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ABSTRACT

The post-genomic era has provided researchers with
a deluge of protein sequences. However, a signifi-
cant fraction of the proteins encoded by sequenced
genomes remains without an identified function.
Here, we aim at determining how many enzymes
of uncertain or unknown function are still present
in the Saccharomyces cerevisiae and human pro-
teomes. Using information available in the Swiss-
Prot, BRENDA and KEGG databases in combination
with a Hidden Markov Model-based method, we es-
timate that >600 yeast and 2000 human proteins
(>30% of their proteins of unknown function) are en-
zymes whose precise function(s) remain(s) to be de-
termined. This illustrates the impressive scale of the
‘unknown enzyme problem’. We extensively review
classical biochemical as well as more recent sys-
tematic experimental and computational approaches
that can be used to support enzyme function discov-
ery research. Finally, we discuss the possible roles of
the elusive catalysts in light of recent developments
in the fields of enzymology and metabolism as well
as the significance of the unknown enzyme problem
in the context of metabolic modeling, metabolic en-
gineering and rare disease research.

INTRODUCTION

Over fifty years ago, Gordon Moore predicted that comput-
ing power would essentially double roughly every year (1).
This prediction, although amended in 1975 to state dou-
bling every two years (2), is still a goal and driving force for
electrical engineers. Biologists have adopted Moore’s Law

as a tongue-in-cheek benchmark in reference to the decrease
in cost of genome sequencing since the completion of the
Human Genome Project in 2003. The drastic drop in se-
quencing cost since 2007 has continued to fuel the ‘genomic
revolution’; thousands of complete genomes are now pub-
licly available in online databases (3). An important goal for
scientists ever since has been to gain as many new biological
insights from these collected genome sequences as possible.
A subset of model species have garnered a certain priority in
terms of annotation efforts. From DNA replication and re-
pair, all the way to primary metabolic pathways, new genes
have been characterized and annotated. Yet, a sizable pro-
portion of the coding part of even well studied model or-
ganisms remains, up to the present day, without assigned
molecular and/or biological functions.

With millions of protein sequences having been identi-
fied, it is impossible to experimentally characterize each
protein, leaving computational annotation methods as the
only reasonable means for systematic functional predic-
tions. Routinely, homology is inferred, and then annota-
tions are transferred, often leading to inaccurate or wrong
predictions. Misannotation in public databases has pro-
gressed from <5% in 1998 to 40% in 2005, error propa-
gation being suggested as a primary cause of such a dra-
matic increase (4). More sophisticated annotation strategies
have been utilized for obtaining more solid in silico func-
tional predictions (5,6), the most common ones relying on
the use of genomic context information (e.g. gene cluster-
ing in prokaryotes) and of post-genomic resources (e.g. co-
expression of related genes). Ultimately, skepticism for a
given annotation lacking experimental evidence is prudent.

Progress in gene function annotation in the model or-
ganism Saccharomyces cerevisiae was reviewed by Hughes
et al. in 2004 (7). Based on information contained in the
Yeast Proteome Database (YPD; (8)), it was projected that
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all the yeast proteins would be functionally characterized
by 2007 (7). The authors admitted, however, that this was
an over-optimistic prediction, mainly based on the fact that
of the 80% of yeast proteins annotated as ‘known’ at the
time in YPD, many were actually still very poorly under-
stood on a functional level. A different analysis in the Sac-
charomyces Genome Database (SGD) by the same authors
revealed that of the protein entries with a Gene Ontology
(GO) annotation, 40% were of unknown molecular func-
tion and 30% were of unknown biological function (7). This
nicely illustrates that defining criteria that qualify a protein
as being ‘known’ is indispensable before even starting to ad-
dress the question as to how well we understand the pro-
tein coding portions of sequenced genomes. In our opin-
ion, protein function identification requires the gathering
of experimental evidence to support a defined molecular
dimension (e.g. catalytic reaction for enzymes) as well as
a biological dimension (e.g. role in a metabolic pathway)
(9,10). Until both dimensions are discovered and, impor-
tantly, can be reconciled with each other, the protein’s func-
tion remains, according to this maybe more stringent defi-
nition, unknown. Less detailed and preliminary functional
predictions, such as assignment to a more general enzyme
class or subclass (e.g. ‘hydrolase’ or ‘phosphatase’), may as-
sist with hypothesis generation, but for most of the analyses
in this paper will lead to the classification of corresponding
proteins into the ‘unknown’ category (note that in this arti-
cle ‘unknown’ in association with the terms ‘gene’, ‘protein’
or ‘enzyme’ is always to be understood as ‘of unknown func-
tion’). According to our own GO term enrichment analysis
in Yeastmine (data updated: 16 May 2016; (11)), 36% and
25% of the 6604 proteins in SGD remain unknown at the
molecular and biological levels, respectively, demonstrating
that progress in protein function identification since 2004
has been much slower than initially anticipated. In addition,
given the misannotation problem, as well as the often lim-
ited understanding of the role of proteins that are annotated
as known, the real proportion of unknown proteins in the
yeast proteome is most certainly even higher. Often when
the remaining unknown proteins are examined by study-
ing strains overexpressing or deleted for the correspond-
ing genes, the altered strains lack a strong phenotype (12).
Functional redundancy with other genes or dispensability
of the gene under standard laboratory conditions are pos-
sible reasons for lack of detectable phenotypic alterations
in mutant strains (12), rendering functional elucidation of
a number of the remaining genes of unknown function a
more challenging task.

A similar proportion of the proteome of other well-
studied organisms remains functionally less well character-
ized; various estimates state that about 30–50% of proteins
encoded by the Escherichia coli, Arabidopsis thaliana and
human genomes are unknown (13–15). Corroborating these
estimates, ∼25% (∼5000) of the human proteins present in
UniProt (16) have not been studied experimentally and for
many of the remaining proteins, only sporadic experimen-
tal details have been reported (17). Additionally, upwards
of 20% of protein domains contained in the Pfam database
(18) are listed as ‘domains of unknown function’ (DUFs)
(19) (also, ∼10–25% of the UniProt database protein entries
are not associated with a Pfam family based on our own

analyses in the E. coli, Saccharomyces cerevisiae, and human
proteomes). Work to characterize these DUFs is important
as a recent study emphasized that many essential proteins
in model bacterial species contain such domains (20). This
study also stated that about 9% of all the DUFs in Pfam
(release 23) were found in all domains of life (20).

The fraction of DUFs, incompletely annotated proteins,
and the disturbingly high error rates in biological database
annotations in each given proteome reveal a gap in knowl-
edge that has to be addressed with an earnest fervor. In this
review, we focus on the budding yeast S. cerevisiae and hu-
mans as model systems as they rank among the most well
annotated and thoroughly studied organisms. As a simple
eukaryotic cell, yeast is genetically malleable, with many
molecular and cellular tools to be exploited in addition to
the feasibility of large-scale studies and the existence of ex-
tensive publicly available datasets. Also, given the high ge-
netic conservation between S. cerevisiae and humans, this
yeast has long been used as a model organism to progress
in our understanding of human biology and disease (21,22).
By providing updated estimations of the fraction of un-
known proteins in the yeast and human proteomes, we pro-
vide a benchmark that can be compared to other model
species. We also provide a classification of these unknown
proteins into predicted functional categories.

Of particular relevance to fundamental metabolic re-
search, metabolic modeling and engineering as well as rare
disease research is the fraction of unknown genes predicted
to code for enzymes. Given our interest in those fields, we
applied systematic, bioinformatics-based approaches, de-
scribed here, to more accurately estimate how many en-
zymes of uncertain function remain in proteomes of inter-
est. We also critically review the methodologies that can be
envisaged for enzyme function discovery. We conclude by
discussing possible roles of the many players left in the cat-
alytic dark matter; confronting it will be key to complet-
ing our understanding of an essential component of the cell
machinery that many consider as fully elucidated, namely
metabolism.

UPDATE ON THE STATUS OF THE UNKNOWN PRO-
TEIN PROBLEM IN YEAST AND HUMANS

As discussed above, current estimates state that about 30-
50% of the proteins in well-studied genomes are unknown
(13–15). Starting from reviewed protein entries in the Swiss-
Prot database, we aimed at updating these estimates more
specifically for the yeast and human proteomes (6721 en-
tries for S. cerevisiae and 20 201 entries for Homo sapi-
ens; Figure 1A; UniProtKB/Swiss-Prot 2016 05). This was
done according to instructions listed on the UniProt web-
site where specific terms are suggested while others are to be
avoided for functional annotations. Based on these recom-
mendations, querying the reviewed human and yeast pro-
teomes with the terms ‘uncharacterized’, ‘putative’, ‘prob-
able’, ‘containing’, or ‘like’, should retrieve a high propor-
tion of all the unknown or ambiguously annotated proteins.
Very similar results were obtained for S. cerevisiae and for
H. sapiens, with an estimated 1936 (i.e. 29%) yeast proteins
and 6612 (i.e. 33%) human proteins of unknown function,
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Figure 1. General statistics on proteins of unknown function in S. cere-
visiae and H. sapiens. (A) Numbers of protein entries which have some
certainty associated with their annotation (gray) and of ambiguously an-
notated protein entries (red). (B and C) Rough functional category pre-
dictions for yeast and human proteins of unknown function, respec-
tively. Data retrieved from the UniProt database (http://www.uniprot.
org/). Functional category predictions were made using the bioCom-
pendium tool (http://biocompendium.embl.de/).

respectively (Figure 1A), showing that the numbers stated
in above cited references are not yet outdated.

These yeast and human unknown proteins were further
analyzed using bioCompendium (http://biocompendium.
embl.de/; see Supplementary Material and Supplementary
Tables S1 and S2 for details on the analysis), a publicly
available, high-throughput experimental data analysis plat-
form that allows to collect biological information for large
protein or gene lists based on existing annotations in var-
ious databases, for functional category prediction (Figure
1B and C). It should be noted that this analysis allowed to
make preliminary functional predictions for only 631 and
3741 proteins out of the initial 1936 yeast and 6612 hu-
man proteins of unknown function, respectively, which is
not surprising given that we started out with poorly anno-
tated protein sets. Despite the limitations of this approach,
it allowed to quickly obtain a rough first idea about the rel-
ative distribution of the remaining yeast and human pro-

teins of unknown function among the major functional cat-
egories ‘Macromolecule binding’, ‘Catalytic’, ‘Transport’,
‘Transcription/Translation’ and ‘Receptor’. Strikingly, this
preliminary analysis indicated that a third or more of the
analyzed proteins of unknown function possess a catalytic
activity, with considerably less of them being involved in sig-
naling, transcription, translation or transport activities. To
gain a more accurate assessment of the number and poten-
tial roles of enzymes of unknown function remaining in the
yeast and human proteomes, more elaborate bioinformatics
methods were used as described in the next section.

ENHANCED APPROACHES TO RETRIEVE ENZYMES
OF UNKNOWN FUNCTION IN KNOWN PROTEOMES

First we used two more advanced searches in the UniProt
database (Figure 2, blue background). Using information
available in this database, one can readily find out that of
the 1746 yeast proteins and 4207 human proteins annotated
with Enzyme Commission (EC) numbers, 369 and 1156,
respectively, are linked to (only) incomplete (i.e. <4-digit)
EC numbers (Figure 2; note that for proteins with multi-
ple EC number associations, hits linked to at least one 4-
digit EC number were excluded and that preliminary EC
numbers, containing an ‘n’ as part of the fourth digit, were
treated as 3-digit EC numbers). This indicates that an en-
zymatic activity has been associated with the latter pro-
teins, but that this molecular function remains only par-
tially characterized. In an alternative query, taking as a
starting point not the EC number-associated proteins, but
the 1936 and 6612 unknown yeast and human proteins re-
trieved via the keyword-based search in UniProt described
in section 2, we found that 242 yeast and 1207 human un-
known proteins are associated with at least one EC digit
(Figure 2). This second approach has the advantage of re-
taining proteins as hypothetical enzymes, despite their asso-
ciation with a complete EC number. Specifically, the protein
lists generated via this second method contained 117 yeast
and 663 human proteins annotated with 4-digit EC num-
bers, because the associated UniProt protein names con-
tained one of our ‘unknown’ categorizing terms (‘uncharac-
terized’, ‘putative’, ‘probable’, ‘containing’, or ‘like’). Upon
manual inspection, we noticed, however, that 4-digit EC as-
sociated proteins for which ‘unknown’ terms are only con-
tained in one or several of their alternative UniProt pro-
tein names (and not in their ‘recommended’ UniProt name)
tend to be well or fully characterized functionally whereas
this characterization is usually more incomplete when the
‘unknown’ term is comprised in the recommended UniProt
name (two examples of the latter type are specified in Sup-
plementary Material). Protein entries of the first type are
therefore flagged as possible false positives in the database
query lists in Supplementary Table S3. A disadvantage of
the second approach is that the search of putative enzymes
is restricted to a probably incomplete list of proteins of un-
known function and therefore excludes potentially inter-
esting targets from the start (although our keyword-based
method aimed at maximizing unknown protein retrieval,
it heavily depends on annotation quality and a fraction of
unknown proteins were most likely missed). It seems that
crossing the resulting lists of putative enzymes retrieved by
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Figure 2. Solely database query- and HMM-based workflows described here to systematically retrieve enzymes of unknown function for an organism of
interest. The strategies based only on database queries are represented on a blue background whereas the HMM-based strategies are represented on an
orange background. Numerical estimations obtained for the S. cerevisiae and H. sapiens proteomes are shown in yellow and green boxes, respectively.

these slightly more advanced database searches should lead
to a quite comprehensive dataset. 242 yeast and 597 human
proteins were only found by the first approach, whereas 115
yeast and 648 human proteins were only found by the sec-
ond approach. 127 yeast and 559 human proteins were iden-
tified by the two strategies. The total number of unique pro-
teins found by the combination of both approaches to corre-
spond to putative enzymes amounted thus to 484 and 1804
for the yeast and human proteomes, respectively (Figure 2
and Supplementary Table S3).

We next went on to adapt a method from Christian et al.
(23) based on the use of Hidden Markov Models (HMMs)
(24) to reach our aim of estimating the proportion of puta-

tive enzymes in known proteomes by yet another approach.
HMMs are commonly used for functional prediction of
protein sequences (25,26). Based on high-quality multiple
sequence alignments (MSAs), they are able to capture a
broader range of sequence similarity than standard align-
ment methods like BLAST or PSI-BLAST (27–29). Using
sequence information available in the Swiss-Prot (Release:
2015 10), BRENDA (Release: 2015.2; (30)) and KEGG
(Release 76.0; (31)) databases, several sets of HMMs were
generated (as described in Supplementary Material). We
chose to use Swiss-Prot and BRENDA as the manual cura-
tion of these databases should minimize the amount of mis-
annotation in the corresponding HMM sets. KEGG was
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selected because of the possibility to use the reactions as-
sociated with the KEGG Orthology (KO) entries to esti-
mate the fraction of enzymes of unknown function that
act solely on small molecules, as will be described below. It
should be noted here that while the created Swiss-Prot and
BRENDA HMMs (2419 and 3870 models, respectively)
represent ‘enzyme-specific’ HMMs, the KEGG HMMs (17
748 models) also represent non-catalytic protein functions
(see Supplementary Material). Hits obtained in the pro-
teomes of interest with the KEGG HMMs were therefore
filtered more extensively (as explained in more detail below)
than those obtained with the Swiss-Prot and BRENDA
HMMs to enrich the generated protein lists in putative en-
zymes (Figure 2). For the sake of completeness, we also used
precomputed Pfam HMM hits for S. cerevisiae and H. sapi-
ens to identify putative yeast and human enzymes (see Sup-
plementary Figure S4 and method description in Supple-
mentary Material). Given, however, the considerably lower
Pfam HMM to EC associations as compared to for exam-
ple KEGG HMM to EC or reaction associations (329 ver-
sus 7788), the Pfam HMM approach yielded much lower
numbers of putative yeast and human enzyme hits (see Sup-
plementary Table S3) and these results were not analyzed
further in this study.

The complete yeast (Swiss-Prot TaxonomyID: 559292;
Saccharomyces cerevisiae S288c) and human (Swiss-Prot
TaxonomyID: 9606; H. sapiens) proteomes were scanned
against the Swiss-Prot, BRENDA, and KEGG HMMs
using the `hmmscan` command in HMMER (32). Start-
ing from the generated datasets (yeast and human pro-
teins presenting significant matches with one or several of
those models; HMM E-value cutoff of 0.00005), differ-
ent lists of proteins of unknown function or with incom-
plete functional annotation were built (Supplementary Ta-
ble S3). Independently of which HMM set was used (Swiss-
Prot, BRENDA or KEGG), only yeast and human pro-
tein hits with evidence level 1 or 2 in UniProt were re-
tained (Figure 2). For the hits obtained with the Swiss-
Prot and BRENDA HMMs, a protein was grouped accord-
ing to whether it associated (in UniProt) with EC numbers
containing 3, 2 or 1 digit(s) or was not associated with an
EC number; proteins associated with complete EC num-
bers (four digits) were not retained as they were considered
as of known function, although this does certainly not al-
ways hold true as illustrated above. For the hits obtained
with the KEGG HMMs, entries with four EC digits were
again excluded while the remaining entries were divided into
four categories: (i) non-catalytic––no EC number and no
reaction associated; (ii) ECbutNoReaction––an EC num-
ber is associated with the KO, but no reaction is associ-
ated with either the KO directly or with the EC number;
(iii) DNARNAPeptideChain––entries with associated reac-
tions (direct or via EC) in which at least one of the substrates
or products corresponds to DNA, RNA, a peptide, or a re-
peated chemical subgroup (list presented in Supplementary
Table S4); (iv) other catalytic––the remaining entries which
should be enriched in enzymes acting on small molecule
substrates, i.e. metabolic enzymes. The protein hits in cat-
egories (ii), (iii) and (iv) were retained as putative enzymes
according to the KEGG HMM strategy.

Based on the ‘enzyme-specific’ Swiss-Prot and BRENDA
HMMs, 600 and 700 yeast proteins as well as 2826 and 3550
human proteins were predicted to correspond to putative
enzymes, respectively; KEGG HMMs identified 518 yeast
proteins and 1572 human proteins as putative enzymes (Fig-
ure 2 and Supplementary Table S3). A significant advan-
tage of the HMM-based strategies as compared to even
advanced database searches is the ability to retrieve pro-
teins that are enzyme candidates, but that have not yet been
linked to EC numbers in the protein databases. The num-
bers of such ‘no EC-associated’ hits were very high in our
analysis, corresponding to 381 yeast and 1952 human puta-
tive enzymes retrieved through the Swiss-Prot HMMs, 492
yeast and 2818 human putative enzymes retrieved through
the BRENDA HMMs, and 248 yeast and 637 human pu-
tative enzymes retrieved through the KEGG HMMs. Logi-
cally, these putative enzymes would not have been retrieved
by searching the databases for proteins with associated EC
numbers, but as they match ‘enzyme-specific’ HMMs with
high scores, there is a strong probability that they pos-
sess catalytic activities. Another important advantage of the
HMM-based strategy is that it inherently generates predic-
tions on possible catalyzed reactions for each of the pro-
tein hits. It is important to keep in mind, however, that the
HMMs used here only capture pre-existing knowledge on
sequence–function associations. There might well be pro-
tein sequences with catalytic properties that have not yet
been identified as such in any sequenced organism; those
are not represented by our sequence models and will rely on
other (mostly experimental) strategies to be discovered. An
interesting perspective could be to use alignment-free pre-
diction methods to complement our HMM-based strategy,
which relies on sequence similarity, for the identification of
putative enzymes in proteomes of interest. Homology-free
methods operating through neural network or support vec-
tor machine approaches have indeed been used to predict
global enzyme classes (first or second level of the EC en-
zyme classification system) based on sequence (33,34) or
structural (35) attributes, independently of alignment algo-
rithms. These methods may allow for identification of addi-
tional putative enzymes in the yeast and human proteomes,
even if they share no significant or low sequence similarity
with any enzyme of known function (and thus are unlikely
to be retrieved by the HMM-based strategy).

In total, fewer putative enzymes were retrieved using the
KEGG HMM method as compared to the Swiss-Prot and
BRENDA HMM methods, for both the yeast and human
systems. An advantage of the KEGG HMM approach was,
however, that the number of protein hits contained in the
‘other catalytic’ category (as defined above) could be di-
rectly used to estimate the proportion of putative metabolic
enzymes, i.e. enzymes predicted to act on low molecular
weight substrates as opposed to high molecular weight sub-
strates like DNA, RNA, or proteins. From this analysis, it
was estimated that at least 241 yeast and 506 human en-
zymes of unknown function act on small molecules (Fig-
ure 2 and Supplementary Table S3). To provide some con-
text, the most comprehensive human metabolic reconstruc-
tion, Recon 2, includes 2626 unique metabolites involved
in 7440 reactions, annotated with 1789 unique genes (36).
The most recently released Yeast metabolic network, Yeast
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7.6 (http://yeast.sourceforge.net/) (37), contains 2344 reac-
tions, annotated with 910 yeast genes encoding the catalyz-
ing enzymes. Comparison of the number of genes included
in those reconstructions (910 and 1789 for yeast and human,
respectively) with the number of enzymes of unknown func-
tion acting on small molecules estimated here (241 and 506
for yeast and human, respectively), indicates that we are far
from a complete knowledge, and certainly even further from
a complete understanding, of the metabolism of these two
model organisms.

We next quantified the overlaps (Supplementary Figures
S1 and S2) between the unique entries predicted as putative
enzymes by the combined Uniprot query-based approaches
(Figure 2, blue background) and the putative enzymes iden-
tified via the Swiss-Prot, BRENDA or KEGG HMM-
based strategies (Figure 2, orange background). Clearly,
the query- and HMM-based strategies are complementary
to one another, with ∼40–50% of the putative enzymes
found by the query-based method also being retrieved by
the HMM-based methods. Similarly, when comparing the
different variants of HMM-based methods used, none of
them was completely redundant with each other. The high-
est overlap was found between the Swiss-Prot HMM- and
BRENDA HMM-based methods, which may be explained
by the high manual curation of both the Swiss-Prot and
BRENDA databases. While at this stage it is difficult to
tell which of the generated putative enzyme lists is the most
highly enriched in ‘true’ enzymes, one may conclude from
these comparisons that, because neither of the described
strategies is perfect, it is recommendable to use more than
one of them in combination if one strives to obtain the
most complete lists possible. Given the higher curation of
the Swiss-Prot and BRENDA databases compared to the
KEGG database and considering the overlap in methods
shown in Supplementary Figures S1 and S2, combining the
query-based method with either the Swiss-Prot HMM- or
the BRENDA HMM-based method seems like a good strat-
egy to maximize the number of putative enzymes to be re-
trieved from the proteome of interest. It should be noted,
however, that the query-based strategy highly depends on
the annotation quality of the target proteome and that the
HMM-based methods are to be favored when working with
poorly annotated proteomes.

For the unknown enzyme ‘hits’ obtained by the HMM-
based approaches and associated with an incomplete EC
number, we also compared their distribution among the six
major EC classes (Supplementary Figure S3). The overall
distribution of enzymes of unknown or ambiguous func-
tion in yeast and humans, found by using the Swiss-Prot,
BRENDA or KEGG HMMs, were generally similar. Hy-
drolases (EC 3) made up the largest fraction of unknown
enzymes, followed by transferases (EC 2), oxidoreductases
(EC 1) and ligases (EC 6), respectively. The only exception
to this trend was found for the hits retrieved from KEGG
HMMs scanned against the human proteome, where the
ligase class had the second most hits, followed by trans-
ferases and oxidoreductases. Relatively few of the unknown
enzyme hits belonged to the lyase (EC 4) or isomerase (EC
5) classes. A comparison of these unknown enzyme EC cat-
egory distributions to the one of all the EC-number asso-
ciated proteins in UniProt (including known and unknown

enzymes), reveals as a major difference the enrichment of
the unknown enzymes in hydrolases at the expense of the
transferase class. It should be noted here, however, that
many (KEGG HMMs) if not a majority (Swiss-Prot and
BRENDA HMMs) of putative unknown enzyme hits re-
trieved by the HMM-based methods are not yet associated
with an EC number (see above and also legend to Supple-
mentary Figure S3), meaning that the pie-charts in Supple-
mentary Figure S3 may not be representative of the catalytic
dark matter that persists in the yeast and human proteomes
as a whole.

As essentiality and evolutionary conservation are im-
portant parameters in the field of functional genomics, we
also analyzed the yeast enzymes of unknown function iden-
tified by the various approaches described above to esti-
mate the fraction of proteins encoded by essential or or-
phan genes among those putative enzymes (the correspond-
ing methods are described in Supplementary Material). De-
pending on the HMM method used (Swiss-Prot, BRENDA
or KEGG), the fraction of orphan genes (defined here as
genes having only fungal homologs) among the yeast un-
known enzymes corresponded to 12–25% while the frac-
tion of essential genes ranged from 15% to 23% (Supple-
mentary Table S5). The relatively low orphan gene fraction
further underlines the importance of investigating the func-
tions of these putative yeast enzymes as the conservation
of the majority of them suggests fundamental roles in cel-
lular processes. Regarding the fraction of essential genes
among the yeast unknown enzymes, it seems unexpectedly
high as strong phenotypes should in principle favor func-
tional identification. It is interesting to note that the subset
of 241 yeast ‘metabolic’ unknown enzymes predicted by the
KEGG HMM method contains a lower fraction of essen-
tial genes (5%), which indicates that most of them are good
candidates to be functionally investigated by experimental
strategies involving the analysis of knockout mutants (see
for example, the ex-vivo metabolomic profiling approach de-
scribed in the section below).

All of our automated bioinformatic approaches
(database queries and HMM-based methods) used to
approximate the number of remaining unknown enzymes
in the yeast and human proteomes heavily relied on EC
number annotation. While it seemed like the most suitable
annotation parameter to consider for reaching our specific
objective, it is clear that the number of digits in an EC
number does not always accurately reflect the degree of
functional characterization of associated proteins. This, as
well as the more general misannotation problems in protein
databases mentioned in the Introduction, are reasons why
the protein lists generated here (Supplementary Table
S3), while enriched in unknown enzymes, also contain a
number of ‘false positives’, i.e. proteins whose enzymatic
functions are actually reasonably well or sometimes even
fully understood. While extensive manual curation would
have gone beyond the scope of this article, we attempted to
analyze and roughly quantify the ‘false positive’ problem.
Based on systematic criteria explained in more detail in
Supplementary Material and given the ambiguous meaning
of especially 3-digit EC numbers (38) in terms of degree
of functional characterization of the associated enzymatic
activities, a subset of the 3-digit EC number linked entries

http://yeast.sourceforge.net/
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in Supplementary Table S3 have been flagged as ‘pos-
sible false positives’. In addition, some of the proteins
associated with 4-digit EC numbers (only present in the
database-query lists in Supplementary Table S3) have been
highlighted as ‘possible false positives’ as described at the
beginning of this section. Depending on the approach
used for automated unknown enzyme prediction, the
estimated possible false positive percentages amounted
to 43% (database-query), 22% (SwissProt HMMs), 15%
(BRENDA HMMs) and 29% (KEGG HMMs) for the
yeast proteins and 50% (database-query), 21% (SwissProt
HMMs), 13% (BRENDA HMMs) and 40% (KEGG
HMMs) for the human proteins. Manual inspection of
the functional UniProt annotations of the flagged entries
revealed that some of them are clear false positives (i.e.
enzymes whose function can be considered as known,
even according to stringent criteria), while others remain
functionally underdetermined; only manual assessment of
each individual entry would allow to filter out the clear
false positives. For the sake of comprehensiveness, all the
possible false positive entries have therefore been retained
in our enzyme of unknown function lists; especially for
those flagged proteins, however, a careful assessment of the
‘unknown’ status should be performed before including
them into any functional identification projects. Overall,
the apparent overestimation of our total unknown enzyme
numbers due to possible false positives is, however, limited
to a certain extent by other drawbacks of our automated
bioinformatics analyses which rather lead to underesti-
mations of these numbers (e.g. dependency on previously
identified sequence-enzyme function associations for
the HMM methods, difficulty to properly account for
multi-functionality of proteins).

EXPERIMENTAL AND COMPUTATIONAL STRATE-
GIES TO IDENTIFY NEW METABOLIC ENZYMES

Several different methods have proved to be effective in ad-
dressing the unknown enzyme problem. They can be hy-
pothesis based or non-hypothesis based and the starting
point can be a gene of unknown function, an enzyme activ-
ity with no associated gene (orphan enzyme) or a metabo-
lite that remains unconnected to the known metabolic path-
ways. Given our primary research interests, the focus is
mostly (although not exclusively) on model organisms and
intermediary metabolism related enzymes, but it should be
noted here that specialized metabolism or natural product
biosynthesis in plants, fungi and/or marine organisms, al-
though less studied and often considered as esoteric, may
even constitute more fertile grounds for enzyme discovery
(39).

The ‘classical biochemical’ approach

Here the starting point is a known or hypothesized enzyme
activity and the approach is inevitably hypothesis-driven.
It can only be implemented if the reaction catalyzed by
the putative native enzyme can be assayed in cell or tis-
sue extracts. The crude starting material is then enriched
for the new or orphan enzymatic activity through multi-
ple purification steps to acquire a protein preparation that

is pure enough for protein sequence identification via tan-
dem MS/MS (Figure 3). Selection of the best protein can-
didate among the identified sequences can be assisted by (i)
determination of the molecular weight of the putative en-
zyme based on SDS-PAGE gel bands co-eluting with the
enzymatic activity during the chromatographic procedure,
(ii) transcriptomic data obtained under conditions, or from
strains/species, where the enzyme is known to be differ-
entially expressed, (iii) information on the tissue distribu-
tion, subcellular localization and/or other properties such
as metal-dependency (obtained experimentally for the en-
zymatic activity of interest) and (iv) sequence information
on proteins catalyzing similar reactions to the one investi-
gated. If the strategy results in the identification of a reason-
able number of plausible candidate protein sequences, they
can then be produced recombinantly for final enzyme func-
tion assignment. While viewed, somewhat accurately, as te-
dious and time consuming (40), this approach continues to
bear fruit and leads to discoveries where other more sys-
tematic approaches fail. This and some other biochemical
approaches described below also have no substitute when
working with organisms that are not amenable to genetic
manipulation, which still represent a majority. In recent
years, it has led to the molecular identifications of carno-
sine synthase (41), �-citrylglutamate hydrolase (42), and a
lysoplasmalogenase (43) in animals, a glucuronokinase in
plants (44), the lyase responsible for forming dimethyl sul-
fide from dimethylsulfoniopropionate in algae (45), hemo-
cyanin with potential lignin-modification activities in a
wood-feeding termite (46), and four enzymes involved in
a process called metabolite repair that will be described
in more detail in the last section (ethylmalonyl-CoA de-
carboxylase (47), NAD(P)HX dehydratase (48), �-alanyl-
lysine dipeptidase (49), and a 4-phosphoerythronate/2-
phospho-L-lactate phosphatase (50)), to name only a few.

In the case of ethylmalonyl-CoA decarboxylase, the com-
pound ethylmalonyl-CoA was hypothesized to be formed
intracellularly by a known side activity of propionyl-CoA
carboxylase and acetyl-CoA carboxylase on butyryl-CoA
(47). Mouse tissue extracts were assayed with radioactive
ethylmalonyl-CoA to determine if a decarboxylation reac-
tion could be detected. After activity was shown, an enzyme
was partially purified from rat liver by successive chromato-
graphic steps (47). LC-MS/MS performed on the most pu-
rified ethylmalonyl-CoA decarboxylase activity-containing
fraction provided a list of 75 protein hits from which can-
didates were selected based on sequence similarity with
proteins known to catalyze a similar reaction. ECHDC1
emerged as the top protein candidate for ethylmalonyl-CoA
decarboxylase, which was then confirmed by characteri-
zation of the recombinant protein. Understandably, this
approach cannot easily be adapted for a proteome scale
project, making it seem less desirable to implement, but for
groups with the specialized biochemical expertise and skills,
it remains a powerful technique for original findings in the
field of enzyme discovery (51). As with any targeted ap-
proach, it will always depend on the functional hypotheses
that can be generated by investigators and completely un-
expected enzymatic reactions may be missed.
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Figure 3. Experimental and computational strategies to find new metabolic enzymes. Only a subset of the strategies described in this review are illustrated
here. Asterisks in the chromatograms denote peaks of interest. GOI, gene of interest; Orf, open reading frame; WT, wild-type; KO, knock-out; O/E,
overexpression.
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The ‘candidate gene’ approach

This approach also starts from a known or hypothetical en-
zymatic activity, but then directly proceeds to functional
validation by testing one or several candidate genes that
have been carefully selected based on a number of known
or hypothesized properties of the orphan or putative en-
zyme (Figure 3). It replaces the classical biochemical ap-
proach when, for instance, the activity of the native enzyme
cannot be detected in tissue extracts (because of low en-
dogenous expression and/or the presence of interfering ac-
tivities for example) or when the native enzyme cannot be
purified in an active form (because of stability problems
and/or integral membrane localization for example). The
success of this approach depends largely on the availabil-
ity of a specific and sensitive enzymatic assay, especially if
enzymes cannot be purified from cultured cells manipulated
to overexpress the candidate genes, and the amount of prior
information available for the enzymatic activity of interest.
Knowledge of the substrates and cofactors involved, enzy-
matic properties determined in crude extracts, tissue dis-
tribution, subcellular localization, and conservation across
species can all guide the candidate gene selection process. In
principle, a screening approach based on detection of the
enzymatic activity of interest in cultured cells transfected
with plasmid pools of a cDNA expression library should
allow one to skip the prior gene selection process. While
such a screen has allowed the identification of an endothe-
lin receptor (52), it has not yet been successfully used, in
our knowledge, for the molecular identification of an en-
zyme. Examples of enzymes for which the encoding genes
have been more recently found by the candidate gene ap-
proach include the aspartate N-acetyltransferase NAT8L,
which synthesizes one of the most abundant brain metabo-
lites (N-acetylaspartate) (53), the mammalian cis-aconitate
decarboxylase IRG1, which produces the antimicrobial
metabolite itaconic acid (54), alkylglycerol monooxyge-
nase, a tetrahydrobiopterin-dependent enzyme responsible
for the cleavage of the O-alkyl bond in ether lipids (55),
the GDP-L-galactose phosphorylase VTC2, which catal-
yses the last step of the main plant vitamin C synthe-
sis pathway that remained genetically unidentified (56),
and the omega-amidase NIT2, which hydrolyzes the amide
group of the alpha-ketoglutaramate product formed by
glutamine transaminases (57). Additional examples are
N-acetylaspartylglutamate synthase (58), acetyl-CoA:lyso-
PAF (platelet-activating factor) acetyltransferase (59) and
two other enzymes involved in ether lipid metabolism (60).

In a variant of this approach, one can aim to identify the
molecular function of a particular gene, predicted to en-
code an enzyme. The starting point here is a gene, and not
an enzymatic activity. This can lead to the discovery of a
new enzymatic activity by characterization of the proper-
ties of the recombinant enzyme in vitro, for which the bi-
ological role then needs to be determined. The latter task
is often not straightforward and can be initiated by con-
firming that the proposed substrate of the newly identified
enzymatic activity accumulates in knockdown or knockout
cell lines of the corresponding gene. This approach has for
example led to the identification of the human C15orf58
gene as a GDP-glucose phosphorylase (61), of a malate/�-

methylmalate synthase activity for the human CLYBL pro-
tein (62), and most recently of the mammalian Nit1 protein
and its yeast ortholog (encoded by the NIT2 gene) as ami-
dases that hydrolyze deaminated glutathione, a side product
of several transaminases (63). Both the human Nit1 protein
and its yeast ortholog were still retrieved in the current study
as enzymes of unknown function by the database query as
well as the SwissProt, Brenda, and KEGG HMM-based ap-
proaches (Supplementary Table S3).

When starting an enzyme discovery project from a gene
of interest, bioinformatics tools for functional prediction,
typically based on sequence similarity, are often used for hy-
pothesis generation. Caution needs to be taken with these
predictions, however, as small changes in amino acid se-
quence can lead to drastic changes in enzyme function. The
Streptomyces purpurascens RdmB protein for example is ho-
mologous to classical SAM-dependent methyltransferases,
but turned out to catalyze a SAM-dependent hydroxyla-
tion reaction in the synthesis pathway of the anticancer an-
tibiotic rhodomycin (64). Another extreme example to il-
lustrate this are melamine deaminase and atrazine chloro-
hydrolase, two enzymes encoded by two different Pseu-
domonas strains and that differ only by nine amino acids,
but that carry out different reactions on different substrates
(65). These considerations again emphasize the importance
of experimental validation in the context of enzyme iden-
tification studies, when starting from sequence similarity-
based predictions.

Activity-based metabolomic profiling

The improved sensitivity and decreasing cost of mass spec-
trometry techniques have encouraged researchers to move
away from solely hypothesis-driven approaches for enzyme
discovery to untargeted approaches using metabolomics
techniques. Often these metabolomics projects begin with
little to no prior information available about potential sub-
strate(s) or product(s) of the putative enzyme of interest.
Therefore it is advantageous for the metabolomics methods
used to be as comprehensive as possible in terms of metabo-
lite coverage (40). One metabolomics-based approach, des-
ignated activity-based metabolomic profiling (ABMP), in-
volves incubating a recombinant enzyme with a cell extract
from the homologous organism (or another organism) en-
riched in potential cofactors by supplementation (Figure
3) (66). Enzymatic activities are revealed by analyzing the
consumption and production of metabolites in a time- and
protein-dependent manner using mass spectrometry-based
approaches.

Initial work on the E. coli protein YihU can be used to
illustrate the approach in action (67). A small molecule ex-
tract, derived from yeast, was supplemented with additional
cofactors and incubated with and without recombinant
YihU. Using capillary electrophoresis time-of-flight mass
spectrometry (CE-TOFMS), two anionic compounds were
found at increased levels (assumed products) in the YihU in-
cubated sample compared to the non-enzyme control sam-
ple. In addition, these compounds were found to be pro-
duced in an NAD+/NADH-dependent manner, strongly
suggesting an oxidoreductase-type reaction. The accurate
mass of these compounds was compared to the theoretical
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mass of compounds in the KEGG LIGAND database, ul-
timately leading the authors to the conclusion that E. coli
YihU is a dehydrogenase reducing succinic semialdehyde to
� -hydroxybutyrate using NADH (67). However, five years
later the reported � -hydroxybutyrate dehydrogenase activ-
ity was refuted and an alternative activity was found (68).
Using a combination of genomic context and enzyme assays
in a hypothesis-driven approach, YihU was shown to act as
a 3-sulpholactaldehyde reductase in sulphoglycolysis in E.
coli. This example underlines the importance of validating
the in vivo biological relevance of a molecular function of
an enzyme supported by experimental evidence obtained in
in vitro systems, even more so when using a non-hypothesis
driven approach.

ABMP was also used to investigate further into the func-
tion of the Mycobacterium tuberculosis protein Rv1248c. An
early report had described an activity where �-ketoglutarate
(�-KG) was decarboxylated to form succinic semialdehyde
(SSA) (69). However, another group realized that the rate
at which Rv1248c produced SSA could not match the
metabolic role that had been proposed (66). In order to
identify the more physiologically relevant role, the authors
used ABMP by incubating recombinant Rv1248c with a
mycobacterial small molecule extract. There was a time-
dependent change in the abundance of only two metabo-
lites; �-KG decreased in an enzyme-dependent manner,
while there was an increase of a different feature, identified
as 5-hydroxylevulinic acid. It was determined that Rv1248c
catalyzes the formation of a C–C bond between �-KG and
glyoxylate to produce 2-hydroxy-3-oxoadipate that subse-
quently decomposes to 5-hydroxylevulinic acid (66). This
finding was further corroborated a year later, as the two pre-
viously reported functions were confirmed and a third ac-
tivity was identified, namely the succinyl-transferring �-KG
dehydrogenase activity (70).

An asset of the ABMP approach is the use of the cell
metabolome as a highly relevant chemical library to screen
for potential enzyme functions. This is important because
some reactions of interest will involve substrates that are
not commercially available. The ABMP approach can also
allow one to determine the function of enzymes encoded
by essential genes; this is not the case for the ‘ex-vivo’
metabolomics strategy described below (see also (66)). Po-
tential bottlenecks are that neither the cell extracts used as
substrate source, nor the supplemented cofactor mix are
necessarily comprehensive; the substrate of interest may be
unstable and lost upon cell extraction or may even be absent
from the start if it is only produced by the cell under spe-
cific growth conditions for example. Another limitation of
this approach is the dependence on obtaining pure recom-
binant protein. Also, as the approach involves an in vitro
reconstituted system, it does not necessarily reveal the phys-
iological function of the investigated protein. Finally, with
metabolomics being at the center of this strategy, it suffers
from the limitations that this young ‘omics’ technique still
has to tackle, notably in terms of metabolite coverage, sensi-
tivity and especially compound identification, as described
in more detail in the next subsection.

Ex-vivo metabolomic profiling

The ex-vivo metabolomics approach consists in com-
paring tissue or cell extracts (or spent media) derived
from organisms/cells deficient in or overexpressing the
enzyme of unknown function to extracts of wild-type
organisms/control cells to identify differences in their
metabolic profiles (Figure 3) (71). Using untargeted
metabolomics, the expectation is that the hypothesis for
substrate identity can be significantly narrowed down to a
class of compounds or even a single compound that changes
between the different cell extracts (e.g. compound accumu-
lating in a knockout cell line compared to the control cell
line). While this idea may seem simplistic, systematic com-
parative metabolomics profiling of yeast strains knocked
out for central metabolic enzymes showed that for almost
half of the analysed strains, enzyme deletion led to very lo-
calized changes in the metabolome, and actually mostly ac-
cumulations of the substrate immediately upstream of the
lesion (72). For most of the remaining deletion strains, no
significant metabolite level changes could be detected and
for only very few of the strains more systematic changes
across the metabolic network were measured. Similar ob-
servations had been reported previously for E.coli enzyme
deletion strains (73). Ex-vivo metabolomic profiling can also
assist with enzyme function identification using the guilt by
association principle as mentioned in a dedicated subsec-
tion below.

The ex-vivo metabolomics approach is more likely to re-
veal a physiologically relevant role for an unknown en-
zyme than a non-hypothesis driven in vitro method, as ob-
served metabolic differences result from processes that oc-
curred within the living cells and as intracellular regulations
that may influence the enzyme activity (e.g. allosteric in-
teractions and post-translational modifications) have a bet-
ter chance of being present in the cell or whole organism
models used. However, for non-genetically tractable organ-
isms where methods to produce knockout or overexpres-
sion strains are burdensome or currently impossible, alter-
native methods such as the above mentioned ABMP should
or have to be used (71). Reciprocally, in cases where it is
challenging to purify an enzyme of interest, the ex-vivo ap-
proach has to be chosen over the ABMP approach to dis-
cover the natural substrates and/or physiological function
(74).

Ex-vivo metabolomics profiling led for example to the
identification of the �/�-hydrolase domain-containing
three protein ABHD3 as a lipase selectively cleaving cer-
tain medium-chain phospholipids. The investigators tran-
siently overexpressed 12 uncharacterized enzymes belong-
ing to the serine hydrolase class in HEK293T cells and
extracted the organic-soluble metabolites for subsequent
LC–MS analysis (74). Compared to a transfection con-
trol, extracts of cells overexpressing ABHD3 displayed
an increased peak (m/z = 524) identified through tan-
dem MS and the co-elution with a synthetic standard
as C18-lysophosphatidylcholine (74). These cell culture-
based findings were corroborated with observations from
a whole-organism model when tissue extracts of homozy-
gous ABHD3 knockout mice were compared with ex-
tracts of WT mice, and C14-lysophosphatidylcholine was
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found to accumulate in addition to three other phos-
phatidylcholines (74). Ex-vivo metabolomics profiling also
led to the discovery and characterization of sedoheptulose-
1,7-bisphosphatase, which is involved in riboneogenesis
in yeast (75), a radical SAM dehydratase as well as an
NADPH-dependent reductase involved in the biosynthe-
sis of the aminoglycoside antibiotic apramycin in Strepto-
myces tenebrarius (76), and the yeast DLD3 protein as a D-
2-hydroxyglutarate-pyruvate transhydrogenase potentially
involved in the shuttling of reducing equivalents from cy-
tosolic NADH to the mitochondrial electron transfer chain
(77). Most recently, the human FGGY protein and its yeast
ortholog were also identified as D-ribulokinases using this
experimental approach as a starting point (78). Those two
proteins are still contained in the unknown enzyme lists gen-
erated in this study (Supplementary Table S3) and were cor-
rectly predicted to act as D-ribulokinases by the BRENDA
and KEGG HMM methods.

The success of this metabolomics-based approach is
mainly constrained by the technical limitations that still dis-
tinguishes this younger ‘omics’ technique from the more
well established genomics and proteomics methods (79).
Although advanced metabolomics techniques can be very
sensitive, metabolites involved in the reaction of interest
may be present below detection levels in the analyzed ex-
tracts if they are unstable for example. Even if a metabo-
lite is reasonably stable, it can be missed depending on
the extraction method used. Comprehensive studies will
include the use of multiple extraction procedures to bal-
ance this risk of extraction bias. If partial knowledge of
substrate identity and properties is available, the extrac-
tion and analytical protocols should be selected and opti-
mized accordingly. Furthermore, even if a given metabo-
lite is detectable, it may not be identified based on reten-
tion time and mass spectrum or even accurate mass. Hy-
phenated techniques like MS/NMR are partially solving
the unknown compound identification problem (80) and
thereby may increase the chances of successful enzyme func-
tion discovery via metabolomics-based approaches. As each
separation and detection method has particular strengths
and weaknesses, the use of different separation techniques
with different detection methods broadens the spectrum
of metabolites that can be measured (81), which is obvi-
ously an additional determining factor for success, espe-
cially for non-hypothesis driven projects. Finally, the out-
comes of the ex-vivo metabolomics approach can be heavily
influenced by media composition and other environmental
conditions that prevail during the ‘in-vivo’ part of the exper-
iment. Growth conditions may have to be varied from stan-
dard conditions to detect a metabolic phenotype caused by
the investigated enzyme deficiency.

It should be noted here that the combination of
metabolomics techniques with stable isotope labeling can be
extremely useful in bridging the gap between the identifica-
tion of an enzyme’s molecular function and the understand-
ing of its role in cellular metabolism. Experiments with liv-
ing cells using carefully chosen labeled metabolic precur-
sors can help to uncover or confirm the metabolic pathway
in which the newly identified enzyme participates. In addi-
tion, stable isotope labeling-assisted metabolomics experi-
ments enable metabolic flux studies which can become in-

dispensable when chemical or genetic inactivation of target
enzymes do not lead to changes in substrate or product pool
sizes, but only affect the flux through the metabolic path-
way in which they are involved. These approaches are not
discussed in more detail here as they have been recently re-
viewed in the context of metabolic pathway discovery (71).

Activity-based protein profiling

The Activity-Based Protein Profiling (ABPP) approach uses
small-molecule probes to determine the functional state of
enzymes in diverse biological systems, including cell/tissue
extracts, living cells or even whole organisms (82–84). An
ABPP probe includes three major components: the first is
a reactive group that forms a covalent bond with a cat-
alytically active site of enzymes that have common struc-
tural and/or reactive properties. The second is a binding
group that often resembles the natural substrates of the
enzymes and the third is a reporter tag that is commonly
a fluorophore or biotin and allows for the detection and
enrichment/identification of probe-labeled enzymes. Detec-
tion of labeled enzymes is achieved by gel electrophoresis
and in-gel fluorescence scanning or LC–MS (85). The ma-
jor advantage of ABPP is that only the catalytically active
forms of the targeted enzymes are detected. This provides
a better representation of the physiological activity of these
enzymes, especially in contrast to protein abundance where
the assumption is that abundance is directly proportional to
activity and events such as posttranslational modifications
are ignored. Often this method is performed using cell ex-
tracts (e.g. control versus treated or WT versus KO) where
the extracted proteins are treated with a specific probe of in-
terest. The probed extracts are next run on a gel or purified
chromatographically for detection, quantification and/or
enrichment. The proteins that are covalently bound to the
detected probe can be further analyzed by LC–MS/MS for
sequence identification. The major disadvantages of ABPP
include the limited (yet growing) number of probes avail-
able and the requirement of advanced chemistry skills to de-
sign and prepare the probes. There are ABPP probes avail-
able for more than a dozen enzyme classes including ser-
ine hydrolases, cysteine/threonine proteases, protein tyro-
sine phosphatases, monooxygenases and monoamine oxi-
dases (82,86). It should be kept in mind that each of these
probes targets a more or less large number of different en-
zymes belonging to the same enzyme class and not individ-
ual enzymes.

An example of a recent successful application of ABPP
for enzyme function identification is the characterization of
a poorly understood member of the PLA2G4 group of cy-
tosolic phospholipases (87). For over 30 years, an orphan
calcium-dependent N-acyltransferase (Ca-NAT) activity
producing N-acyl phosphatidylethanolamines (NAPEs)
from dog heart and brain tissue was known, but the en-
coding gene had remained mysterious. NAPEs are pre-
cursors for N-acyl ethanolamine (NAE) lipid transmitters;
the biosynthesis of these compounds is not well under-
stood (87). In order to identify the protein sequence re-
sponsible for Ca-NAT activity, detergent-solubilized mouse
brain membrane lysate fractions were assayed for this ac-
tivity and serine hydrolase content was measured in these
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same fractions by ABPP using a fluorophosphonate probe.
Subsequent LC-MS/MS analysis identified 58 serine hy-
drolases; the candidate with the strongest correlation co-
efficient with Ca-NAT activity (PLA2G4E) was expressed
transiently in HEK293T cells. PLA2G4E-transfected cell
extracts were found to demonstrate much higher Ca-NAT
activity compared to control extracts. Additionally, NAPEs
were found to be produced in high amounts in PLA2G4E-
transfected cells compared to control cells (87). Taken to-
gether, these results, initiated by ABPP, provide strong ev-
idence for PLA2G4E being responsible for the elusive Ca-
NAT activity.

Structural biology-based approaches

Members of the Enzyme Function Initiative (EFI) have as-
sembled to address the issue of unknown and misannotated
proteins (88) based on a sequence/structure-based strategy.
With a focus on enzymes, they highlight the fact that com-
monplace bioinformatics techniques often provide broad
clues of functionality but rarely give information about the
specific reaction that is catalyzed (88). The EFI advocates
for the use of computational strategies to guide experi-
mental verification. Their process begins with the collec-
tion of sequences that are clustered into probable isofunc-
tional groups by bioinformatics analyses where a putative
function can be investigated by structural determination,
structural modeling and docking, and biochemical experi-
mentation. For proteins without experimentally determined
structures, homology-based modeling methods can be used
if appropriate template structures are available. Computa-
tional docking methods provide functional clues by suggest-
ing substrates and ligands for subsequent biochemical ex-
perimentation (88,89). This approach has led to numerous
enzyme function identifications, including a pterin deami-
nase from Agrobacterium radiobacter K84 (90), the discov-
ery of a catabolic pathway for proline betaine in Paracoc-
cus denitrificans and Rhodobacter sphaeroides (91), and a
sesquiterpene synthase from Streptomyces clavuligerus (92);
more examples can be found on the EFI website (http://
enzymefunction.org/). Intrinsic limitations of this approach
range from inadequate algorithms for in silico substrate
docking and homology modeling to incomplete metabolite
libraries for virtual screening and incomplete structural cov-
erage of putative enzyme families (88,89).

An alternative structure-based approach involves incu-
bating protein crystals with metabolite cocktails. This strat-
egy relies upon the principle that proteins have evolved to
interact proficiently with their partner compounds at phys-
iological concentrations while ignoring unrelated metabo-
lites (93). In practice, this approach comprises two consec-
utive phases. The first involves screening metabolite cock-
tails containing structurally related metabolites with the
protein crystal of interest. Positive hits are determined us-
ing X-ray diffraction analysis of the protein crystals soaked
with these multicompound cocktails. This step allows for
detection of low affinity binding of ligand analogs. Once
a particular class of compounds is found to interact with
the protein crystal, additional metabolites within that com-
pound class are screened individually in a second phase
to identify derivatives that bind with the highest affinity

(93). This metabolite cocktail screening approach led Shu-
milin et al. (93) to identify a bacterial carbohydrate ki-
nase domain containing protein of unknown function as
an ATP/ADP-dependent NAD(P)H-hydrate dehydratase,
a discovery made independently by Marbaix et al. (48) us-
ing the classical biochemical approach (purification of the
enzyme activity from yeast extracts followed by protein se-
quence identification by tandem MS/MS).

Comparative genomics (guilt by association) methods

The comparative genomics-based approach to determine
the function of an unknown gene relies on the integration
of various types of genomic and post-genomic information
that can be extracted from biological databases (13). The
guilt by association (GBA) principle is used to infer the
function of an unknown gene through its association (by
genomic and/or post-genomic evidence) with known genes
(94). It should be noted that GBA can be applied on a gene-
by-gene or high-throughput basis. In this section we focus
on gene-by-gene, as the manual involvement to determine
functional associations (13) often still yields better hypothe-
ses than those where GBA is used in a high-throughput
manner (95). One of the most powerful means to accu-
mulate genomic evidence for a gene function is through
cross-kingdom comparative genomics (Figure 3). Particu-
larly useful is prokaryotic gene clustering, where function-
ally related genes often occur in operons. Observing cases
where an unknown gene of interest is found in an operon
of a known pathway can greatly assist in hypothesis gen-
eration (96). Gene fusions can imply functional relatedness,
conferring potentially a selective advantage to the cell by de-
creasing the regulatory load for a common biological pro-
cess (97); the fusion of a gene of unknown function to a
gene of known function can in certain cases lead to strong
functional predictions for the unknown gene (98).

Post-genomic evidence such as co-expression data and
‘metabolic snapshots’ can also be useful to assist with func-
tional hypothesis generation (99,100). Genes involved in
similar biological processes have a higher probability of be-
ing expressed at the same time and/or in the same sub-
cellular compartments or tissues. Already >15 years ago,
it was suggested that metabolomic profiling of yeast dele-
tion mutants (designated above as ‘ex-vivo metabolomic
profiling’) could assist with functional assignments based
on the GBA principle, by comparing metabolic snapshots
of strains deleted for unknown genes with the ones of
strains deleted for known genes (100). Databases such as
the STRING database (101) include known and predicted
protein-protein interactions, which can also be used to de-
rive functional associations. The comparative analysis of
phenotypes constitutes another type of post-genomic infor-
mation that has recently been proposed as a guide for gene
function identification (more particularly in the context of
disease research) through the definition of phenologs, i.e.
orthologous phenotypes between organisms that are based
on overlapping sets of orthologous genes associated with
each phenotype (102–104). Finally, promiscuous activities
of a known enzyme can assist with inferring function of
homologous enzymes. Within a superfamily of enzymes,
promiscuous activities that are detected in one family can

http://enzymefunction.org/
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correspond to the native activity of enzymes in a related
family, and vice versa (105).

The comparative genomics-based predictions represent
all probabilistic lines of evidence pointing to the function of
a candidate gene, which may or may not be correct. Gath-
ering multiple lines of evidence converging on the same pre-
diction increases the strength of this prediction. The fact re-
mains that experimental validation is eventually required to
confirm or reject the functional hypothesis. Some recent ex-
amples of comparative genomics-assisted enzyme function
identifications include vertebrate hydroxylysine kinase and
ammoniophospholyases that act on 5-phosphohydroxy-L-
lysine and phosphoethanolamine (106), a specific glutamine
transaminase and �-amidase acting in the methionine sal-
vage pathway in bacteria and plants (107), and bacterial and
plant thiamin monophosphate phosphatases which catalyze
the penultimate step in thiamin diphosphate synthesis (108).

Gap-filling or network extension methods based on metabolic
network reconstructions

This approach relies on the combined knowledge of bio-
chemical activity and metabolic pathways for a given
organism or cell type. Such information is also recon-
ciled with biological context through knowledge of trans-
porters and subcellular compartmentalization. Specifically,
a genome-scale metabolic network is a representation of
the metabolic reactions that a given organism is known
to exhibit and is one of several computational approaches
in biological network analysis (109). One main goal of
metabolic reconstructions is to enable detailed investiga-
tions of genotype-phenotype relationships. Such genome-
scale metabolic networks have been constructed for sev-
eral model organisms, notably S. cerevisiae (110) and H.
sapiens (36). In addition, various multi-organism databases
(MetaCyc (111), KEGG), but also meta-networks unifying
the metabolic reactions from multiple sources (BKM-react
(112), MetRxn (113), MNXRef (114)) facilitate the recon-
struction of metabolic networks also for other organisms of
interest.

Genome-scale metabolic networks allow for a system-
atic evaluation of missing enzymes by comparing exper-
imentally observed metabolites to in silico predictions of
their production. Metabolites that are disconnected from
the rest of the network and dead-end metabolites (metabo-
lites either only produced or only consumed) are strong
indicators for unknown enzymes or missing annotations
(Figure 3). Several gap-filling algorithms were proposed to
find pathways connecting these metabolites with the rest
of the network (23,115,116). Starting points for these al-
gorithms are the organism-specific metabolic networks, the
growth conditions defining the uptake of metabolites and
the aforementioned multi-organism reaction networks. Re-
actions from multi-organism databases are added to the net-
work such that the observed metabolites can be produced.
Since the solutions are not necessarily unique, different
heuristics are employed to pick biologically meaningful re-
actions. The network extension method described in Chris-
tian et al. (23) directly uses the enzyme-specific HMMs, in-
troduced in the previous section, to prioritize solutions con-

taining enzymes likely to be encoded by the genome of the
organism of interest.

Recon 2 is a genome scale human metabolic reconstruc-
tion (36). It’s predecessor, Recon 1, was used to identify
metabolic gaps in the form of blocked reactions (i.e. reac-
tions that do not carry flux) (117). Such reactions involve
dead-end metabolites, whose anabolic or catabolic route
within human metabolism is not clear. The gap-filling al-
gorithm SMILEY (115) was used to generate hypotheses
on possible human metabolic reactions that would reconcile
these dead-end metabolites with the reconstruction (117).
By focusing on the orphan (i.e. detected in humans, but
absent from the human metabolic network reconstruction)
metabolite gluconate, the investigators were able to identify
a human candidate gene which was then experimentally val-
idated to encode a gluconokinase (118).

All the gap-filling algorithms are constrained by the
knowledge contained in the multi-organism networks, i.e.
reactions that have not been described in the literature and
included in these networks cannot be identified. Thus, gaps
that cannot be filled with these algorithms hint at unknown
enzymes that are likely to escape homology-based identifi-
cations and purely computational approaches.

Metabolic quantitative trait loci

Another method that can be envisaged to progress in the
field of enzyme function discovery is based on combined
advances in genomics and metabolomics and involves the
identification of metabolic quantitative trait loci (mQTLs).
The goal of QTL analysis is to associate phenotypic traits
that vary quantitatively across members of a species with
genetic loci that govern this variation. Briefly, linkage map-
ping provides a relative distance between the genetic loci at-
tributed with a particular trait and known molecular mark-
ers. In the case of mQTL studies, the phenotypic traits of
interest correspond to specific metabolite levels. In practi-
cal terms, studies in yeast and plants have exploited map-
ping populations and metabolomics techniques to study
metabolism and metabolic regulations on a broader scale
(119–122). In addition, mQTL analysis has been used to
gain new insights into the genetic architecture underlying
specific metabolic traits such as corn earworm resistance in
Zea mays (123), seed oil content in A. thaliana (124), and
the production of wine aroma compounds by yeast (125).

One of the major bottlenecks encountered during mQTL
analysis is causal gene identification and validation, which
are the key steps in tying genotype and phenotypic variation
together. Depending on the size of the mapping population
and the number of genetic markers, identified QTLs can
contain a more or less long list of candidate genes in the con-
fidence interval, among which a reasonable number of genes
then have to be chosen for validation. Selection criteria are
here often heavily based on gene function annotation. Not
surprisingly, given the unknown protein/enzyme problem
discussed as a main topic of this review, many of the can-
didate genes found in mQTL studies are annotated with
putative or unknown functions (121). However, as mQTL
studies are powerful enough to locate genes associated with
specific metabolite level changes, they represent an interest-
ing tool to address the unknown enzyme problem. If this is
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actually the objective, genes of unknown function with pu-
tative metabolic function, as suggested by the linkage map-
ping analysis, can become very interesting candidate genes
to follow up on (using aforementioned approaches) for en-
zyme function discovery, the mQTL study serving as a first
step in functional hypothesis generation.

In addition to critically reviewing approaches currently
used for enzyme function identification, a goal of this sec-
tion was to provide a list of tools at the disposal of the sci-
entist interested in this task. Each of the nine approaches
described here has its strengths and weaknesses. However,
be it alone or in combination, these strategies will allow for
most enzyme identification projects to be addressed (Fig-
ure 4), each doing their part to confront the unknown en-
zyme problem. While some of these strategies rely at least
partially on ‘omics’ or systems biology approaches, none of
them currently allows to overcome the problem that each
enzyme is more or less unique and will require a dedicated
path of discovery; on this path a researcher’s intuition is
often key and fortune will continue to favor ‘the prepared
mind’. In other words, while enzyme function identification
at an accelerated parallel scale seems like a desirable aim in
light of the number of persisting unknown enzymes, it re-
mains currently an unrealistic one.

POSSIBLE ROLES FOR THE REMAINING ENZYMES
OF UNKNOWN FUNCTION AND IMPLICATIONS OF
THE UNKNOWN ENZYME PROBLEM FOR MODERN
BIOLOGICAL RESEARCH

We have shown that more than 30% of the proteins of un-
known function in yeast and humans appear to act as en-
zymes (Figures 1 and 2). In this final part of the review, we
will discuss the possible roles hidden within this catalytic
dark matter. A fraction of the remaining unknown enzymes
has to correspond to current orphan enzymes. A recent
estimate is that 22% of enzyme activities across all living
species (and 26% of enzyme activities in eukaryotes) clas-
sified with Enzyme Commission (EC) numbers––as main-
tained by the International Union of Biochemistry and
Molecular Biology––are not associated with a protein se-
quence (126). These are referred to as orphan enzymes (in
contrast to orphan genes, which are defined as genes that
lack homologs in other lineages), and although the propor-
tion of orphan enzymes has decreased from 38% in 2003 to
22% in 2014, that still leaves >1100 known enzyme activities
to which a protein sequence must be assigned (126).

As indicated in the previous section, the hundreds of pro-
teins identified through our bioinformatics analyses as pu-
tative ‘metabolic’ enzymes in S. cerevisiae and humans sug-
gest that there must be facets of cellular metabolism that
we still ignore. While secondary metabolism in plants and
bacteria certainly represents a gold mine for enzyme dis-
covery (39), functions for the putative metabolic enzymes
in S. cerevisiae and humans, typically considered as having
a limited secondary metabolism, have to be searched for
elsewhere. As it is very unlikely that all these catalytic un-
knowns correspond to remaining gaps in the by now quite
extensively characterized primary metabolism, we hypoth-
esize that a significant proportion of them are involved in
metabolite damage control. The latter process can be con-

sidered as a sort of support system that is required for pri-
mary metabolism to function correctly, despite interfering
side reactions catalyzed by many core metabolic enzymes
(79,127,128). Indeed, the paradigm that enzymes are ‘per-
fect’ catalysts is shifting as chemical biology increasingly
recognizes that most enzymes are promiscuous (129–131)
and can form useless or toxic side products (50,128,132).
Evidence also exists for metabolites being damaged purely
by chemical reactions (133–135). It seems that enzyme er-
rors and chemical damage are ancient metabolic problems
and the evolutionary driving force for metabolite repair sys-
tems (128,136). Metabolite damage appears to be so ubiqui-
tous and pervasive that it has also recently been associated
with aging theory (137). Finally, evidence is mounting that
metabolite damage and/or repair deficiencies play impor-
tant roles in inborn metabolic diseases (2-hydroxyglutaric
acidurias (127,138), NAXE deficiency (139)) and even can-
cer (128,140). Based on a survey of the enzyme function
identifications in Escherichia coli that occurred between
1998 and 2015, it was recently estimated that ∼15% of the
remaining enzymes of unknown function may correspond
to metabolite repair enzymes (79). Given the wide conserva-
tion of many metabolite damage control systems, this 15%
value can tentatively be extrapolated to other organisms,
thus indicating that more than 35 and 75 metabolite re-
pair enzymes remain to be discovered in yeast and humans
(based on the at least 241 and 506 metabolic enzymes of
unknown function estimated to persist in these organisms
in the present review).

Although enzyme discoveries in core metabolic pathways
per se are becoming more exceptional as the genetic map-
ping of the reactions involved is getting more and more
complete, recent examples show that such findings are still
possible. GDP-L-galactose phosphorylase, a key enzyme in
a primary plant metabolic pathway, namely the vitamin C
synthesis pathway, was only identified in 2007 (56); in fact
this whole metabolic pathway had only been proposed in
1998 (141), followed by the successive molecular identifica-
tions of the participating enzymes (142). Very recently, the
human ISPD protein, which is mutated in a form of congen-
ital muscular dystrophy, was identified as a CDP-ribitol py-
rophosphorylase (143,144). ISPD thus forms CDP-ribitol,
a nucleotide-alditol that had not been known before to exist
in human cells and that serves as a donor of ribitol phos-
phate in the glycosylation of alpha-dystroglycan. It remains
unclear how ribitol-5-P, the substrate of ISPD for CDP-
ribitol formation, is produced in human cells, leaving room
for another enzyme identification in primary metabolism.

Moving away from enzymes with probable roles in
metabolism, another fraction of the unknown enzymes
are likely responsible for posttranslational modifications
(PTMs) of proteins and the removal thereof. A landmark
review in 2005 (145) described that of the five major cate-
gories of PTMs (phosphorylation, acylation, glycosylation,
thiol-disulfide chemistry, and alkylation), one of the largest
is protein phosphorylation which relies on over 500 protein
kinases in the human proteome. Perhaps many of these pro-
tein kinases are considered known, however, the enzymes
responsible for more newly discovered PTMs often remain
enigmatic (146). As an example, the enzyme catalyzing
the recently discovered 2-hydroxyisobutyrylation of lysine
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Figure 4. Decision tree to assist enzyme function discovery research. The flowchart illustrates how the different experimental and computational strategies
described in this review can be used to find new enzymes. While this chart is not exhaustive, it shows possible paths for enzyme function identification from
common starting points, using all the strategies described. The final validation strategy depends on the chosen path, but often consists in demonstrating that
the purified enzyme, if available in recombinant or native form, displays the hypothesized activity in vitro. Blue boxes represent techniques/approaches or
starting points and orange diamonds represent decision points. Asterisks denote intermediate steps of the classical biochemical approach. ABPP, activity-
based protein profiling; MS, mass spectrometry; QTL, quantitative trait locus.

residues (Khib) in histones, possibly using hydroxyisobutryl-
CoA as a donor, has not been identified yet (147). In the
context of enzymatic PTM reversal, in vitro experiments
have recently suggested that a subset of the JmjC lysine
demethylases can also act as methylarginine demethylases
(148). Also, bioinformatics approaches have been used to
estimate that the human proteome contains 86 deubiquiti-
nating enzymes, with some considered known and others
yet to be validated (149).

Functions for the remaining unknown enzymes will prob-
ably also continue to be found in the context of posttran-
scriptional modifications. As an illustration, the roles of A-
to-I RNA editing enzymes (or ADARs), which act by con-
verting adenosine to inosine by hydrolytic deamination at

the C6 position in coding and non-coding regions of RNAs
in vertebrates, remain only partially understood (150,151).
Once converted, the translation machinery perceives the in-
osine as a guanosine, thus pairing it with cytosine. Such
editing can result in changes to codons that were not di-
rectly encoded in the genome, but the significance of the
non-coding region editing remains largely unknown. While
ADARs are absent in protozoa, yeast, and plants (150),
tRNA modification enzymes have been found to occur in
all domains of life (152). The tRNA editing field has seen
the discovery of many new modifications in recent years ac-
companied by the identification of many enzymes respon-
sible for the modifications (152–154). Most recently, it has
been shown that bacterial RNAs can be 5′ capped with
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NAD, NADH and dephospho-CoA, leading to increased
transcript stability (155). The cofactor caps are added when
cellular RNA polymerases use these non-canonical nu-
cleotides as initiating molecules during transcription ini-
tiation (156). The Nudix phosphohydrolase NudC, whose
physiological role had remained unclear, was found to se-
lectively decap NAD(H)-RNA (157).

Additional roles for the unknown enzymes will likely be
found to be involved in other aspects of enzyme complex-
ity, including enzymes that have lost their catalytic activity
and act as allosteric regulatory proteins (158). Related to
this enzyme complexity, it should be reminded here as well
that many enzymes and proteins in general have more than
one molecular and biological function (moonlighting activ-
ities) (159–162), which further increases the functional dark
matter encoded by genomes and consequently the discovery
potential in this field.

Coming back to metabolism, the assembly of advanced
metabolic reconstructions and models (36,110,163) is giving
researchers a larger picture of this complex cellular process
as a whole. While these reconstructions are not claiming
to be complete, some gaps or pathway holes can be prob-
lematic. The large amount of unknown proteins represent
gaps in the parts lists being used in systems biology and
more particularly, the hundreds or thousands of unknown
enzymes in sequenced genomes constitute a challenge for
genome-wide metabolic models to generate accurate pre-
dictions (164). This is a common issue also for metabolic
engineering where some of the main goals include the op-
timized production of value-added chemicals via microbes
or the improvement of food supply by either yield or nutri-
tional value. The use of rational design to make such im-
provements requires the knowledge of the individual pro-
teins that regulate the pathways of interest and the enzymes
that participate in them. When there are gaps in knowl-
edge (metabolic regulations, transport reactions, enzymatic
reactions, but also enzymatic side reactions), there will be
roadblocks on the way to achieve the metabolic engineer-
ing goals. Finally, clinical geneticists studying inborn errors
of metabolism have been able to take advantage of the de-
creased cost of sequencing to determine the genetic abnor-
malities underlying the conditions of their patients. How-
ever, when a causal gene is identified and has an unknown
or ambiguous function, there may still be no insight into
the disease mechanism and into how to develop or improve
treatment options for the patient.

While primary metabolism has been studied in depth, and
the majority of the low hanging fruit has been picked, en-
zymes involved in biological fitness will play a leading role
in the next wave of metabolic discoveries. Human ingenuity
and industriousness are the driving forces behind the sus-
tained success of Moore’s Law. These same attributes will
be necessary to confront and eventually solve the unknown
enzyme problem.
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