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Crocins, enriched in Gardenia jasminoides fruits, have a pharmacological activity against central nervous system diseases,
cardiovascular diseases, and cancer cell growth. The biosynthesis of crocins has been widely explored, but its regulatory
mechanism remains unknown. Here, the basic helix-loop-helix (bHLH) transcription factors related to crocin biosynthesis were
systematically identified on the basis of the genome of G. jasminoides. A total of 95 GjbHLH transcription factor genes were
identified, and their phylogenetic analysis indicated that they could be classified into 23 subfamilies. The combination of gene-
specific bHLH expression patterns, the coexpression analysis of biosynthesis genes, and the analysis of promoter sequences in
crocin biosynthesis pathways suggested that nine bHLHs in G. jasminoides might negatively regulate crocin biosynthesis. This
study laid a foundation for understanding the regulatory mechanism of crocin biosynthesis and the improvement and breeding
of G. jasminoides varieties.

1. Introduction

Crocins, glucosyl esters of crocetin, belong to apocarote-
noids, which are highly accumulated in mature fruits of
Gardenia jasminoides [1] and stigma of Crocus sativus. Cro-
cins have a curative effect on various types of central nervous
system diseases, such as neurodegenerative diseases [2], and
various types of cardiovascular system disease, such as hyper-
tension [3]. Crocins also have pharmacological activities,
including anticancer cell growth [4], anti-inflammation and
antioxidation [5], antiplatelet aggregation [6], and antiobe-
sity [7]. G. jasminoides, named Zhi Zi in traditional Chinese
medicine and recorded in the Chinese pharmacopoeia, is
commonly used for antioxidant activity, anti-inflammation,
and detoxification [8]. G. jasminoides, belonging to the coffee

family, is a famous ornamental plant, widely distributed
around the world [9].

InG. jasminoides fruits, the biosynthesis of crocins begins
with the cleavage of carotenoids under the activity of caroten-
oid cleavage dioxygenase (CCD) to produce crocetin dialde-
hyde. Then, aldehyde dehydrogenase (ALDH) catalyzes the
transformation of crocetin dialdehyde to crocetin, which is
the key precursor of crocins. Lastly, the glycosylation of
different crocetins under the catalysis of UDP-
glucosyltransferase (UGT) produces various crocins (crocins
I–V) (Figure S1). The genome of G. jasminoides has been
finished, and the complete pathway of crocin biosynthesis
including GjCCD4a, GjALDH2C3, GjUGT94E13, and
GjUGT74F8 has been systematically elucidated (NCBI:
VZDL00000000). However, the regulation of crocins
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produced in G. jasminoides remains unclear. The regulation
of transcription factors (TFs) plays an important role in the
biosynthesis of active compounds [10–14].

The bHLH superfamily, one of the largest TF families in
plants, has been indicated to be related to plant development
and stress response. The genome-wide identification and
analysis of bHLH TFs have been reported in many plants,
such as Arabidopsis thaliana [15], Oryza sativa [16],
Solanum lycopersicum [17], Brassica rapa [18], Salvia
miltiorrhiza [19], Panax ginseng [20], Vitis vinifera [21],
Malus domestica [22], and Arachis hypogaea [23]. bHLH
TFs can bind to E-box (5′-CANNTG-3′), MYCATRD22
(5′-CACATG-3′), T/G-box (5′-AACGTG-3′), or G-box
(5′-CACGTG-3′) elements to regulate gene expression
[24–26]. Based on transcriptome analysis of C. sativus, many
transcription factors including two bHLH members were
selected to be involved in the crocin biosynthesis and accu-
mulation [27]. Furthermore, the functions of many bHLH
proteins in plants have been indicated to regulate the biosyn-
thesis of secondary metabolites. For example, in Panax noto-
ginseng, PnbHLH1 improves triterpenoid biosynthesis by
interacting with E-box core sequences in the promoter region
of target genes [28]. In strawberry fruits, FvbHLH9 positively
regulates anthocyanin biosynthesis by forming HY5-bHLH9
transcription complexes [29]. MYCs are important bHLH
family members, and MYC2s from different species positively
or negatively regulate the biosynthesis of active compounds. In
A. thaliana, MYC2 negatively regulates indole glucosinolate
biosynthesis during jasmonic acid (JA) signaling. Further-
more, MYC2 positively regulates ascorbate redox cycling and
flavonoid biosynthesis to enhance tolerance to insect pests
and oxidative stress [25]. In Taxus chinensis, three JA-
inducible MYC TFs, TcJAMYC1, TcJAMYC2, and TcJA-
MYC4, negatively regulate the paclitaxel biosynthesis [26].

The regulation of bHLH TFs in crocin biosynthesis has
not been described in G. jasminoides. Here, we systematically
selected bHLH TFs and identified the candidate bHLHs
related to the regulation of crocin production based on the
genome of G. jasminoides. Our results provided a basis for
further studying the regulatory mechanism of crocin biosyn-
thesis and the breeding of G. jasminoides varieties.

2. Materials and Methods

2.1. Plant Materials. The variety of G. jasminoides, named
ZZ1-9, was selected and cultivated in the Chongqing Institute
of Medicinal Implantation. The root, stem, leaf, young fruit,
green fruit, and red fruit of G. jasminoides (ZZ1-9) were
treated with liquid nitrogen and stored at -80°C for subse-
quent experiments.

2.2. Identification of bHLH Genes and Sequence Feature
Analysis. The bHLH sequences of Arabidopsis were down-
loaded from the Arabidopsis database (https://www
.arabidopsis.org/), Ensembl Plants (http://plants.ensembl.org/
index.html), and NCBI (https://www.ncbi.nlm.nih.gov/), and
the accession numbers of AtbHLH genes are listed in
Table S1. All GjbHLH genes were identified using the
HMMER analysis of the bHLH domain (HLH: PF00010.26 or

bHLH-MYC_N: PF14215.6) against the G. jasminoides
genome. The GjbHLH genes were manually corrected using a
protein BLAST algorithm (http://blast.ncbi.nlm.nih.gov/Blast
.cgi). The theoretical isoelectric point (pI) and the molecular
weight (Mw) of the GjbHLH proteins were predicted using
the computed pI/Mw tool on the ExPASy server (http://web
.expasy.org/compute_pi/).

2.3. Phylogenetic, Gene Structure, and MEMEMotif Analyses.
A total of 638 bHLH genes from Arabidopsis, poplar, rice,
moss, and algae were classified into 32 subfamilies [30].
The protein sequences of the bHLH family from G. jasmi-
noides and Arabidopsis were aligned using MUSCLE
methods [31]. Then, the multiple sequence alignments were
used to construct a Maximum Likelihood (ML) tree by
MEGA 6.0 with the Jones-Taylor-Thornton model and
1000 bootstrap replicates [32]. The phylogenetic tree of the
MYC subfamily and the bHLH3 subfamily was constructed
using the same method, and bHLH15 subfamily members,
GjbHLH15.1 and GjbHLH15.7, were chosen as the outgroup.
The online Gene Structure Display Server (GSDS 2.0) (http://
gsds.cbi.pku.edu.cn) was used to investigate the gene struc-
ture based on each coding sequence (CDS) and the corre-
sponding genomic sequence. The conserved motifs in
bHLH TFs of G. jasminoides were identified using MEME
(suite version 5.0.3) with the following criteria: 22 motifs,
any number of repetitions of a motif, and an optimum width
of 10–200 amino acids [19, 33].

2.4. Gene Expression Analysis. The RNA-Seq from six organs
(root, stem, leaf, young fruit, green fruit, and red fruit) of G.
jasminoides was performed. The RNA-Seq reads were
mapped to the G. jasminoides genome using HISAT2 [34],
and the expression levels of bHLH genes were estimated on
the basis of fragments per kilobase per million (FPKM)
values using Cufflinks [35].

Total RNA was extracted from the root, stem, leaves,
green fruits, and red fruits using an RNAprep Pure Plant
Kit (TIANGEN Biotech, China) according to the manufac-
turer’s instructions. The expression levels of GjbHLH
candidate genes identified as putative regulators of crocin
biosynthesis were confirmed by quantitative real-time
reverse transcription PCR (qPCR) analysis in triplicate. Total
RNA was reverse transcribed using a PrimeScript™ II 1st
Strand cDNA Synthesis Kit (TaKaRa, China). qPCR was per-
formed with a TB Green™ premix Ex Taq™ (Tli RNaseH
Plus) (TaKaRa, China) and conducted in triplicate using an
Applied Biosystems 7500 Real-Time PCR system (Life Tech-
nologies, USA). The primers were designed using Primer
Premier 6 (Table S2), with an amplicon size ranging from
150 bp to 250 bp and an optimal Tm of 55 ± 5°C. The actin
gene was used as an internal reference, and red fruit was
examined for comparison; Ct values were calculated to
analyze the relative expression levels by using the 2−ΔΔCt

method [36]. One-way ANOVA was performed with
GraphPad Prism to detect the differences in candidate gene
expression. ∗P < 0:05 was considered to indicate statistical
difference in expression.
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2.5. Promoter Sequence Analysis. The promoter sequences
(1500 bp) of key enzyme genes in the crocin biosynthesis
pathways were used to predict cis-elements in the New
PLACE database (https://www.dna.affrc.go.jp/PLACE/).

3. Results

3.1. Gene Prediction and Phylogenetic Analysis. A total of 95
bHLHs were identified that have a complete bHLH domain
and named in accordance with the classification principle
of Arabidopsis thaliana (Table S3). The GenBank accession
numbers of GjbHLH sequences are MN385845 to
MN385939 (Table S3). The length of GjbHLH amino acid
(aa) sequences varied from 89 aa (GjbHLH25.9) to 966 aa

(GjbHLH23.4). The molecular weights (Mw) of the
predicted proteins ranged from 9,904.32Da (GjbHLH25.9)
to 104,750.24Da (GjbHLH23.4) (Table S4), and the
predicted theoretical isoelectric points (pI) ranged from
4.81 (GjbHLH1.5) to 10.51 (GjbHLH31.4) (Table S4).

The ML phylogenetic tree of the 95 bHLH members in
G. jasminoides indicated that 23 distinct subfamilies were
identified (Figure 1). The subfamily 25 had the largest
number of members (11 GjbHLHs), and subfamilies 5, 9,
11, 12, 16, 30, and 32 had one GjbHLH gene each. Sub-
families 17, 18, 19, 20, 21, 22, and 28 commonly exist in
A. thaliana, but no GjbHLH genes were found in these
subfamilies. The new subfamilies 32 and 33 were species-
specific in G. jasminoides.
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Figure 1: An ML phylogenetic tree of the bHLH transcription factor family in G. jasminoides. Subfamilies 17, 18, 19, 20, 21, 22, and 28
marked in red indicated those commonly existing in A. thaliana, but no GjbHLH genes were found in these subfamilies.
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In addition, 9 genes, which are distributed in subfamilies
2 and 23, possessed a bHLH-MYC_N (Pfam: PF14215.6)
domain, and the other genes have a conserved HLH (Pfam:
PF00010.26) domain (Table S3).

3.2. Gene Structure and Conserved Motif Analyses. The struc-
tural analyses of the bHLH genes revealed that the number of
exons varied from 1 to 12, and 8 genes were intronless
(Figure 2(a)). Subfamily 23 had the most number of exons
with an average of 12. The 8 intronless genes were distributed
across 5 subfamilies. Of these genes, 3 belonged to subfamily
31, 2 belonged to subfamily 2, and 3 belonged to subfamilies
1, 11, and 30 (Table S4).

The MEME was used to characterize 22 conserved motifs
within bHLH proteins in order to clarify the evolution of
bHLH genes (Figure 2(b) and Table S5). Compared with
the known HLH and bHLH-MYC_N domains, motif 1 and
motif 2 belong to the HLH domain, and motifs 7, 12, and
14 belong to the bHLH-MYC_N domain. GjbHLHs in
subfamilies 2 and 3 contained the largest number of motifs
(6 types), whereas the GjbHLHs in subfamilies 11 and 16
comprised one motif each (motifs 1 and 2). Additionally,
the average number of motifs per bHLH varied across
subfamilies and ranged from 1 (subfamilies 11 and 16) to 6
(subfamily 2). Most motifs appeared only once in one
bHLH gene, but GjbHLH26.2 protein had two copies of
motif 3, and GjbHLH33.1 protein and subfamily 27 have
two copies of motif 15. Motif 1 or 2 was conservatively
distributed in all subfamilies. A total of 14 motifs uniquely
appear in a specific subfamily: motifs 7 and 16 in subfamily
2; motifs 8, 11, and 13 in subfamily 3; motif 21 in subfamily
4; motifs 5, 14, and 22 in subfamily 23; motifs 18 and 19 in
subfamily 24; motif 17 in subfamily 27; motif 10 in
subfamily 31; and motif 19 in subfamily 33 (Figure 3(a)).

The bHLH-MYC_N domain of subfamily 2 was
composed of motifs 12 and 7, and subfamily 23 comprised
motifs 12 and 14 (Figures 3(a) and 3(b)). In addition, the
ML phylogenetic tree of MYCs from Catharanthus roseus,
Nicotiana tabacum, T. chinensis, and A. thaliana and all
members of subfamilies 2 and 23 in G. jasminoides indicated
that all members of subfamily 2 are clustered with MYC2
(Figure 3(c)). Furthermore, GjbHLH2.3 is clustered with
CrMYC2, and GjbHLH2.4 and GjbHLH2.5 are clustered with
AtMYC2.3.

3.3. Differential Expression of bHLH Genes in Various
Organs. Among the 95 bHLH genes, the expression of 13
bHLH genes distributed across 8 subfamilies was undetected,
with FPKM values of less than 1 (Figure 4, Table S6). The
expression of the other 72 bHLH genes comprising 19
subfamilies was detected, with FPKM values higher than 1
in at least one of the six organs tested. In addition, 44
GjbHLH genes showed a significantly high expression
(log 2 jfold changej > 1) in at least one of the organs (root,
stem, leaf, and young fruit), and 13 genes exhibited a
significantly high expression in all four organs. The
expression pattern of GjbHLH genes indicated that more
GjbHLH genes showed a relatively low expression in mature
G. jasminoides fruits. A total of 13 genes were specifically

expressed in six organs. In particular, 7 genes (GjbHLH1.3,
GjbHLH2.1, GjbHLH3.1, GjbHLH3.4, GjbHLH3.10,
GjbHLH10.4, and GjbHLH31.2) were specifically expressed
in the root, 2 genes (GjbHLH15.2 and GjbHLH25.1) were
specifically expressed in the stem, and only 1 gene was
expressed specifically in the leaf (GjbHLH7.2), young fruit
(GjbHLH25.9), green fruit (GjbHLH15.4), and red fruit
(GjJbHLH1.8).

Crocins have been indicated to be highly accumulated
in mature G. jasminoides fruits [37]. The expression of
the key enzyme genes, including GjCCD4a, GjALDH2C3,
GjUGT94E13, and GjUGT74F8, in the crocin biosynthesis
pathway was higher in mature fruits than in other organs.
However, the expression of 9 genes (GjbHLH1.7, GjbHLH1.9,
GjbHLH2.2, GjbHLH2.3, GjbHLH2.4, GjbHLH2.5,
GjbHLH3.10, GjbHLH7.2, and GjbHLH27.3) significantly
decreased in mature fruits compared with those in the four
other organs; the FPKM values were higher than 50 in the four
other organs and at least 2-fold higher than those in red fruit.
Among them, 4 genes (GjbHLH2.2, GjbHLH2.3, GjbHLH2.4,
and GjbHLH2.5) belonged to the MYC2 family. The qRT-
PCR analysis of the 9 candidate genes indicated that the
expression of 7 genes in red fruits was significantly low, which
was consistent with the RNA-Seq results (Figure 5, Table S7).

3.4. cis-Acting Elements of Promoter of Crocin Biosynthetic
Genes. The analysis of the promoter sequences of 6 key
enzyme genes (GjBCH,GjLCYB,GjALDH2C3,GjUGT94E13,
GjUGT74F8, and CjCCD4a) in the crocin biosynthesis path-
way and candidate GjbHLH genes showed that all the pro-
moters contained E-box sites, which are the regulatory
elements of bHLH TFs (Tables S8 and S9). The promoters
of 6 key enzyme genes have 7, 3, 4, 5, 9, and 4 E-box
binding sites. In addition, 10 classic MYC2-binding cis-
acting elements, including 4 AACGTG (T/G-box), 1 CACG
TG (G-box), and 5 CACATG (MYCATRD22), were found
in the promoters of crocin biosynthetic genes. Moreover, 5
MYCATRD22 elements were found in the promoters of
GjLCYB, GjBCH, GjALDH2C3, and GjUGT74F8, 4 T/G-box
elements were detected in the promoters of GjALDH2C3,
GjUGT94E13, and GjCCD4a, and 1 G-box element was
observed in the promoter of GjUGT74E8. Furthermore, 6
candidates of GjbHLH genes (GjbHLH2.3, GjbHLH2.4,
GjbHLH2.5, GjbHLH3.10, GjbHLH7.2, and GjbHLH27.3)
contained at least one of the elements of T/G-box and
MYCATRD22.

4. Discussion

bHLH TFs play an important role in plant stress resistance
[38], signal transduction [39], secondary metabolism regula-
tion [40], and growth and development [41]. They have been
identified and analyzed in various plants. According to the
sequence homology and phylogenetic relationships, 167,
183, 177, 169, and 127 bHLH genes have been identified in
A. thaliana [30], P. trichocarpa [30], O. sativa [30], P. ginseng
[20], and S. miltiorrhiza [19], respectively. Here, we first
identified 95 GjbHLH TF genes in G. jasminoides and classi-
fied them into 23 subfamilies. The gene number of bHLH
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Figure 2: The structural features and conserved motif analysis of GjbHLH genes. (a) The structural features of each bHLH gene in G.
jasminoides. Exons and UTRs are represented by yellow and blue round-cornered rectangles, respectively. Introns are shown by black
connecting lines. (b) The distribution of conserved motifs in each bHLH gene of G. jasminoides. The relative positions of each conserved
motif within the bHLH protein are shown in color.
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Figure 3: Continued.
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genes is similar with that in the V. vinifera genome (94 genes)
[21]. The variable numbers of bHLH genes in these species
are probably caused by whole genome duplication or tandem
repeat during plant evolution. Both V. vinifera and G. jasmi-
noides did not experience a whole genome duplication event
after the ancient gamma triplication event of eudicots [42,
43]; however, the genomes of A. thaliana, P. trichocarpa, O.
sativa, P. ginseng, and S. miltiorrhiza underwent at least one
whole genome duplication event after a shared gamma event
[44]. Thence, the bHLH genes in these species showed signif-
icant expansion, compared with V. vinifera and G. jasmi-
noides. In addition, compared with the bHLH family of
Arabidopsis, the members of subfamilies 17, 18, 19, 20, 21,
22, and 28 of bHLH TFs are lost in the G. jasminoides
genome, and two new subfamilies 32 and 33 were identified
in G. jasminoides. Gene families in plants might primarily
evolve through tandem duplication [45]. In the G. jasmi-
noides genome, we identified one tandem gene duplication,
covering 7 bHLH genes in scaffold 108. All the clustered
bHLH genes belonged to subfamily 3, suggesting the expan-
sion of subfamily 3 members in G. jasminoides. The phyloge-
netic analysis of bHLH3 between G. jasminoides and

previous reports of bHLH3 family members from other
plants suggested that the expansion of subfamily 3 was
species-specific after the speciation of G. jasminoides
(Figure S2).

bHLH TFs directly or indirectly regulate the biosynthesis
of active compounds in medicinal plants. For example,
SmbHLH10 overexpression in S. miltiorrhiza enhanced the
accumulation of tanshinones [46]. In Medicago truncatula,
two bHLH TFs, TSARL1 and TSARL2, positively increase
the expression of the triterpene biosynthetic genes, resulting
in triterpene saponin accumulation [47]. In G. jasminoides,
the expression profile of 9 candidate bHLH TFs in matured
fruits significantly decreased and negatively correlated with
the expression of GjCCD4a, GjALDH2C3, UGT74F8, and
UGT94E13. Among them, 4 genes (GjbHLH2.2, GjbHLH2.3,
GjbHLH2.4, and GjbHLH2.5) had bHLH-MYC_N protein
domains. Promoter sequence analysis indicated that the 6
key enzyme genes in crocin biosynthesis pathways had a
large number of bHLH TF binding sites, suggesting the
potential regulation of bHLHs in G. jasminoides. The pro-
moters of 7 candidate GjbHLH genes contained at least one
of the motifs of T/G-box, G-box, and MYCATRD22 that
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Figure 3: The distribution analysis of conserved motifs of GjbHLH genes in each subfamily and the phylogenetic tree and motif analysis of
subfamily 2. (a) Distribution of 22 motifs in each subfamily. (b) The bHLH-MYC_N domain of subfamily 2 consists of motifs 12 and 7. (c) An
ML phylogenetic tree was constructed with the 12MYC2 genes from C. roseus, N. tabacum, T. chinensis, and A. thaliana and 9MYCs from G.
jasminoides. GjbHLH15.1 and GjbHLH15.7 branches were chosen as an outgroup. TheMYC2s were downloaded with the sequence numbers:
CrMYC2 (AF283507); NtMYC2a (HM466974) and NtMYC2b (HM466975); TcJAMYC2 (JX519289), TcJAMYC4 (JX519290), and
TcJAMYC1 (FJ608574); TcMYC2a (MG494378); and AtMYC3 (AT5G46760), AtMYC4 (AT4G17880), AtMYC2.1 (AT1G32640),
AtMYC2.2 (AT1G63650), and AtMYC2.3 (AT1G01260).
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Figure 4: Heatmaps representing the expression profiles ofG. jasminoides bHLH genes in the root, stem, leaf, young fruit, green fruit, and red
fruit. The FPKM value was normalized using Z-score (row).
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could be bound by MYC2. The phylogenetic analysis of
MYCs revealed that GjbHLH2.3 is clustered with CrMYC2,
which can regulate the biosynthesis of medicinally valuable
terpenoid indole alkaloids in C. roseus [48]. Furthermore,
the qPCR analysis indicated that the expression of most can-
didate genes in mature fruits was significantly low, which was
consistent with the RNA-Seq results. These results implied
that bHLH TFs might negatively regulate the biosynthesis
of crocins in G. jasminoides. Candidate bHLH TFs should
be functionally verified to clarify the molecular mechanism
of the regulation of crocin biosynthesis.

5. Conclusions

In conclusion, 95 bHLH TF genes were identified and phylo-
genetic analyzed in the genome of G. jasminoides. These
GjbHLHs could be classified into 23 subfamilies supported
by phylogeny, additional protein motifs, and intron/exon
structures. Gene-specific expression patterns, crocin biosyn-
thesis pathways, and elucidation of the complete pathway
of the crocin biosynthesis in mature G. jasminoides fruits
revealed that 9 bHLH TF genes identified in G. jasminoides
were potentially involved in the regulation of crocin biosyn-

thesis. The candidate bHLH TF genes related to crocin bio-
synthesis should be further functionally identified via a
series of in vivo and in vitro experimental procedures.

Data Availability

The bHLH transcription factor sequences of G. jasminoides
have been uploaded into NCBI database, and the GenBank
accession numbers of GjbHLH sequences are from
MN385845 to MN385939.
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Supplementary Materials

Supplementary 1. Figure S1: the potential crocin biosynthetic
pathway in G. jasminoides.

Supplementary 2. Figure S2: an ML phylogenetic tree was
constructed with GjbHLH3 subfamily and bHLH3 family
members reported from other plants. GjbHLH15.1 and
GjbHLH15.7 branches were chosen as the outgroup. bHLH3
family members were downloaded with the following
sequence numbers: AT2G22770, AT2G22750, AT2G22760,
AT4G37850, OS03G51580, OS03G12760, OS03G46860,
OS12G43620, OS03G46790, and OS10G01530.

Supplementary 3. Table S1: the accession numbers of
AtbHLH genes. Table S2: primer sequences of candidate
GjbHLH genes. Table S3: identification of GjbHLH genes
through BLAST and HMMER analysis of the bHLH domain
against the G. jasminoides genome. Table S4: analysis of the
structural features and conserved motifs of bHLH genes in
G. jasminoides. Table S5: conserved motifs predicted by
MEME. Table S6: the FPKM values of 95 GjbHLH genes in
different organs. Asterisks (∗) represent the coexpression of
four genes (GjALDH2C3, GjUGT94E13, GjUGT74F8, and
CjCCD4a) in crocin biosynthesis. Table S7: the qRT-PCR
analysis for candidate GjbHLH genes. Table S8: the cis-acting
elements of the promoter sequences of 6 key enzyme genes
(GjBCH, GjLCYB, GjALDH2C3, GjUGT94E13, GjUGT74F8,
and CjCCD4a) in the crocin biosynthesis pathway. Table
S9: the cis-acting elements of the promoter sequences of
candidate GjbHLH genes.
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