malaria

prevalence in children less than 5 years at unsampled locations.

Similarly in the second model, geostatistical variable selection was performed to choose the

most important intervention, socio-economic and demographic predictors for malaria preva-

lence. This model was adjusted for the effect of environmental predictors fitted in model 1.

The indicator with the highest probability of inclusion per group of ITN ownership
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(pro_1ITN, pro_1ITN4two, pro_itnaccess) and ITN use (pro_slept5itn, pro_sleptitn, pro_it-

nused) was selected.

Prediction of malaria prevalence was performed using bayesian kriging [24] over a regular

grid of 52,495 pixels at 4 km2 resolution covering the entire country.

The population-adjusted number of individuals infected with malaria was estimated by first

combining the high spatial resolution population data obtained from worldpop [25] with the

predicted pixel-level malaria prevalence estimates. The population data were re-scaled from

their initial 100x100m spatial resolution to the 2x2km resolution of the gridded risk estimates.

The number of children less than 5 years infected with malaria per pixel was estimated by mul-

tiplying population counts by a factor of 17.7%—the proportion of population under 5 years

[14]. The pixel-level estimates were aggregated at regional level to produce number infected

per region.

Data analysis was carried out in STATA (StataCorp. 2015. Stata Statistical Software: Release
14. College Station, TX: StataCorp LP). OpenBUGS version 3.2.3 (Imperial College and Medi-

cal Research Council, London, UK) was used to implement the variable selection approach

and to perform model fit. The bayesian kriging was implemented using a program written by

the authors in R statistical computing and graphics software [26]. Maps were produced using

ESRI’s ArcGIS 10.2.1 for Desktop (http://www.esri.com/).

Parameter estimates were summarized using posterior medians and the corresponding 95%

Bayesian Credible Intervals (BCI). Model estimates were exponentiated to produce Odds

Ratios (OR). The effect of a predictor was considered to be important if the 95%BCI of the

coefficient did not include a zero. The details of the fitted models are given in the S1 Text.

Results

A total of 4939 children age 0–59 months were tested for malaria from 210 clusters. The overall

prevalence of malaria by microscopy was 19.0%. However, in this study we used data from

only 193(91.9%) clusters whose geo-referenced information was available at the time of analy-

sis (Fig 1). This reduced sample had 4591 children tested for malaria with malaria prevalence

of 19.5% which varied from 0% in Kampala region to over 38.0% in East Central region.

Table 2 shows the overall and regional coverage distribution of intervention indicators.

Nine out of every ten households had an ITN, but the proportion of households having one

ITN for every two people was lower, varying from 36.3% in East Central to almost 70% in

South Western region. At country level, 80% of the population had access to an ITN in their

households, with coverage ranging from 67% in East Central region to over 90% in South

Western region. Seventy-five percent of the population slept under an ITN on the night pre-

ceding the survey. Comparing ITN assess and ITN use show a surplus of 5% unused ITNs.

Three out of every four children of age less than 5 years slept under an ITN—the lowest cov-

erage was observed in Central 1 region, while the highest was reported in North East region.

Case management using ACTs ranged from 60% in Kampala to almost 80% in East Central

region.

About one out of every ten households in the country had been sprayed in the last 6

months, but this intervention was mainly implemented in the Mid-North region where almost

6 out of every 10 households were sprayed.

In Table 3, results from the bayesian geostatistical variable selection are presented. In

model 1, day LST (categorical), night LST (linear), land cover and area type were selected.

These selected variables were used for predicting malaria prevalence in children less than 5

years at unsampled locations. Results in model 2 indicate a high probability of inclusion

(>90%) for IRS, wealth index, age and mother’s highest level of education. However,
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indicators for ITN and ACTs were selected with low probabilities which might be indicative of

a weak relationship with malaria prevalence.

Table 4 presents results from Bayesian geostatistical models. In model 1 results show that

day LST, night LST, land cover, and area type were significantly associated with malaria preva-

lence. Also, increases in day and night LST were significantly associated with higher odds of

Fig 1. Observed malaria prevalence at survey locations in Uganda, MIS 2014–15.

https://doi.org/10.1371/journal.pone.0174948.g001
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malaria prevalence. Moreover, the odds of malaria prevalence were more than two times

higher in cropping areas compared to forested areas (OR = 2.12 95%BCI: 1.25–2.29).

The adjusted effects of interventions on malaria prevalence are shown in model 2. The odds

of malaria in children who lived in households that had been sprayed were 78% less than those

living in unsprayed houses (95%BCI: 58%-86%). ITN access was associated with decreased

odds of malaria prevalence. However, results show a risk factor effect for ITN use and no effect

for ACTs use.

A decreasing trend of malaria odds with increasing wealth quintile was observed. Malaria

odds were 48% (95%BCI: 39%-58%) and 81% (95%BCI: 73%-86%) lower for richer and richest

wealth quintile respectively compared to the poorest quintile.

Rural areas had more than two times the prevalence of malaria compared to urban areas

(OR = 2.06 95% BCI: 1.96–2.19).

The prevalence of malaria increased with age of a child reaching almost 5 times higher in

children age 49–59 months compared to children age< = 12 months (OR = 4.77 95%BCI:

4.47–5.97).

A decreasing trend of malaria prevalence was observed with mother’s highest level of educa-

tion. Malaria prevalence was 15% (95%BCI: 11%-26%) and 43% (95%BCI: 33%- 43%) lower in

children whose mothers had attained primary and post primary education compared to chil-

dren whose mothers had no education respectively.

Also, results indicate a strong spatial correlation of malaria prevalence of up to 47.7km

(Range: 40.7–56.4).

In Table 5 results from the spatially varying coefficient model are presented and indicate

that intervention effects varied by region. The effect of ITN ownership was protective in the

regions of North East, West Nile and South Western, whereas that of ITN use was protective

in Mid-Western. ACT use was protective in Mid-western, North East, and West Nile regions.

Table 2. Coverage of control interventions by region.

Region Number of Clusters Prevalence pro_1ITNa pro_1ITN4twob pro_slept5itnc IRSd ACTe pro_itnaccessf pro_sleptitng

North East 32 32.3 0.96 0.51 0.86 0.02 0.71 0.80 0.84

West Nile 16 27.4 0.96 0.64 0.76 0.02 0.65 0.86 0.79

Mid-North 31 14.8 0.94 0.54 0.77 0.55 0.71. 0.82 0.77

Mid-Western 14 14.1 0.96 0.52 0.83 0.0 0.64 0.81 0.80

Mid-Eastern 24 14.1 0.97 0.52 0.81 0.0 0.79 0.82 0.76

East Central 15 38.6 0.86 0.36 0.69 0.0 0.72 0.67 0.66

Central 2 17 20.4 0.89 0.46 0.66 0.0 0.72 0.73 0.66

Central 1 17 11.2 0.87 0.51 0.65 0.02. 0.60 0.74 0.62

South Western 11 4.5 1.00 0.69 0.66 0.0 0.60 0.91 0.67

Kampala 16 0.0 0.94 0.62 0.71 0.03 0.57 0.82 0.77

Overall 193 19.5 0.94 0.54 0.76 0.1 0.68 0.81 0.75

aProportion of households with at least one ITN
bProportion of households with at least one ITN for every two people
cProportion of children less than 5 years who slept under an ITN
dProportion of households sprayed in the last 6 months
eProportion of fevers treated with any ACTs
fProportion of population who had access to an ITN
gProportion of population who slept under an ITN

https://doi.org/10.1371/journal.pone.0174948.t002

Geostatistical modelling of Uganda 2014-15 malaria indicator survey data

PLOS ONE | https://doi.org/10.1371/journal.pone.0174948 April 4, 2017 8 / 20

https://doi.org/10.1371/journal.pone.0174948.t002
https://doi.org/10.1371/journal.pone.0174948


Fig 2 shows maps of the predicted median malaria prevalence, the 2.5th and 97.5th percen-

tiles of the posterior predictive distribution. Malaria prevalence varied from as low as 0.03%

to 77.0% with a median of 17.4%. High prevalence (>20.0%) was predicted for regions of

East Central, North East, and West Nile, while low prevalence (<5.0%) was predicted for Kam-

pala and South Western regions. More so, a low prevalence was predicted for mountainous

areas of Rwenzori and Elgon located in the Mid-Western and Mid-Eastern regions,

respectively.

Table 3. Posterior inclusion probabilities for environmental, intervention, socio-economic and demo-

graphic factors.

Variable Posterior inclusion probability (%)

Model 1† Model 2††

Land surface temperature (day) 0.0 0.0

Land surface temperature (night) 87.6 74.1

Normalized difference vegetation index 41.9 36.2

Rainfall 4.6 26.9

Altitude 12.6 27.2

Distance to water bodies 0.0 14.1

Land cover 100 100

Land surface temperature (day)* 100 100

Land surface temperature (night)* 0.0 0.0

Normalized difference vegetation index* 0.0 0.0

Rainfall * 0.0 0.0

Altitude * 0.0 0.0

Distance to water bodies* 0.0 0.0

Area type (rural vs urban) * 100 100

Intervention

IRS use 100

ITN ownership

pro_1ITN4two 8.3

pro_1ITN 2.3

pro_itnaccess 27.4

ITN use

pro_slept5itn 14.3

pro_sleptitn 0.0

pro_itnused 17.6

Case management of malaria at health facilities

Proportion of fevers treated with any anti-malarial 12.9

Proportion of fevers treated with ACTs 53.6

Socioeconomic status, demographic

Wealth index 100

Area type 93.7

Age 100

Mother’s highest level of education 94.4

* Categorical form
†Only climatic predictors
††Intervention + climatic + SES + demographic

https://doi.org/10.1371/journal.pone.0174948.t003
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Table 4. Posterior estimates for the effect of environmental, intervention, socio-economic factors.

Variable Parasitaemia prevalence (%) Model 1† Model 2††

OR (95% BCI) OR (95% BCI)

Land cover

Forest 17.8 1.0 1.0

Crops 27.2 2.12 (1.25, 2.29)* 1.35 (1.17, 1.42)*

Others 10.0 0.56 (0.39, 0.73)* 0.59 (0.44, 0.71)*

Land surface temperature (Day)

< = 31.4 11.7 1.0 1.0

31.4–33.8 19.7 1.98 (1.69, 2.52)* 2.87 (2.42, 3.08)*

> = 33.8 26.6 3.19 (2.83, 3.85)* 1.98 (1.68, 2.01)*

Land surface temperature (Night) - 1.75 (1.64, 1.82)* 1.25 (1.17, 1.26)*

Area type

Urban 6.0 1.0 1.0

Rural 21.6 6.25 (5.62, 8.60)* 2.06 (1.96, 2.19)*

Wealth Index

Poorest 27.7 1.0

Poorer 21.1 0.86 (0.72, 1.04)

Middle 20.8 0.77 (0.85, 1.15)

Richer 11.9 0.52 (0.42, 0.61)*

Richest 3.3 0.19 (0.14, 0.27)*

ITN ownership

Proportion of population with access to an ITN in their households 0.78 (0.67, 0.89)*

ITN use

Proportion of ITNs used the previous night 1.68 (1.52, 1.77)*

Indoor Residual Spraying

Not sprayed 21.0 1.0

Sprayed 5.0 0.22 (0.14, 0.42)*

Case management

Proportion of fevers treated with ACTs 1.29 (1.00, 1.38)

Age (months)

< = 12 9.6 1.0

13–24 16.1 2.16 (1.85, 2.41)*

25–36 22.5 3.67 (3.08, 4.16)*

37–48 23.1 3.54 (2.83, 3.83)*

49–59 26.0 4.77 (4.47, 5.97)*

Mother’s education

None 26.4 1.0

Primary 17.8 0.85 (0.74, 0.89)*

Post primary 8.2 0.57 (0.57, 0.67)*

Variances

Gaussian process 0.45 (0.40, 0.48) 0.77 (0.62, 0.80)

Range (km) 52.2 (33.9, 69.5) 47.7 (40.7, 56.4)

†Only climatic factors
††Intervention + climatic + SES + demographic

*Statistically important

https://doi.org/10.1371/journal.pone.0174948.t004
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The estimated number of children less than 5 years infected with malaria and the popula-

tion adjusted prevalences are shown in Table 6. The distribution of infected children in the

country is presented in Fig 3.

A total of 825,636 (812,316–839,958) children were estimated to have malaria in 2014. The

regions with the highest estimated number of infected children were; East Central, North East

and West Nile. Kampala region had the lowest number of infected children. Population

adjusted prevalence was 17.6% (95%BCI 17.1%, 17.7%), and varied from 0.9% in Kampala to

26.0% in West Nile. The map shows a highest concentration of infected children in East

Central.

Discussion

In this study we analysed the Uganda 2014–15 MIS data using bayesian geostatistical models

to determine the effect of interventions on geographical distribution of malaria prevalence in

children less than 5 years in Uganda and its regions, and obtained spatially explicit estimates of

malaria prevalence burden in this high risk age group. Indicator variables pertaining to the

coverage of interventions of IRS, ITNs, and ACTs were calculated from the data using stan-

dard definitions [20].

Bayesian geostatistical models fitted via Markov Chain Monte Carlo simulation methods

were used to determine the adjusted effect of interventions on malaria prevalence. Geostatisti-

cal variable selection was used to choose the most important predictors for explaining varia-

tion in malaria prevalence, and their best functional form to improve model predictive ability

and efficiency in parameter estimation.

Land cover, day LST, night LST, and area type were the most important environmental/cli-

matic factors. These variables were among the list of climatic factors compiled in a systematic

audit by Weiss et al, 2015 [27] as important for malaria mapping. Also, these findings are simi-

lar to results reported from analyses of MIS data in Nigeria and Burkina Faso [11,12].

IRS and ITN ownership had a protective effect against malaria prevalence. Similar results

were reported by Roberts and Matthews (2016) [28] who analysed the Uganda MIS 2014–15

data using a classical generalized linear model. The observed strong effect of IRS may be attrib-

uted to its effectiveness in killing adult mosquitos as they rest on walls after feeding which cuts

Table 5. Posterior median and 95% credible intervals for spatially varying effect of interventions on malaria prevalence.

Region ITN Ownership ITN Use ACTs

OR (95% BCI) OR (95% BCI) OR (95% BCI)

Central 1 0.93 (0.69, 1.28) 1.58 (0.85, 1.72) 1.75 (1.42, 2.40)

Central 2 0.93 (0.70, 1.53) 1.09 (0.73, 2.44) 1.52 (1.19, 1.90)

East central 1.50 (0.77, 1.86) 0.94 (0.63, 1.11) 2.11 (1.69, 4.25)

Kampala 1.17 (0.38, 1.25) 1.44 (0.28, 2.26) 1.03 (0.22, 1.67)

Mid-North 1.16 (0.93, 1.41) 0.92 (0.58, 1.38) 0.36 (0.21, 0.71)*

Mid-western 1.02 (0.84, 1.73) 0.92 (0.75, 0.98)* 0.91 (0.85, 1.21)

Mid-eastern 1.09 (1.00, 1.50) 1.13 (0.91, 1.33) 1.39 (0.90, 2.30)

North East 0.85 (0.73, 0.94)* 0.93 (0.66, 1.09) 0.61 (0.46, 0.68)*

South Western 0.87 (0.50, 0.98)* 0.98 (0.77, 2.06) 1.85 (1.07, 2.19)

West Nile 1.44 (1.14, 1.51) 1.01 (0.68, 1.43) 0.45 (0.41, 0.67)*

Variance Median (95% BCI) Median (95% BCI) Median (95% BCI)

Spatially varying 3.27 (1.60, 3.92) 2.97 (1.73, 7.61) 1.01 (0.66, 3.22)

*Statistically important and protective

https://doi.org/10.1371/journal.pone.0174948.t005
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Fig 2. Predicted malaria prevalence in children less than 5 years; median (top), 2.5th percentile (bottom left)

and 97.5th percentile posterior predictive distribution (bottom right).

https://doi.org/10.1371/journal.pone.0174948.g002
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short their development cycle and thus reduce vector density resulting in decreased malaria

transmission intensity [29]. However, IRS coverage was low in the country with the exception

of the Mid-North region where this intervention implemented in 10 districts. Bukirwa et al.,

(2009) [30] have attributed significant reduction of malaria prevalence, morbidity and mortal-

ity in this region to IRS intervention. In other regions, IRS coverage is still very low [5]. The

low coverage of this intervention has also been reported in other high endemic countries,

namely, Tanzania [9], Burkina Faso [12], Senegal [10], Angola and Mozambique [13]. This

could be attributed to the negative campaign against the use of DDT [31].

The protective effect of ITN ownership has been demonstrated in other studies [8,13,32].

However, the observed lower effect of ITNs compared to IRS is inconsistent with results from

other studies which showed that ITNs are a more effective and cost-effective tool [33].

Unexpectedly, study results showed an increase of malaria prevalence with ITN use. This

finding contradicts findings from other studies that have reported ITN efficacy [32,34,35] and

effectiveness [2,16,36,37]. However, these results are consistent to recent findings for Burkina

Faso [12], Nigeria [11], Tanzania [9], and Senegal [10]. The lack of protective effect for high

ITN use coverage could be attributed to human behaviour such as sleeping patterns where the

population tends to stay longer outdoors at night [38], inconsistent ITN use especially during

the dry season [39], incorrect use and/or use of worn out ITNs [40], the emerging pyrethroid

resistance to insecticides in Uganda [41–43], and high ITN use in areas of high malaria

transmission.

Furthermore, results showed a lack of effect of ACTs on malaria prevalence unlike in other

studies that demonstrated that ACTs were associated with a reduction in malaria transmission

and risk [44,45]. However, this finding should be interpreted cautiously because the data for

this intervention was based on reported fevers which had been treated with any ACTs. This

unexpected finding may be due to the fact that data for this intervention was based on reported

fevers which had been treated with any ACTs. However, no data was available to confirm

whether the reported fevers were malaria related or not[5], yet fevers in young children can be

caused by several illnesses other than malaria [46]. A similar finding was reported in the Bur-

kina Faso MIS study [12].

Environmental conditions were important predictors of malaria prevalence. This finding

further augments the evidence that the environment is a key driver of malaria transmission

Table 6. Estimated number of infected children less than 5 years and population-adjusted prevalence.

Region Observed

prevalence

Population of under 5

children

Estimated number of infected

children

Population adjusted estimated

prevalence

(n/N) n (95%BCI) % (95%BCI)

North East 32.3 (277/857) 479,691 119,871 (119,872, 125,485) 23.3 (23.1, 23.4)

West Nile 27.4 (116/423) 414,062 106,377 (100,986, 111769) 25.8 (25.5, 26.0)

Mid-North 14.8 (111/748) 515,113 98,846 (95,745, 101,948) 20.0 (19.8, 20.2)

Mid-Western 14.1 (68/482) 660,687 77,027 (74,023, 80,032) 12.9 (12.7, 13.1)

Mid-Eastern 14.1 (70/498) 524,051 79,734 (76,270, 83,200) 16.8 (16.4, 17.2)

East Central 38.6 (125/324) 516,382 138,191 (132,283, 144,100) 25.3 (24.8, 25.8)

Central 2 20.4 (76/373) 596,969 87,562 (83,516, 91,609) 14.4 (14.2, 14.6)

Central 1 11.2 (34/305) 652,194 58,314 (56,819, 59,208) 10.6 (10.4, 10.8)

South

Western

4.5 (19/425) 752,314 56,819 (55,958, 60,671) 8.8 (8.6, 9.1)

Kampala 0.0 (0/156) 357,783 2,895 (2313, 3479) 0.9 (0.8, 1.1)

Overall 19.5 (896/4591) 5,469,245 825,636 (812,316, 838,958) 17.6 (17.1, 17.7)

https://doi.org/10.1371/journal.pone.0174948.t006

Geostatistical modelling of Uganda 2014-15 malaria indicator survey data

PLOS ONE | https://doi.org/10.1371/journal.pone.0174948 April 4, 2017 13 / 20

https://doi.org/10.1371/journal.pone.0174948.t006
https://doi.org/10.1371/journal.pone.0174948


[47]. Increases in day and night LST were associated with a high malaria prevalence. This rela-

tionship can be attributed to the fact that warmer temperatures accelerate larva stages of mos-

quito lifecycle [48]. Other studies have also arrived at the same conclusion [49].

Areas where crops were grown had higher risk of infection compared to forested areas

which may indicate the agricultural transformation effect on the ecological landscape which

results in creation of suitable breeding habitats for mosquitoes. Similar results have been

reported by Munga et al., (2016) [50].

Fig 3. Estimated number of children less than 5 years infected with malaria.

https://doi.org/10.1371/journal.pone.0174948.g003
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Living in rural areas was associated with a higher burden of malaria prevalence compared

to urban areas. This may be due the fact that rural areas in Uganda are characterized with inad-

equate health services and poor housing conditions which predisposes individuals to higher

malaria prevalence [4,51].

Furthermore, older children were at a higher risk of being infected with malaria compared

to infants. This relationship may be due to the fact that infants are partially protected earlier in

life by the antibodies from their mothers and passive transfer of the same antibodies through

breastfeeding [52,53]. Hendriksen et al., (2013) [54] reported similar findings.

Social economic status was negatively correlated with malaria risk. Children living in

wealthier households had a significantly lower malaria risk compared to those living in poorer

households. This finding is expected because wealthier people are more likely to afford better

health services and afford adequate housing facilities with screens that block mosquitoes

resulting in reduced transmission. This finding confirms previous results that showed that

malaria burden is highly correlated with poverty [55].

Furthermore, higher mother’s education was associated with reduced malaria prevalence.

The role of education in disease prevention cannot be overstated. Highly educated mothers in

addition to being more likely to have better socio-economic means, are also mostly likely to

have knowledge and means to afford malaria preventive measures. This finding is in agree-

ment with results reported by Fana et al., (2015)[56]. However, mother’s education had no

effect on malaria prevalence in Burkina Faso [12].

Results also showed that effects of intervention vary with region—which partially may

explain wide variations in malaria prevalence among regions in spite of a high coverage of

ITN. Despite the lack of country-level effect for ITN use, the effect of this intervention is signif-

icant in Mid-western region. The varying effects of interventions in different regions may be

explained by differences in regions with respect to ecological settings, access to health services,

and socio-economic development which are important drivers of malaria transmission. Simi-

lar findings were reported in Burkina Faso [12], Angola, Liberia, Mozambique, Rwanda, Sene-

gal, and Tanzania [13].

The high malaria prevalence burden predicted for East Central region can be attributed to

rice growing [57] which is a predominant economic activity in this region. The rice paddies in

which rice is grown serve as suitable habitats for malaria vector breeding. Similarly, the high

parasitaemia burden in the North East and West Nile may be due to a very low access to health

services [4] and high poverty levels in these regions [51]. On the other hand, a low malaria bur-

den in Kampala region (capital city) can be attributed to better socio-economic conditions

[51], reduction in potential mosquito bleeding sites as swamps are reclaimed for residential

houses construction [58], and a high access to health services [59]. In South-western region,

malaria is low largely due to its location in highlands whose lower temperatures negatively

affect vector survival [4].

The risk map illustrates the contemporary malaria situation in the country and can be used

for planning, implementation, resource mobilisation, monitoring and evaluation of interven-

tions in the country.

This map differs from that extracted from the 2010 world malaria MAP [6] although out-

right comparison between these two maps is not possible majorly due to differences in malaria

metrics estimated and data sources used. The map from the current study estimates malaria

prevalence in the group of children less than 5 years only, whereas the world malaria MAP esti-

mates the burden in the whole population. However, the malaria map produced in this study

shows considerable shrinkage in malaria burden in comparison to results from the first MIS

survey of 2009 that showed a high burden of malaria in the whole country with the exception

of Kampala and highland areas in south western region [60].
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There are some limitations of the current study that should be taken into account when

interpreting these findings. Firstly, the current study relied on malaria test results from micros-

copy instead of the gold standard molecular method of polymerase chain reaction (PCR)

which is more sensitive than microscopy. Secondly, prediction using spatial methods for data

collected from population-weighted sampling designs as the case in MIS may produce impre-

cise estimates as areas expected to have higher malaria risk are under sampled resulting in

higher prediction errors [61].

Furthermore, we did not rescale the varying spatial resolutions of the environmental/cli-

matic remote sensing proxies to a common scale prior to adding them in the models. This may

lead to invalid inferences of our study estimates [62].

Conclusion

This study has demonstrated that IRS and ITN ownership are important interventions against

malaria prevalence in children less than 5 years in Uganda, but the effects of all intervention

vary by region. Varying intervention effects across regions indicate that interventions do not

have a similar effect in different regions. This calls for epidemiological and entomological

research in the different settings of the regions to determine the best tools suitable for each

region. As well as scaling up of IRS intervention in areas of high transmission and replacing

worn-out ITNs with new ones, the government should further strengthen the health system

especially in rural areas, embark on socio-economic transformation programs, and introduce

new tools such as environmental modification because of the role of these factors on malaria

burden in the country.
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