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Abstract

Background: Hundreds of millions of people get a mosquito-borne disease every year and nearly one million die.
Transmission of these infections is primarily tackled through the control of mosquito vectors. The accurate
quantification of mosquito dispersal is critical for the design and optimization of vector control programs, yet the
measurement of dispersal using traditional mark-release-recapture (MRR) methods is logistically challenging and
often unrepresentative of an insect’s true behavior. Using Aedes aegypti (a major arboviral vector) as a model and
two study sites in Singapore, we show how mosquito dispersal can be characterized by the spatial analyses of
genetic relatedness among individuals sampled over a short time span without interruption of their natural
behaviors.

Results: Using simple oviposition traps, we captured adult female Ae. aegypti across high-rise apartment blocks and
genotyped them using genome-wide SNP markers. We developed a methodology that produces a dispersal kernel
for distance which results from one generation of successful breeding (effective dispersal), using the distance
separating full siblings and 2nd- and 3rd-degree relatives (close kin). The estimated dispersal distance kernel was
exponential (Laplacian), with a mean dispersal distance (and dispersal kernel spread o) of 45.2m (95% Cl 39.7-51.3
m), and 10% probability of a dispersal > 100 m (95% Cl 92—117 m). Our genetically derived estimates matched the
parametrized dispersal kerels from previous MRR experiments. If few close kin are captured, a conventional genetic
isolation-by-distance analysis can be used, as it can produce o estimates congruent with the close-kin method if
effective population density is accurately estimated. Genetic patch size, estimated by spatial autocorrelation analysis,
reflects the spatial extent of the dispersal kernel “tail” that influences, for example, the critical radii of release zones
and the speed of Wolbachia spread in mosquito replacement programs.

Conclusions: We demonstrate that spatial genetics can provide a robust characterization of mosquito dispersal.
With the decreasing cost of next-generation sequencing, the production of spatial genetic data is increasingly
accessible. Given the challenges of conventional MRR methods, and the importance of quantified dispersal in
operational vector control decisions, we recommend genetic-based dispersal characterization as the more desirable
means of parameterization.
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Background

Mosquitoes’ ability to carry and transmit human patho-
gens (malaria and filarial parasites, arboviruses) causes
hundreds of millions of infections and nearly one million
fatalities every year [1]. Both prevention and mitigation
of many mosquito-borne disease outbreaks are primarily
reliant on the control of mosquito vectors. Most of these
interventions are designed to impact mosquito abun-
dance or daily survival by targeting immature and adult
stages. In the case of the major arbovirus vector Aedes
aegypti, an urban-dwelling container-breeding mosquito,
conventional control approaches include removal and
treatment of larval habitats, as well as elimination of
adults through insecticide application (indoor-residual
and space spraying) and lethal trapping [2]. New biocon-
trol strategies undergoing field evaluations include
RIDL® and Wolbachia-based population replacement
and suppression [3-5].

Defining the optimal area for treatment or mosquito
release is one of the key considerations when imple-
menting a public health intervention or designing a
field-trial for a new control approach. For example, to
contain the spread of dengue virus during an outbreak,
focal insecticide-based control of Ae. aegypti adults is
typically conducted at and around the main and second-
ary residences of dengue cases. The radius of the area to
be treated is informed by the average dispersal distance
of potentially infected female Ae. aegypti [6]. Under-
standing the ability of released sterile male mosquitoes
to disperse and mate in an area being targeted by a sup-
pression strategy is essential for predicting the required
release pattern [7]. Additionally, sustained suppression
in a target zone is difficult if a surrounding buffer zone
is too small to prevent immigration by gravid wild-type
females from neighboring areas. Similarly, stable intro-
duction of a virus-blocking Wolbachia may fail if the re-
lease area of Wolbachia-infected Ae. aegypti is too small
and too vulnerable to immigration by wild-type mosqui-
toes [8]. For the emerging genetic-based control
approaches such as gene drive systems [9], well-
characterized mosquito dispersal is crucial for addressing
the biosafety concerns around the systems’ confineability
and reversibility in the field [10, 11].

Quantifying mosquito dispersal of both wild-type and
introduced mosquito strains in any given landscape is,
therefore, critical for the considerations of the size of the
treatment area and the surrounding buffer zones. Those
considerations complement practical operational deliber-
ations of the availability of human and economic re-
sources for implementation and the sample sizes
required to capture epidemiological endpoints [12, 13].

Mosquito dispersal characteristics have been typically
studied using conventional mark-release-recapture
(MRR) experiments utilizing powders and paints on
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trapped or laboratory-reared adult mosquitoes [14]. Lo-
cation of the recaptured marked insects relative to their
release point is typically used to estimate the mean dis-
tance traveled (MDT), and the distance within which
50% or 90% of mosquitoes are expected to disperse
(FR50 and FR90, respectively). Fewer MRR studies have
incorporated the dispersal kernel theory to estimate the
distribution of dispersal distances over the whole flight
range [7, 15, 16]. MRR experiments in Ae. aegypti have
reported the mean dispersal distance to range from tens
to hundreds of meters [14], and this variation points to a
need to characterize dispersal locally so that the optimal
control can be deployed in a given landscape. However,
MRR experiments are operationally demanding, and the
rearing and marking procedure can alter mosquito fit-
ness and movement behavior in the field [17]. Addition-
ally, the release of biting vector-competent females
might pose an unacceptable risk of increased pathogen
transmission in endemic areas.

Here we show how information on mosquito dispersal
characteristics can be obtained from the spatial patterns
of genetic distance and relatedness among sampled indi-
viduals, providing an alternative to the MRR experi-
ments for informing the mosquito control programs. In
contrast to conventional MRR approaches that require
insect trapping or rearing, followed by mark, release, and
recapture, the genetic approach requires only insect cap-
ture, utilizing the information from genetic markers and
spatial location of individuals sampled continuously
across an area over a limited time span and without ma-
nipulation or interruption of their natural behaviors.

In social insects like bumblebees, queen dispersal dis-
tance has been estimated by comparing the locations of
workers (sampled in summer) and queens (sampled in
the following spring) that were identified as sisters
through sibling reconstruction analysis with genetic
markers [18]. Inferences about mosquito ovipositing be-
havior have also been made using the genetic recon-
struction of sibling groups, where the distance between
full siblings sampled from different larval sites directly
reflects mother’s movement distance during her skip-
oviposition [19-21]. Here we show that the distance sep-
arating not only full siblings (1st-degree relatives), but
also 2nd- and 3rd-degree relatives (close kin), can be
used to estimate the dispersal distance over one gener-
ation of successful breeding (i.e., effective dispersal dis-
tance) in insects like Ae. aegypti.

Our newly developed method decomposes the observed
separation distances between close kin (sampled as breed-
ing adults) to generate the distribution of potential effect-
ive dispersal distances and to parametrize the dispersal
distance kernel. This dispersal kernel provides the density
of probability that a dispersal event ends at a given dis-
tance away from the source, regardless of the direction.



Filipovi¢ et al. BMC Biology (2020) 18:104

Importantly, it refers to the dispersal distance achieved
over one generation of successful reproduction, such as
distance between the birthplace and the ovipositing place
of a female (i.e., distance between the ovipositing place of
a mother and a daughter). We demonstrate the robustness
of the method to produce dispersal kernel parameters
consistent among different subsets of data (with one or
multiple kinship categories) and congruent with the esti-
mates of dispersal characteristics from the previously pub-
lished MRR experiments in Ae. aegypti.

When few close kin are captured, the conventional
genetic analysis of isolation-by-distance (IBD) between
unrelated individuals can be used to estimate the spread
of the dispersal kernel from the slope of the IBD rela-
tionship and the effective density, and we show that its
results can be congruent with the new close-kin method.
Finally, we show that the estimated genetic patch size
(area of high local dispersal and breeding) from the
spatial autocorrelation analysis reflects the spatial extent
of the effective dispersal distance kernel’s “tail” that can-
not be ascertained with IBD analysis alone.
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We analyzed the genotyped and geo-referenced Aedes
aegypti individuals collected in two densely populated
areas of Singapore with a homogeneous distribution of
high-rise apartment buildings. Aedes aegypti is the pri-
mary vector of dengue virus in Singapore that, despite
having a low Aedes house index (2%) and an extensive
vector surveillance and control program [22], continues to
experience regular dengue outbreaks [23, 24]. This dataset
offered an opportunity to characterize Ae. aegypti disper-
sal in a highly urbanized landscape with a prominent ver-
tical dimension, but the spatio-genetic analytical approach
(the new close-kin method, the conventional IBD and
spatial autocorrelation analyses) can be applied across dif-
ferent landscapes and vector species.

Results

Entomological sampling

Adult Aedes aegypti females were collected using the
simple sticky traps (Gravitraps) [25] that were positioned
for vertical sampling in high-rise apartment buildings
(ground level, 4th—5th floors, > 9th floor) in two public
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Fig. 1 Sampling locations and density distributions of observed separation distances. Red dots indicate the vertical trapping locations in apartment
buildings in Tampines (a) and Yishun (b). Horizontal violin plots (c) show the density distribution of separation distance for full siblings, 2nd-degree
relatives, 3rd-degree relatives, all close kin combined (“all CK"), non-close kin (“all non CK"), null distribution (“non CK random”), and traps. The box
within each violin plot shows the interquartile range and the location of the median
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housing estates: Tampines and Yishun (Fig. 1a, b). In
both sites, the median number of traps per week was six
(range 5-8 in Tampines, 2-9 in Yishun). The median
number of trapped females per building per week was
four in Tampines (range 1-17) and two in Yishun (range
1-4). Out of 107 sequenced females from Tampines,
88% were collected between May 16 and 20, 2018 (week
20), and 12% between May 21 and 22 (week 21), from a
total of 128 traps positioned across 25 buildings (Fig.
1a). Out of 108 sequenced females from Yishun, 79.6%
were collected between April 22 and 27 (week 17),
13.9% between May 1 and 2 (week 18), 1.9% on May 8,
and 4.6% on May 15 (week 20). These were collected
from a total of 224 traps across 35 buildings in Yishun
(Fig. 1b). Details on the weekly number of traps and col-
lected females per building (for weeks 1-22 in 2018) are
found in Additional file 1: Tables S1-S4.

Spatial distribution of close-kin pairs

Reduced representation genome sequences for individual Ae.
aegypti females were obtained using the double-digest RAD
sequencing [26] following the library preparation protocol by
Rasi¢ et al. [27]. Genotype likelihoods at 24—60k genome-
wide SNP positions (median = 57,947) were used to estimate
the relationship between all pairs of individuals, using the
combinations of three statistics (RO, R1, and KING-robust)
[28, 29] to determine the kinship category as parent-
offspring, full siblings, 2nd-degree relatives (half siblings,
avuncular, grandparent-grandoffspring), 3rd-degree relatives
(first cousins), and non-close kin.

In the total dataset, we detected 76 close-kin pairs: 19
full-sibling pairs, 18 pairs of 2nd-degree relatives, and 39
pairs of 3rd-degree relatives. We did not detect any
parent-offspring (po) pairs, and 26.3% (20/76) of close-
kin pairs were found on the same floor or 4-5 floors
apart (19/20 pairs). Nearly half (47%) of all detected full-
sibling pairs were caught within a building, in compari-
son to 27.8% of all 2nd-degree relatives and 15.4% of all
3rd-degree relatives. The members of each close-kin pair
were sampled within 8 days (median = 1 day apart).

The median pairwise distance between close kin (CK)
was 111.6 m (90th percentile = 264 m), with the max-
imum distance of 531 m, giving a positively skewed dis-
tribution of distances (skewness =1.24, kurtosis = 1.90;
Fig. 1c “all CK”). To compare this distribution to a null
distribution (for randomly spaced individuals across the
matrix of traps), we created 100 random subsamples
(with replacement) of recorded pairwise distances be-
tween individuals not assigned to any kinship category
(non-close kin). The null distribution (Fig. 1¢ “non CK
random”) had a median of 263.6 m and was significantly
different from the distribution of pairwise distances be-
tween close-kin (the permutation test of equality of two
distribution densities p < 0.001).
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The median distance between full siblings was 79.5 m,
but we also detected two instances of pairwise distance
>400 m (Fig. 1c, Additional file 2: Fig. S1-S2), indicating
the “long-tailed” dispersal kernel. The median distance
between 2nd- and 3rd-degree relatives was 141.3 m and
112 m, respectively, and we did not detect outliers be-
yond 402 m for these two kinship categories (Fig. 1c).
This suggests the spatial extent and configuration of our
sampling could have missed some rare long-range dis-
persal events that accumulated a substantial separation
between close kin over more than two generations (more
so for 3rd-degree relatives than for 2nd-degree relatives).
Additionally, some “outlier” 3rd-degree relatives could
have been incorrectly assigned to a non-close-kin cat-
egory, given that the kinship estimation is likely down-
ward biased due to local population structure [30, 31]
(positive spatial autocorrelation, isolation-by-distance;
see below).

Dispersal kernel parametrization from close-kin data

A distance separating close kin is a result of dispersal
and successful breeding over multiple generations, and
here we show how it can be used to infer a dispersal dis-
tance achieved over one generation of successful breed-
ing. This distance is also known as the “effective
dispersal distance” [32] and can be defined as a distance
between the birthplace and the ovipositing place of a fe-
male (or a distance between the ovipositing place of a
mother and a daughter). Every close-kin category con-
tains information about the number of possible dispersal
and breeding events over one generation that can be
represented as a set. This set of numbers is used to div-
ide the observed spatial distance between each close-kin
pair to create a set of possible effective dispersal dis-
tances. By combining the values from all pairwise sets
into one dataset, we can characterize the resulting distri-
bution of possible effective dispersal distances. This is
done by finding the “best-fitting” function (e.g., expo-
nential, Weibull, log-normal) to generate a probability
density function (pdf) of effective dispersal distance, i.e.,
effective dispersal distance kernel. A detailed description
of the method is found in the “Methods” section.

The “goodness of the fit” criteria (AIC, BIC, the
Kolmogorov-Smirnov statistic [33], Table 1) and the Q-Q
plot (Additional file 2: Fig. S3) indicated that the distribu-
tion of possible effective dispersal distance derived from
the close-kin data in Tampines and Yishun is well de-
scribed by the Weibull and negative exponential (Lapla-
cian) distribution. Given that the estimated Weibull shape
parameter (k) was close to 1 (median 1.11, 95% CI 1.01-
1.22), the Weibull distribution can be reduced to an expo-
nential distribution with the estimated rate parameter A =
0.022 (95% CI 0.020—0.025) (Table 1). This rate parameter
for the combined dataset (“all CK”) was highly congruent
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Table 1 Goodness-of-fit statistic and criteria and parameter estimates from the distribution fitting analysis for close-kin data

Goodness-of-fit test Negative exponential (Laplacian)

KS 0.084

AlC 2387913

BIC 2391427
Parameter A

Median (95% Cl) 0.022 (0.020-0.025)

Weibull log-normal
0.057 0.125
2386.055 2429.829
2393.082 2436.856
Shape Meanlog

1.108 (1.011-1.222) 3.322 (3.170-3.462)
Scale

46.939 (41.770-52.445)

sdlog
1.162 (1.055-1.252)

A lower value of the statistic (the Kolmogorov-Smirnov statistic, KS) or the criterion (AIC, BIC) indicates a better fit. The parameter median and 95% ClI were

generated with 1000 bootstraps

with the estimates from separate CK categories: full sib-
lings A =0.019 (95% CI 0.014-0.027), 2nd-degree relatives
A=0.021 (95% CI 0.016-0.027), 3rd-degree relatives A =
0.024 (95% CI 0.020-0.028) (Fig. 2). Both the mean and
standard deviation (o) of the exponentially distributed ef-
fective dispersal distance are 1/A =45.2m (95% CI 39.7—
51.3m), and the inferred dispersal kernel gives the 95%
probability of effective dispersal distance up to 136 m
(95% CI 120-152 m).

We repeated the same analytical procedure for the null
distribution (random sampling of pairwise distances be-
tween non-close kin). The null distribution produced a
distance kernel with the Weibull shape k of 1.35 (95% CI
1.34-1.36) and Weibull scale A of 111.63 (95% CI
110.50-112.70) (Fig. 2) and was significantly different
from the close-kin-derived kernel (permutation test for
equality of densities p < 0.001).

Dispersal kernel spread from the isolation-by-distance
(IBD) analysis

When the probability of dispersal declines with distance,
a positive correlation between genetic and geographic
distances between individuals is expected, and this rela-
tionship is known as isolation-by-distance (IBD) [34, 35].
IBD is best illustrated by the regression of pairwise gen-
etic distances onto geographic distances between indi-
viduals [34]. Applying the IBD theory, we estimated the
standard deviation of the dispersal kernel (o), also
known as the dispersal kernel spread, using the slope of
the IBD relationship and the effective population density
[36]. Three different genetic distance measures (PCA-
based [37], Rousset 4 [36], Loiselle’s kinship [38]) gave
highly congruent results in the IBD analysis (Additional
file 1: Table S5), and we focus on the results with the
PCA genetic distance in the main text.

Effective dispersal distance kernel
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Fig. 2 Effective dispersal distance kernel estimated from the close-kin data. The inferred pdfs are highly congruent among separate datasets (full
sibling, 2nd- and 3rd-degree relatives) and the combined dataset (“all CK"), and are significantly different from the randomly subsampled non-
close kin dataset (“‘non CK random”) that represents the null distribution of distances for randomly spaced individuals across the matrix of traps
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Significant correlation between PCA genetic distance
and linear geographic distance (IBD) was detected be-
tween non-close kin in Tampines (Mantel r = 0.124, 95%
CI 0.052-0.198; R®=0.015, p=3.91x10™®) and Yishun
(Mantel r=0.158, 95% CI 0.112-0.208; R®=0.024, p =
2.18 x 10") (Fig. 3). Because genetic distance between
individuals can also be driven by the time of sampling
(temporal distance), we confirmed that correlation be-
tween genetic and geographic distance (IBD) remained
significant after the effect of temporal distance was
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removed (Partial Mantel test p <0.01 for Tampines and
Yishun; Additional file 1: Table S6). Absence of temporal
structuring in our data was not surprising, given that we
trapped =80% of analyzed individuals within 1 week (>
93% within 2 weeks) in each site.

The estimated IBD slope b was 0.0037 (95% CI
0.0024—-0.0050) for the Tampines data, and 0.0065 (95%
CI 0.0051-0.0079) for the Yishun dataset (Table 2). The
estimated effective population density D varied from
0.0014 to 0.0074 for Tampines and from 0.0014 to
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Fig. 3 Isolation-by-distance analysis on non-close kin data from Tampines and Yishun. Mantel test and linear regression were applied to the
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Table 2 IBD-based estimates of the dispersal kernel spread (o)
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b N. D o
TAMPINES
0.0037 (0.0024-0.0050) Method 1 (PWoP) 863 (863-1112) 0.0074 (0.0074-0.0095) 54.1 m (40.8-67.7 m)
Method 2 (LDN,) 167 (93-619) 0.0014 (0.0007-0.0053) 1229 m (54.7-206.2 m)
Method 3 (Gravitrap) - 0.0048 (0.0030-0.0066) 66.8 m (48.8-105.6 M)
YISHUN
0.0065 (0.0052-0.0079) Method 1 (PWoP) 1185 (1176-1346) 0.0063 (0.0063-0.0072) 44 m (37.6-49.7 m)
Method 2 (LDNg) 258 (200-357) 0.0014 (0.0011-0.0019) 944 m (73-120.6 m)

Method 3 (Gravitrap) -

0.0022 (0.0015-0.0030) 744 m (57.9-1049 m)

The mean (95% Cl) for IBD slope (b), effective population size (N,), effective density (D) estimated using the methods 1-3, and the dispersal kernel spread (o) for

Aedes aegypti data from Tampines and Yishun

0.0063 for Yishun, depending on the method for effect-
ive population size estimation (method 1 PWoP [39],
method 2 LDN, [40]), or the entomological survey data
(method 3 Gravitrap) (Table 2).

Taking into account the uncertainty of both parameter
estimates (95% CI for b and D), the estimated effective
dispersal kernel spread (o) for Tampines was 54.1 m
(40.8—67.7m, method 1), 1223 m (54.7-206.2 m,
method 2), and 66.8 m (48.8—105.6 m, method 3). For
Yishun, the estimated o was 44 m (37.6—49.7 m, method
1), 94m (73-120.6 m, method 2), and 74.4m (57.9-
104.9 m, method 3) (Table 2, Fig. 4). It is worth noting a
good overlap between the effective density estimates
from the genetic data and the entomological data from
the gravitraps (method 3) that preferentially target the
ovipositing females (Fig. 4).

Applying the exponential dispersal kernel (found to fit
the close-kin data), where o represents both standard de-
viation and the mean, the estimates of o from the IBD
analysis are equivalent to the mean effective dispersal
distance and can be used to parametrize the pdf with 1/
0=, assuming isotropic dispersal in two dimensions
[32]. Our results indicate that the dispersal kernel par-
ameter (o) estimated from the close-kin data and indir-
ectly through the IBD analysis can yield similar results
(Table 2, Fig. 4).

Spatial autocorrelation analysis—genetic patch size

Under spatially limited dispersal and breeding, the popu-
lation is expected to develop a patchy distribution of ge-
notypes, with positive spatial autocorrelation declining
with distance [41, 42]. We detected significantly positive
spatial autocorrelation at distances up to 200 m, with the
highest correlation coefficient within the first 50 m, in
both Tampines and Yishun (Fig. 5). This indicates that
individuals found up to 200 m from each other are more
genetically similar than if randomly sampled across 750
m, with the highest genetic similarity (relatedness)
within 50 m from each other. Significantly negative auto-
correlation was detected at 300 m in Yishun and 500 m

in Tampines, putting the point at which the correlogram
curve crosses the x-axis (x-intercept) between 200 and
300 m in Yishun and between 200 and 500 m in Tam-
pines (Fig. 5). For a squared sampling area, the x-
intercept closely approximates the length of one side of
a “genetic patch” [43] or an area of high level of localized
dispersal and breeding [41, 42]. In Tampines and
Yishun, the size of the genetic patch is estimated to be
at least 200 x 200 m.

Discussion

Here we show how the analyses of spatial genetic pat-
terns can be used to characterize the effective dispersal
of a mosquito like Ae. aegypti, and we discuss the utility
of this approach in an operational context.

Our newly developed method allows for the paramet-
rization of the effective dispersal distance kernel, as it
decomposes the observed distances between close kin to
generate the distribution of potential effective dispersal
distances (achieved over one generation of successful
reproduction). It gives probabilities of dispersal distances
in any direction, referred to as the “dispersal distance
kernel” (kp(r)) [44], and it should not be confused with
the “dispersal location kernel” (ki (r)) that gives probabil-
ities for the end locations of dispersers relative to the
source locations [44]. The location kernel can be derived
from the distance kernel and vice versa, given their rela-
tion: kp(r) = 2nrky(r) in a two-dimensional habitat [44],
and kp(r) = 41”k. () in a three-dimensional habitat.

Our method has some obvious parallels to the work of
Jasper et al. [20] that also utilizes separation distance be-
tween close kin to infer dispersal distance over one gen-
eration, and the protocol by Rasi¢ et al. [27] to generate
genome-wide SNP data in Ae. aegypti collected from
high-rise buildings. However, there are weaknesses in
the method by Jasper et al. [20] that are not present in
our method. First, their underlying assumption is Gauss-
ian dispersal (normal distribution of dispersal distance
[35]), even though the observed dispersal kernel in mos-
quitoes and other insects tends to be more leptokurtic
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with a higher probability of short- and long-distance dis-
persal [7, 44, 45]. Our method allows the inference of a
best-fitting distribution (e.g., negative exponential, Wei-
bull, log-normal, etc., Fig. 2) when parameterizing the
dispersal kernel. Many modeling studies have shown that
processes such as population spread behave differently
when long-tailed dispersal distributions are used instead
of Gaussian [46]. For example, an incorrect assumption
of Gaussian dispersal can have operational impact on a
mosquito control campaign like the Wolbachia-based re-
placement, because it would cause a perception that
Wolbachia spreads through a population more slowly
than expected (by as much as 40%, depending on the
true shape of non-Gaussian dispersal kernel) [47]. Sec-
ond, the Jasper et al. method [20] produces very wide
confidence intervals for the estimated dispersal kernel
spread (95% CI for 0=23-93m), while our method
achieves much greater precision (95% CI for o =40-51
m). Third, Jasper et al. [20] produce a non-trivial num-
ber of cases where ¢ has a value of an imaginary number
(square root of a negative number), and this raises con-
cerns about the fundamental properties of their method.

Using the close-kin data from the Tampines and
Yishun districts in Singapore, our close-kin method pro-
duced the negative exponential (Laplacian) kernel that
gives 50% probability (kernel median) of effective disper-
sal occurring within 32 m. This indicates that, in this
landscape, we can expect half of the successfully breed-
ing individuals to stay within the high-rise building
where they emerged or move to the adjacent building.
The mean effective dispersal distance (and dispersal ker-
nel spread o) was estimated at 452 m (95% CI 39.7—

51.3m), with a 10% probability of a dispersal distance
greater than 100m (95% CI 92-117m). Our genetic-
based estimates match the parametrized dispersal kernel
from mark-release-recapture (MRR) experiments per-
formed in Brazil and Malaysia with Ae. aegypti males
from a genetically engineered line OX513A [7]. Namely,
their dispersal kernel gave estimates of a high level of
dispersal to up 33 m, a mean distance traveled of 52.8 m
(95% CI 49.9-56.8 m) in Brazil and 58 m (95% CI 52.1—
71m) in Malaysia, with 10% of dispersers moving >
105.7m (95% CI 86.5-141.1 m) [7]. Moreover, globally
collated MRR experimental data for Ae. aegypti [14] pro-
duced an exponential kernel with ¢ =54.1 m [10]. Given
that we used a trapping system that preferentially
catches ovipositing females, our close-kin-based kernel
is more influenced by female dispersal. However, a high
congruence with the MMR-based kernel for males from
similar landscapes suggests similar dispersal in both
sexes, as well as the robustness of spatial genetic pat-
terns in reflecting the dispersal characteristics of this
mosquito.

The IBD pattern reflects effective dispersal of both
sexes averaged out over many generations, and our o es-
timates from the IBD analysis indicate that they can
match the short-term measures derived from the close-
kin analysis. Given that the close-kin method requires
more intensive sampling in order to capture enough
close-kin pairs for the reliable kernel parametrization,
the use of IBD analysis as an alternative is appealing,
particularly under budgetary limitations for genome-
wide genotyping. However, IBD-based estimation of o
requires accurate estimation of effective population size,
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which it is not easily achievable [48, 49], and the uncer-
tainty about this parameter has more impact than the
uncertainty in the IBD slope [50]. The highest congru-
ence between the IBD and the close-kin analysis was ob-
tained using the N, estimates from the PWoP method
[39] (method 1, Table 2), which gave ¢ of 54.1 m (95%
CI 40.8-67.7 m) for Tampines and 44 m (95% CI 37.6—
49.7 m) for Yishun. The second best match was obtained
using the entomological effective density estimate
(method 3) that gave ¢ of 66.8 m (95% CI 48.8—105.6 m)
for Tampines and 744 m (95% CI 57.9-104.9 m) for
Yishun. This is interesting, as it suggests that the gravi-
trap data could be used as an entomological proxy for
the effective population size, complementing the
genetic-based estimation of this population parameter.

The linkage disequilibrium-based N, estimate [40]
(method 2) produced the widest range of ¢ values (Tam-
pines 54.7-206.2 m, Yishun 73-120.6 m) (Fig. 4). This
LD-based estimator is expected to be less precise than
the PWoP estimator [39] and also downward biased
when IBD is present in a continuously distributed popu-
lation, because it reflects the local genetic neighborhood
size (N}, [35]) rather than the effective size of the global
population (N,) [51]. We observed this trend in Ae.
aegypti from Tampines and Yishun (with LD N, being
similar to Np; Additional file 1: Table S5). In addition to
the limitations related to N, estimation, the IBD method
assumes long-term stability of mosquito dispersal pat-
terns and abundance, making it is a meaningful alterna-
tive to the close-kin method in populations that do not
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experience strong seasonal fluctuations, landscape alter-
ations, intensive control campaigns, etc.

In Tampines and Yishun, that are largely homoge-
neous landscapes with multi-storey apartment buildings,
47% of all detected full siblings were found on the same
floor or 4-5 floors apart, and the inferred dispersal ker-
nel predicts high level of effective dispersal within a
building or between adjacent buildings. This agrees with
a previous study in Singapore where Ae. aegypti females
marked with rubidium via spiked blood meal were re-
leased from middle floors and moved readily towards
the top or bottom of multi-storey buildings in search of
oviposition sites [52]. In Trinidad, significantly more
eggs were collected in ovitraps 13—24 m above ground
level than at any other elevation [53], again suggesting
that vertical movement is common.

Given that high-rise apartment blocks can provide an
abundance of hosts, oviposition, and resting sites, the
tendency of Ae. aegypti to remain close to the birthplace
is not unexpected. The tail of the dispersal kernel, how-
ever, provides insight into rarer long-range dispersal
events that are consequential for the control strategies
that rely on the releases of modified mosquitoes for
population suppression or replacement. For example,
the Wolbachia spread is expected to be slower in Ae.
aegypti populations with longer-tail dispersal kernels,
but this dispersal pattern also allows the initiation of the
Wolbachia spread with smaller local releases [47]. In a
population with a dispersal kernel like in Tampines and
Yishun, theoretical approximation [47] predicts that the
spread of Wolbachia (with a fitness cost equivalent to
wMel strain) could be initiated if Wolbachia-infected Ae.
aegypti are released in an area with a radius of at least
100-130 m (2.51¢ for Laplacian kernel [47]). The diam-
eter of this release area (200—260 m) matches the end of
the effective dispersal kernel’s “tail” (99th percentile =
206 m, 95% CI 184—234 m). This diameter could also be
roughly estimated from the spatial autocorrelation ana-
lysis, given that it corresponds to the distance at which
spatial correlogram stops being significantly positive (x-
intercept = 200—-300 m).

Accurately estimated dispersal range is also critical
when determining the size of the area targeted by sterile
or incompatible mosquito male releases for population
elimination (SIT or IIT programs). In Fresno County,
California, a high suppression (~95%) but not local
elimination of Ae. aegypti was achieved with very high
release numbers of Wolbachia-infected males [54]. The
inability to achieve complete local elimination was prob-
ably the result of immigration of inseminated females
from the nearby untreated areas [54]. In this landscape,
released males were recaptured in large numbers up to
200 m from the nearest release point, and females were
increasingly abundant closer they were to the untreated
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area (particularly up to 200 m from the treatment edge)
[54]. Therefore, expanding the treatment area to account
for a buffer of more than 200 m around the core area
would likely be needed to permit complete elimination
in the core. In Tampines and Yishun, spatial genetic
analyses (tail of the dispersal kernel, x-intercept) suggest
this buffer zone to be ~ 250 m.

The theoretical approximation of the conditions for
Wolbachia-based mosquito replacement [47] and simu-
lation modeling of this and other mosquito control strat-
egies [10, 55-58] have all been developed assuming
isotropic dispersal (invariable based on direction) in a 2-
dimensional landscape. The approximation of the dis-
persal kernel for high-rise uniform landscapes could be
achieved by considering the releases of mosquitoes from
multiple floors rather than from the ground level only.
Clearly, further theoretical and simulation modeling de-
velopment that incorporates mosquito dispersal that is
anisotropic (variable based on direction) in a 3-
dimensional habitat is needed to precisely predict the re-
quirements and outcomes of different mosquito control
strategies in complex landscapes with a prominent verti-
cal dimension.

Conclusions

Accurate and precise characterization of dispersal in
the field is critical for the optimization of surveillance
and control of disease vectors like Ae. aegypti. Know-
ledge of the dispersal kernel parameters enables oper-
ational teams to design and implement optimal
surveillance, control, and release strategies in a given
landscape, facilitating the efficient utilization of re-
sources and maximizing the impacts of interventions.
We show that spatial genetic analyses can provide ro-
bust estimates of mosquito dispersal patterns. Our
newly developed method for the construction of the
effective dispersal distance kernel through close-kin
analysis enables the most comprehensive estimation
of relevant parameters. The indirect inference from
the IBD framework that requires less intensive sam-
pling than close-kin analysis can also provide esti-
mates of dispersal kernel spread; however, this
approach is sensitive to the inaccurate estimates of ef-
fective population size and is uninformative about the
probabilities of long-range dispersal that have import-
ant implications for control programs. Spatial auto-
correlation analysis can complement the IBD analysis
to ascertain the spatial extent of the effective disper-
sal kernel tail through estimation of the genetic patch
size. With the decreasing cost of next-generation se-
quencing, acquisition of spatial genetic data is in-
creasingly accessible. Given the complexities and
criticisms of conventional MRR methods, and the
central role of dispersal measures in essential vector
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control programs, we recommend genetic-based dis-
persal characterization as the more desirable means of
parameterization.

Methods

Field collections

Adult Aedes aegypti females were collected using the
sticky traps developed by the Environmental Health In-
stitute, National Environment Agency of Singapore
(EHI, NEA), known as the Gravitraps—simple, hay
infusion-filled cylindrical traps with a sticky inner sur-
face that preferentially catch gravid females in search of
suitable ovipositing sites [25]. The Gravitraps have been
deployed in public housing estates island-wide since
2017 as part of the vector surveillance program. For the
current study, we chose two public housing estates:
Tampines (30 acre sampling area in patch 1, 10 acres in
patch 2) and Yishun (46 acre sampling area) that are 14
km apart (Fig. 1a, b). Each unit in the high-rise apart-
ment blocks has open windows and entrance from an
open-air corridor suitable for mosquito movement.
There are no heating or cooling ducts between apart-
ment blocks and floors that could serve as movement
corridors for mosquitoes. The Gravitraps were posi-
tioned for vertical sampling in each block: ground level
(Ist-2nd floors), mid-level (4th-5th floors), and high
level (9th floor and above). In both sites, the median
number of traps per block per week was 6 (mean = 6.4—
6.7). Sticky linings from each Gravitrap were collected
by the entomological surveillance team once a week. All
adult mosquitoes were identified up to species/genus
level using the taxonomic keys. Mosquitoes identified as
Ae. aegypti were transferred to 2-mL tubes according to
their collection date, residential block, and floor and
stored in 100% ethanol at 4 °C until further processing.

DNA extraction, sequencing, and genotyping of individual
mosquitoes

Total genomic DNA was extracted from individual mos-
quitoes using Dneasy Blood and Tissue DNA extraction
kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions. Individual mosquitoes were ho-
mogenized manually in 180ul of ATL buffer using
sterile plastic pestles, and the proteinase digestion (with
20 ul of proteinase K) was carried out overnight. The
DNA was quantified by using the Qubit High Sensitivity
DNA kit (Thermo Fisher Scientific, Waltham, MA,
USA), and only the specimens that yielded a DNA con-
centration of at least 4 ng/pL were included in RADseq
libraries. Reduced-genome representation sequence data
were generated for each individual using the double-
digest RAD sequencing approach by Peterson et al. [26],
with the sample processing and library preparation
protocol as described in Rasi¢ et al. [27]. ddRAD-seq
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libraries were sequenced on the Illumina HiSeq4000
platform. The sequencing data were demultiplexed [59]
and processed (trimmed to 90 bp and filtered for quality)
using the bash script/pipeline from Rasi¢ et al. [27]. The
percentages of raw reads passing the quality filtering
threshold (phred score = 20) were high for all individuals
(96.52-98.29%), suggesting no substantial DNA degrad-
ation [60]. The high-quality reads were aligned to the
AaegL5 version of the Ae. aegypti genome assembly [61]
using Bowtie [62]. Unambiguously mapped high-quality
reads were converted to bam format and processed in
SAMtools [63] to generate sorted bam files that were
used to produce genotype likelihood and VCF files using
the SAMtools variant calling method as implemented in
ANGSD [64]. The final dataset included 107 mosquitoes
from Tampines and 108 from Yishun that had <30%
missing data at 83,255 and 69,051 variable sites (SNPs)
for the Tampines and Yishun datasets, respectively.

Inference of familial relationship (kinship estimation)
Relationships between individuals were determined
using the recently developed approach by Waples et al.
[28] as implemented in the program NGSRelate [29].
This method shows improved accuracy and precision
when compared to related approaches, given that (a) it
does not require population allele frequency estimates;
instead, the framework calculates two-dimensional site-
frequency-spectrum for each pair of individuals, and (b)
it is applied directly to sequencing data (via genotype
likelihoods) rather than the called genotypes, which is
particularly suitable for lower-depth sequencing data ac-
quired in RAD-seq experiments [28]. Like most other re-
latedness inference methods, it can be biased upward or
downward for different violations of underlying assump-
tions (inbreeding, population structure or admixture)
[28]. Analogous to the KING-robust method [65], this
method is expected to generally be negatively biased for
pairs of individuals that have different ancestries, but it
is also fairly robust in separating close kin with similar
ancestry from unrelated individuals under population
structure [30, 31].

For the spatial analyses, we considered close kin as
pairs with an inferred category of 1st-, 2nd-, or 3rd-
degree relatives. Kinship categories were determined
based on the combination of three statistics (RO, R1, and
KING-robust kinship), which allows the distinction be-
tween the parent-offspring and the full-sibling relation-
ship within the category of 1st-degree relatives [28].
Second-degree relatives include half-siblings, avuncular,
and grandparent-grandoffspring pairs that cannot be
genetically  distinguished, but the grandparent-
grandoffspring category is the least likely in our sam-
pling scheme (collection of gravid females, >80% col-
lected in 1 week and >93% collected during 2 weeks in
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each site). Also, we can assume that half-siblings are pa-
ternal (i.e., half-sisters share a father, not a mother)
given that Ae. aegypti females rarely mate more than
once [66, 67]. We assume that 3rd-degree relatives are
first cousins, given that a category like great-
grandparent/great-grandoffspring is unlikely in our sam-
pling scheme.

Genetic and geographic distance among individuals

We used different individual-based genetic distances
among individuals within each area (Yishun or Tam-
pines). The PCA-based genetic distance was estimated
by first performing the principal component analysis
(PCA) from genotype data in the R package “adegenet”
[68] and then creating a distance matrix from the Eu-
clidean distance among the maximal number of PC axes.
PCA genetic distance does not assume any particular
microevolutionary processes, and it exhibits a linear rela-
tionship with Euclidean geographic distance, showing
the highest model selection accuracy in landscape gen-
etic studies, especially when dispersal rates are high
across the examined area [37]. We also estimated Rous-
set’s genetic distance 4 [36] and Loiselle’s kinship coeffi-
cient [38] in the program SPAGeDI [69].

Pairwise spatial (geographic) distance between mosqui-
toes was calculated as the shortest straight line (Euclid-
ean) distance in three dimensions, based on the X/Y
(long/lat) and Z (height) coordinates of their collection
point, here called the Euclidean 3D distance, represent-
ing a linear geographic distance in meters (m). Natural
logarithm (In) of this distance was used in the analyses
where Rousset’s d or Loiselle’s kinship coefficient was
applied (see below), given that both of these genetic co-
efficients exhibit approximate linear relationship with In-
geographic distance [69].

Estimation of mosquito dispersal characteristics

Dispersal kernel estimation from close-kin data

In our sampling scheme, adult females were caught
after landing on a lethal ovipositing site (Gravitrap),
and we assume that this is a result of their active flight
(and not passive, human-assisted movement). We con-
sider pairs of females caught in different traps (non-
zero separation distance) that could be genetically
assigned to one of the following kinship categories:
parent-offspring (po), full siblings (fs), 2nd-degree rela-
tives (2nd) (half siblings, hs; avuncular, av;
grandparent-grandoffspring, go), 3rd-degree relatives
(3rd) (first cousins, fc), and non-close kin. Every close-
kin category contains information about the number of
possible effective dispersal events. For example, a pair
of full siblings (fs) could have originated from the same
breeding site from which each sibling moved into a
gravitrap (two events), or they could have originated
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from different breeding sites (three events, including
mother’s skip oviposition). Therefore, the correspond-
ing number of possible dispersal events, for each case,
can be calculated as the number of such breeding sites
() plus one (n + 1). Based on this, we constructed the
sets with elements that represent the number of pos-
sible dispersal events for each case as {#yi, + 1,.., Bmax +
1}. For the fs category, this set is FS = {2, 3}. In the case
of a parent-offspring (po) pair, the minimum and max-
imum number of breeding sites is My, = Hmax = 1, giv-
ing a set PO ={2}. For the kinship category of 2nd-
degree relatives, we have the following subsets: half sib-
lings HS=1{2, 3, 4, 5}, avuncular AV ={3, 4}, and
grandparent-grandoffspring GO =1{2, 3}. We con-
structed the full set for 2nd-degree relatives as the
union of these three subsets (containing unique ele-
ments): 2ND = HS u AV u GO = {2, 3, 4, 5}. In the case
of 3rd-degree relatives (first cousins fc), the minimum
number of contributing breeding sites is ny;, =1 (first
cousins and their mothers all originate from the same
breeding site), while the maximum is ry,, =4 (first
cousins and their mothers each originate from a unique
breeding site). Therefore, for the category of 3rd-degree
relatives, we can construct a set as 3RD =FC = {2, 3, 4,
5}.

We then created a set of possible effective dispersal dis-
tances for each detected close-kin pair based on their dis-
tance and assigned kinship category. This set of distances
contains the same number of elements as the correspond-
ing set of possible effective dispersal events (described
above), and its values are obtained by dividing the de-
tected spatial distance between a pair (d) with the corre-
sponding set element. For example, if a collected pair AB,
separated by distance dap, falls into the category of 3rd-
degree relatives, then a set of possible effective dispersal
distances for this pair would be dsqap={dap/2, dag/3,
dapl4, dap/5}. For a full-sibling pair BC separated by
spatial distance dpc, the set of possible effective dispersal
distances will be dg; pc = {dpc/2, dpc/3}-

By combining the values from all pairwise sets of possible
effective dispersal distances into one dataset, we character-
ized the resulting distribution of possible effective dispersal
distances. This dataset was used to generate a probability
density function (pdjf) of effective dispersal distance (ie., ef-
fective dispersal distance kernel) by fitting different functions
(exponential, Weibull, log-normal) using the R package “fit-
distrplus” [33] that incorporates maximum likelihood estima-
tion and parametric bootstrapping to generate median as
well as 2.5 and 97.5 percentiles of each distribution param-
eter. To determine the “best fitting” of the tested distribu-
tions, we assessed the Q-Q plots and computed goodness-of-
fit statistics with an approximate Kolmogorov-Smirnov test,
Akaike Information Criterion (AIC), and Bayesian Informa-
tion Criterion (BIC) [33].
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To estimate a pdf for randomly spaced individuals
across the sampled area (null distribution), we simulated
100 datasets where pairs had a randomly assigned kin-
ship category and a distance randomly sampled from the
recorded distances between non-close kin. The number
of simulated pairs in each kinship category matched the
number of observed pairs in the empirical dataset. We
then applied the analytical procedure described above on
all simulated datasets and compared the simulated (ran-
dom) and empirical distributions in the R package “sm”
[70] using the permutation test of equality of two distri-
bution densities.

Isolation-by-distance analysis (IBD) and estimation of the
dispersal kernel spread

IBD analysis can be used even when few or no close kin
are captured. In fact, highly related individuals should be
removed from the IBD analysis in order for it to reflect
the long-term population processes [71], and we created
a subsample for each area by removing individuals iden-
tified as close kin, leaving 63 and 85 individuals in the
Tampines and Yishun subsample, respectively. The sig-
nificance of IBD was tested separately in Tampines and
Yishun using Mantel’s correlation test with 1000 permu-
tations, as implemented in the R package “ecodist” [72].

IBD is best illustrated by the regression of pairwise
genetic distances onto geographic distances among indi-
viduals [34]. The slope of this linear regression and the
effective density can be used to estimate the standard
deviation of the dispersal kernel (o) that is also known
as the dispersal kernel spread [50]. The dispersal kernel
spread can be calculated as o =V(1/4nDb), where b is
the slope of the linear regression and D is the effective
density of reproducing individuals.

The slope of the linear relationship was estimated
using the Im() function in R (R Core Team) for three dif-
ferent sets of genetic and geographic matrices. The first
set included a matrix of PCA-based genetic distances
against the matrix of linear geographic distances. A
matrix of Rousset’s 4 or Loiselle’s kinship coefficient was
tested against the matrix of In-transformed geographic
distances, given that both genetic estimators are ex-
pected to vary approximately linearly with the natural
logarithm of the distance [37].

The effective density D is defined as N,/study area,
where N, is the effective population size. We estimated
N, using two genetic methods based on a single sample.
The first method is N, estimation by Waples and Waples
[39], based on the “parentage analysis without parents”
(method 1, PWoP) that uses the frequency of full- and
half-siblings in a population sample to reconstruct the
number of parents that contributed to such a sample.
The median and the 95% confidence interval were calcu-
lated using 100 resamples with a random replacement of
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one individual. The second method represents N, esti-
mation by Waples and England [40] that is based on the
linkage disequilibrium data (method 2, LDN,), with the
95% confidence interval calculated using the jackknifing
procedure over loci implemented in the program N, esti-
mator v.2.1 [73]. Finally, effective density was estimated
using the entomological survey data from the Gravitrap
sentinel trap system across the study areas for the period
from January 2018 through May 2018 (method 3, Gravi-
trap). During those months, the surveillance system con-
tained a minimum of 1357 traps distributed over a 45
acre area in Tampines and a minimum of 1048 traps
over a 65 acre area in Yishun. An average of 441 adult
females (range 391-760) were caught per month in
Tampines, and 280 (range 202-404) in Yishun (Add-
itional file 1: Table S7). The average number of breeding
females per square meter was multiplied by 2 to give the
effective number of breeding individuals per unit area, as
we assume 1:1 sex ratio in an Ae. aegypti population
[74]. For Tampines, we considered patch 1 (larger sam-
pling area) as a more representative population sample
for the calculations of local N, and density than the
smaller patch 2 (Fig. 1a).

Spatial autocorrelation analysis

To compute the correlogram curve for each sampling
site, we used PCA genetic distance among all genotyped
mosquitoes in a site, and the spatial grouping within dis-
tance classes that were incrementally increased by 50 m.
The analysis was done in GenAlEx v.6.501 [75]. The
autocorrelation coefficient under the null hypothesis of
no spatial structure was generated by the permutation
procedure that shuffles all individuals among the geo-
graphic locations within a site 1000 times and generates
95% CI with the 25th and 975th ranked permutated
values. 95% CI for the observed autocorrelation coeffi-
cient for each distance class was obtained from 1000
random draws of individuals with replacement.
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